
Fast Shortest-Path Queries

Laurent Viennot

MPRI – Theory of practical graph algorithms

Fast shortest-path queries

⇐ ? ⇒ 1 / 1 2 / 22

Shortest path queries

Problem :
• A graph G is given.
• Answer queries : shortest path from s to t?

Trivial solution : pre-compute for all s, t.

Recent progress [BDG+15], e.g. in road networks (n = 20M) :
• Dijkstra : 4s
• Bidirectional Dijkstra : 1s
• Bidirectional A∗ : 100ms
• Reach-Pruning, Contraction Hierarchies : 10 ms
• Hub labeling : 10 µs

⇐ ? ⇒ 1 / 1 3 / 22

Query time vs preprocessing time (exact) [BDG+15]

0.1 1 10 100 1,000 10,000

0.0001

0.001

0.01

0.1

1

10

100

1,000

Arc Flags

HH

HH*

SHARC

TNR with Arc Flags

HPML

CH

CCH

(customization)

TNR

HLC

CRP

Table Lookup

(PHAST)

Dijkstra’s Algorithm

Bidirectional Search

(customization)

(customization)

ALT
(customization)

CHASE

Hub Labels

Reach

REAL ReachFlags

HNR

CALT

Preprocessing time [min]

Q
ue

ry
tim

e
[m

s]

Figure 7. Preprocessing and average query time performance for algorithms with available
experimental data on the road network of Western Europe, using travel times as edge weights.
Connecting lines indicate di�erent trade-o�s for the same algorithm. The figure is inspired by [238].

Note that a machine with more than one petabyte of RAM (as required by this algorithm)
would likely have slower memory access times.

Times in the plot are on a single core of an Intel X5680 3.33 GHz CPU, a mainstream
server at the time of writing. Several of the algorithms in the plot were originally run on
this machine [5, 75, 77, 82]; for the remaining, we divide by the following scaling factors:
2.322 for [40,83], 2.698 for [142], 1.568 for [15], 0.837 for [107], and 0.797 for [112]. These were
obtained from a benchmark (developed for this survey) that measures the time of computing
several shortest path trees on the publicly available USA road network with travel times [101].
For the machines we did not have access to, we asked the authors to run the benchmark for
us [112]. The benchmark is available from http://algo.iti.kit.edu/~pajor/survey/,
and we encourage future works to use it as a base to compare (sequential) running times

22

⇐ ? ⇒ 1 / 1 4 / 22

Query time vs space (exact) [Sommer 14]

Shortest-Path Queries in Static Networks 45:15

Fig. 4. Route planning for road networks: the tradeoff between space [S] and query time [Q] for recent
shortest-path query data structures, depicted using doubly logarithmic scales. The performance numbers
represented by this figure were extracted from Delling et al. [2009a, Table 1], Bauer et al. [2010b, Table 8],
Abraham et al. [2011b, Table 1], Arz et al. [2013, arXiv Table 5], and Delling et al. [2013b, Table 2].
Performance numbers were obtained on different machines and scaled with best effort to make methods
comparable. Colors and dashed lines do not carry any meaning; lines serve the purpose of visually connecting
dots corresponding to different implementations or different variants of the same method.

Methods using contraction hierarchies (CH) [Geisberger et al. 2008; Sanders et al. 2008; Geisberger et al.
2012] dominate the low-space regime; methods based on reach [Gutman 2004; Goldberg et al. 2009] and
highway hierarchies (HH) [Sanders and Schultes 2005, 2006; Delling et al. 2009b] can be seen as the “first
generation” of CH; transit-node routing (TNR) [Bast et al. 2007a; Bauer et al. 2010b; Arz et al. 2013] and
hub labels (HL) [Abraham et al. 2011b; Delling et al. 2013b] dominate the fast-query-time regime.

updates or incorporating realistic turn costs may have unexpected consequences to
the methods’ performances).

Efficient practical methods to answer shortest-path queries are often devised by
following a feedback loop that consists of four steps: design, analysis, implementation,
and experimentation. This approach is also called algorithm engineering [Sanders 2009,
Figure 1]. Since experimentation is an integral part of the feedback loop, the choice of
the datasets may highly influence the outcome of the algorithm engineering process.
Whenever possible, experiments are run with input graphs that are actually used
in practice. Route planning methods discovered by an algorithm engineering process
include, for example, Highway Hierarchies (HH) [Sanders and Schultes 2005, 2006]
and its exceedingly popular successor called Contraction Hierarchies (CH) [Geisberger
et al. 2008]. Both methods depend on structural properties of the input graph and
rather heavily on the edge lengths and the shortest-path metric they impose. If the
length function is chosen such that edge lengths correspond to Euclidean distances,
the methods still work well but their performance is worse than the performance when
edge lengths correspond to (estimated) travel times. It is for the so-called travel time
metric, where these hierarchical methods excel, and where the performances obtained
are truly impressive (see also other methods, as illustrated in Figure 4). However,
estimating travel times for road segments is a highly nontrivial task in itself and
it is not entirely clear to what extent the estimates used in research datasets are
accurate representations for actual travel times observed in the real world. To the best
of my knowledge, there are only a few studies on the robustness of these methods,
investigating whether the performances would drop significantly upon changes to the
length function; see, for example, Delling et al. [2013a]. Recent theoretical research
(Section 3.2.4) strives to explain the success of these speedup techniques, analyzing

ACM Computing Surveys, Vol. 46, No. 4, Article 45, Publication date: March 2014.

⇐ ? ⇒ 1 / 1 5 / 22

Distance oracles

Def : Given a graph G with n nodes, compute a
data-structure of size S allowing to answer queries “what is
dG(u, v)?” for u, v ∈ V(G) in time t.

Th : [Cohen Porat 2010] t = O(1) requires space S = Ω(n2)
under Fast-Set-Intersection Hypothesis (given
S1, . . . ,Sn ⊆ [logc n], answering queries “does Si intersects
Sj ?” in constant time requires Ω(n2) space). This holds even
for 2− ε-approximation.

Best algorithm : O(t) time with O(n2/t2) space. [Cohen Porat
2010].

⇐ ? ⇒ 1 / 1 6 / 22

A short history of shortest paths

⇐ ? ⇒ 1 / 1 7 / 22

Dijkstra [Dijkstra ‛59]

Procedure Dijkstra (G, s, t)
Distance label d(u) := 0 if u = s,∞.
Radius r := 0.
Repeat

Pick unvisited u with d(u) min. // d(u) = dG(s, u)
Visit u :
For v ∈ NG(u) do d(v) := min {d(v),d(u) + ℓ(uv)}
r := minunvisited v d(v)

until d(t) ≤ r
Return d(t)

⇐ ? ⇒ 1 / 1 8 / 22

Bidirectional Dijkstra

Procedure BidirDijkstra (G, s, t)
Alternate Dijkstra (G, s, t) and Dijkstra (

←−
G , t, s).

Stopping condition?

Estimation µ :=∞ of d(s, t).
When scanning edge uv : µ := min

{
µ,d(u) + ℓ(uv) +

←−
d (v)

}
.

Stop if µ ≤ r+←−r .

Exercise : show correctness.
Exercise : explain 1s vs 4s in road networks.

⇐ ? ⇒ 1 / 1 9 / 22

A∗ [Hart, Nilsson, Raphael ‛68]
Shortest path algorithm with prediction :
Potential function π(u) ≈ d(u, t).
Dijkstra (Gπ, s, t) with ℓπ(uv) = ℓ(uv)− (π(u)− π(v)).
dπ(s, t) = d(s, t)− (π(s)− π(t)).
Visit u with d(u) + π(u) min.

π feasible if ∀uv ∈ E(G), ℓπ(uv) ≥ 0

Exercise : Sufficient condition for using π(u) = D(u, t) for a
metric D?
Bidirectional A∗ : ALT [Goldberg, Harelsson ‛05]
(ALT = A∗, Landmarks, Triangle inequality)

• ℓπ(uv) =
←−
ℓ ←−π (vu)⇐⇒ π +←−π = cte

(ex : π′ = (π −←−π)/2 and π′′ = (←−π − π)/2
or π and π′′(v) = max {←−π (v), π(t)−π(v) + α←−π (s)})

• or different stopping condition (←−r ≥ µ)
• π from landmarks (better than using coordinates) :

π(u) = maxx∈X dG(u,x)− dG(t,x)
⇐ ? ⇒ 1 / 1 10 / 22

Reach pruning [Gutman ‛04]
revisited [Goldberg, Kaplan, Werneck ‛05]

Reach(u) = max(s,t)|u∈Pst min {d(s, u),d(u, t)}

In bidir. Dijkstra, when scanning u :
• Prune v s.t. Reach(v) < min

{
d(u) + ℓ(uv),←−r

}
.

Add shortcuts :
• Tie break : fewer links is shorter.

Exercise : how to get shortest path from s to t?

Pre-compute reach upper bounds :
• Eliminate nodes with reach ≤ δ.
• Shortcut paths with degree 2 nodes.
• Repeat with larger δ.

⇐ ? ⇒ 1 / 1 11 / 22

Contraction Hierarchies [Geisberger, Sanders,
Shultes, Delling ‛05-08]

Node ordering π : u1 < · · · < un
Contract successively ui :

• add shortcut vw for v,w ∈ N(ui) (if needed),
• remove ui (distances are preserved in remaining graph).

Query : bidir. Dij. in G+↑ and
←−
G+↑.

• G+ : graph + shortcuts
• ↑ : follow uv if u <π v

Finding π :
• small degree + levels (MIS),
• min fill-in (greedy treewidth dec.),
• small balanced separators (O(n log n) shortcuts if planar).

Exercise : bound the number of shortcuts if any subgraph of
G has an O(nε) balanced separator and maximum degree ∆.
Open pb : link between small Reach and small CH?

⇐ ? ⇒ 1 / 1 12 / 22

CH complexity for planar graphs 1/3.

Theorem [Lipton, Tarjan ‛79] Every planar graph G has a
2/3-balanced separator S0 of size O(

√
n).

Elimination ordering π : recursively order each connected
component and then add nodes in S0 in any order. This
results in a tree of separators of depth O(log n). (Nested
dissection as in [Gilbert, Tarjan ‛87].)

Rq : all shortcuts occur between a tree-node and an
ancestor (possibly the tree-node itself).

Corollary : The nodes visited during a pruned Dijkstra from
a node s at depth k are all in the separators in the branch of
s and query time is O(

∑k
i=0 si) = O(

√
n) (where

si = c
√
(2/3)in is the maximum size of a separator at depth

i).

⇐ ? ⇒ 1 / 1 13 / 22

Lemma : There are O(n) shorcuts with an extremity in S0.
Rq1 : At most |S0|2 = O(n) inside S0.
Rq2 : Each shortcut with a node u at depth k is the result of
the contraction of nodes in the subtree rooted at the
separator S containing u.
Def : define the bipartite graph Gk with vertex set S0 ∪ Dk
where Dk is the set of separators at depth k and an edge
(v,S) if there is a node v ∈ S0 and a separator S ∈ Dk such
that there exists a shortcut from u ∈ S to v.
Rq3 : Gk is planar because it can be obtained from G by
removing edges inside S0, removing nodes at depth within 1
and k− 1 and contracting edges between nodes at depth k or
deeper. We thus have m(Gk) ≤ 3n(Gk)− 6 (Euler & 3f ≤ 2m).
Rq4 : The number of shortcuts with an extremity at depth k
is Nk ≤

∑
S∈Dk

|S|degGk
(S). If D′k = {S : degGk

(S) > 3}, then
Nk ≤

∑
S 3|S|+

∑
S∈D′

k
sk(degGk

(S)−3) ≤ 3nk+sk(m(G′k)−3|D
′
k|)

where G′k = Gk[D′k ∪ S0] satisfies m(G′k) ≤ 3n(G′k) implying
Nk ≤ 3nk + 3sk|S0|. The Lemma follows from

∑
k sk = O(

√
n).

⇐ ? ⇒ 1 / 1 14 / 22

CH complexity for planar graphs 3/3.

Corollary : The number of shortcuts generated by
contracting G according to π is O(n log n).

Rq1 : Similarly to the previous Lemma, for each separator S
root of a subtree of n′ nodes, there are O(n′) shortcuts
with an extremity in S.

Rq2 : When summing all subtree sizes, a node is counted
O(log n) times.

⇐ ? ⇒ 1 / 1 15 / 22

Transit node routing [Bast, Funke, Matjevic ‛07 ;
Sanders, Schultex ‛09]

Transit nodes T so that any long distance path goes through
a transit node x ∈ T. Pre-compute all distances d(x, y) for
x, y ∈ T.

Access nodes A(v) ⊆ T : any long path from/to v goes
through x ∈ A(v).

Long distance query (s, t) :
minx∈A(s),y∈A(t) d(s,x) + d(x, y) + d(y, t)

Local query (s, t) : Use bidirectional Dijkstra or even CH.

⇐ ? ⇒ 1 / 1 16 / 22

Highway dimension [Abraham, Delling, Fiat,
Goldberg, Werneck ‛10-13]

Graph property ensuring efficient ordering for CH and fast
pruned bidir. Dijkstra.
Definition
Highway dimension h = maxu,rminH hitting set of Pur |H|
where Pur = {P ∈ Pr | P ∩ B(u, 2r) ̸= ∅}, Pr = {P | ℓ(P) > r},
and P is any shortest path extending P by 0 or 1 edge at
each extremity.
Theorem
Any graph G with highway dimension h and diameter D
admits a node ordering π s.t. CHπ produces at most
O(nh logD) shortcuts and CHπ + RP bidir. Dij. visits
O(h logD) nodes. (RP : prune v s.t. d(v) > 2level(v))
Lemma
For all r, G has an (h, r)-sparse hitting set, i.e. a set C s.t.
C ∩ P ̸= ∅ for all P ∈ Pr and |B(u, 2r) ∩ C| ≤ h for all u ∈ V(G).

⇐ ? ⇒ 1 / 1 17 / 22

Proof Lemma : Define C as a minimum hitting set for Pr.

Idea Theorem : Construct a (h, 2i−1)-sparse hitting set Ci
for i = 0, . . . , ⌈logD⌉.
Define C′i = Ci \ ∪j>iCj and π = C′0, . . . ,C′⌈logD⌉.

Rk1 : For each shortcut vw with v ∈ C′i and w ∈ C′j with i ≤ j,
we have d(v,w) ≤ 2i.

Cor1 : Each node v has at most h ⌈logD⌉ shortcuts.

Rk2 : In CH bidir. Dijkstra query, prune v ∈ C′i s.t. d(v) > 2i.

Cor2 : At most h nodes of C′i are visited.

⇐ ? ⇒ 1 / 1 18 / 22

A striking remark on pruned Dijkstra

Rk : The O(h logD) bound on pruned Dijkstra from s holds
even without the bidir. stopping condition.

Idea : Pre-compute this pruned Dijkstra Dv for all v !

Result : For any s, t the distance (and the shortest path)
from s to t can be computed from Ds and Dt.

The collection (Dv)v∈V form a distance labeling of G (subject
of next lecture).

⇐ ? ⇒ 1 / 1 19 / 22

Further reading

[Schild, Sommer 2015]
On balanced separators in road networks.
SEA 2015.
https://aschild.github.io/papers/roadseparator.pdf

[Delling, Goldberg, Pajor, Werneck 2017]
Customizable route planning in road networks.
Transportation Science 2017.
https://www.microsoft.com/en-us/research/wp-content/
uploads/2013/01/crp_web_130724.pdf

Open pb : Analyze CH in H-minor-free graphs.

⇐ ? ⇒ 1 / 1 20 / 22

https://aschild.github.io/papers/roadseparator.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/crp_web_130724.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/crp_web_130724.pdf

Exercise

I : Bidirectional A∗.
II : Transit node routing in graphs of highway dim. h = O(1) :

• transit nodes : X = Cq with smallest q s.t. |Cq| ≤
√
m,

• A(v) = {x ∈ Tv ∩ X S.t. Pvx ∩ X = {x}},
• TN algorithm (for a well chosen distance R) :

g(s, t) = minx∈A(s),y∈A(t) ℓ(Psx) + ℓ(Pxy) + ℓ(Pyt) ;
if g(s, t) ≥ R return g(s, t) else return bidirDijCH(s, t).
II.1 Show d(v,x) ≤ 2q−1 for any v ∈ V, x ∈ A(v).
II.2 Show g(s, t) = d(s, t) when d(s, t) > 2q−1.
II.3 Upper bound g(s, t) when d(s, t) ≤ 2q−1 and deduce an
appropriate value for R.
II.4 Bound |A(v)| for any v ∈ V.
II.5 What is the time complexity of a TN query when
g(s, t) ≥ R when allowing linear space?

⇐ ? ⇒ 1 / 1 21 / 22

Exercise for next week

Contraction order matters : Propose a bounded-degree tree
graph of n nodes and a contraction order that produce
contraction hierarchies of size Θ(n2). (Nodes are
contracted one after an other in order. When contracting a
node v of the current graph G, we add shortcuts uw to G for
neighbors u,w of u such that dG(u,w) = dG(u, v) + dG(v,w)
and remove v. The size of the contraction hierarchies is
counted as the number of shortcuts added.)

Send a short argumented answer to
laurent.viennot@inria.fr.

⇐ ? ⇒ 1 / 1 22 / 22

