Fast Shortest-Path Queries

Laurent Viennot

MPRI - Theory of practical graph algorithms

Fast shortest-path queries

7= 1/12/22

Shortest path queries

Problem :
* A graph G is given.
* Answer queries : shortest path from s to t?

Trivial solution : pre-compute for all s, 1.

Recent progress [BDG+15], e.g. in road networks (n = 20M) :
* Dijkstra: 4s
* Bidirectional Dijkstra : 1s
* Bidirectional A* : 100ms
* Reach-Pruning, Contraction Hierarchies : 10 ms
* Hub labeling : 10 ps

=7= 1/1 3/ 22

Query time vs preprocessing tfime (exact) [BDG+15]

FrTT ——r — ——r — — T
:<— Dijkstra’s Algorithm 1
1,000 < Bidirectional Search €|
100 | ALT E
: . . (0] q
r customization - 1
i () T]
10 o/ E
— £ (customization) /Reach B
g I o /O' 1
- 1L CALT o o~ CRP ArcFlags ~ CCH |
£ e o HNR. 4 5 1
- - ust at i \\ B} i
> [(customization) HH Q) 1 REAL ReachFlags 1
S 0.1k O, B
=] TE — o El
c S | CH]
[(customization) ° O— SHARC]
HPML

0.01 > |
g CHASE o® HLC (o)]
£ oo]
F TNR —@® B
L e~ R with Arc Flags i
0.001 |
F et ['\ 1
b Hub Labels ° 1
0.0001 E Table Lookup g E
§ (PHAST) 1

Ll Ll Ll Ll Ll Ll
0.1 1 10 100 1,000 10,000

Preprocessing time [min]

=7 = 1714/ 22

Query time vs space (exact) [Sommer 14]

A
Q Reache . HH
CRPe oAl e Reach+Shortcuts+ALT
lms + HNR e " HH-dist.tab.
Reach+AF % - - ¢ HH+dist.tab.+ALT
v CH
100pus+ . - .
T~ e Shortcuts+AF (SHARC)
e _
“® CH+AF (CHASE)
10pus + . HPML
e _TNR
*s-_ ___TNR+AF
lps + CH-TNR~-Z--*
e
HL Tt
s s s s s s -
0.25 0.5 1 2 4 8 16 S [GB]

1/15/22

Distance oracles

Def : Given a graph G with n nodes, compute a
data-structure of size S allowing to answer queries "what is
dg(u,v)?" for u,v € V(6) in time ¥.

Th : [Cohen Porat 2010] t = O(1) requires space S = (n?)
under Fast-Set-Intersection Hypothesis (given

S1,...,5n C [log® n], answering queries “does S; intersects
S;?" in constant time requires Q(n®) space). This holds even
for 2 — s-approximation.

Best algorithm : O(t) time with O(n?/12) space. [Cohen Porat
2010].

1/16/22

A short history of shortest paths

? = 1/17/22

Dijkstra [Dijkstra '59]

Procedure Dijkstra (G.s, 1)

Distance label d(u) := 0 if u=s, oc.
Radius r := 0.

Repeat

Visit u:
For v € Ng(u) do d(v) := min{d(v),d(u) + ¢(uv)}
P = MiNyyyisited v A(V)
until d(t) <r
| Return d(t)

Pick unvisited u with d(u) min. // d(u) = dg(s,u)

1/18/22

Bidirectional Dijkstra

Procedure BidirDijkstra (G, s, t)

Alternate Dijkstra (6, s, t) and Dijkstra (G t,s).
Stopping condition?

Estimation p := oo of d(s, 1).

When scanning edge uv : 1 := min {u, d(u) + £(uv) + g(v)}.

Stopif u<r+ .

: show correctness.
: explain 1s vs 4s in road networks.

1/19/22

A* [Hart, Nilsson, Raphael '68]

Shortest path algorithm with prediction :

Potential function 7(u) ~ d(u, t).
Dijkstra (G6x,s,) with £, (uv) = ¢(uv) — (7(u) — 7(v)).
d-(s,t) =d(s,t) — (n(s) — 7(1)).
Visit u with d(u) + w(u) min.
7 feasible if Yuv € E(G), £-(uv) >0
. Sufficient condition for using w(u) = D(u,t) for a
metric D?
Bidirectional A* : ALT [Goldberg, Harelsson '05]
(ALT = A*, Landmarks, Triangle inequality)
C (W) = T (VU) <= 7+ 5T = cte
(ex:n' =(r—"T)/2and 7" = (T —7)/2
or 7 and 7 (v) = max {7 (v), 7(t)-7(v) + a*T (s)})
. or different stopping condition (r > 1)
. m from landmarks (better than using coordinates) :
7(U) = maxyex dg(u, X) — dg(*, x)

=7= 17110/ 22

Reach pruning [Gutman '04]
revisited [Goldberg, Kaplan, Werneck '05]

Reach(u) = max s 1)jucp,, Min {d(s,u), d(u, 1)}

In bidir. Dijkstra, when scanning u :
. Prune v s.t. Reach(v) < min {d(u) + £(uv), ¥ }.

Add shortcuts :
. Tie break : fewer links is shorter.

: how to get shortest path from s fo t?

Pre-compute reach upper bounds :
. Eliminate nodes with reach <.
« Shortcut paths with degree 2 nodes.
« Repeat with larger 6.

=7 = 1/1 11/ 22

Contraction Hierarchies [Geisberger, Sanders,
Shultes, Delling '05-08]

Node ordering 7 : u; < -+ < up

Contract successively u; :
« add shortcut vw for v,w € N(u;) (if needed),
. remove u; (distances are preserved in remaining graph).

Query : bidir. Dij. in 671 and <G_+T.
« G : graph + shortcuts
«Tifollowuvifu<,v
Finding :
. small degree + levels (MIS),
« min fill-in (greedy treewidth dec.),
. small balanced separators (O(nlogn) shortcuts if planar).

: bound the number of shortcuts if any subgraph of
G has an O(n°) balanced separator and maximum degree A.

: link between small Reach and small CH?

=7 = 1/112/ 22

CH complexity for planar graphs 1/3.

Theorem [Lipton, Tarjan ‘'79] Every planar graph G has a
2/3-balanced separator S, of size O(v/h).

Elimination ordering 7 : recursively order each connected
component and then add nodes in Sy in any order. This
results in a tree of separators of depth O(logn). (Nested
dissection as in [Gilbert, Tarjan '871.)

all shortcuts occur between a tree-node and an
ancestor (possibly the tree-node itself).

Corollary : The nodes visited during a pruned Dijkstra from

a node s at depth k are all in the separators in the branch
s and query tfime is O(Z!‘ZO si) = O(v/n) (where

of

si = ¢\/(2/3)'n is the maximum size of a separator at depth

i).

1/1 13/ 22

Lemma : There are O(n) shorcuts with an extremity in Sg.

At most |Sy|? = O(n) inside Sq.

Each shortcut with a node u at depth k is the result of
the contraction of nodes in the subtree rooted at the
separator S containing u.

Def : define the bipartite graph G, with vertex set Sy U Dy
where Dy is the set of separators at depth k and an edge
(v, S) if there is a node v € Sy and a separator S € Dy such
that there exists a shortcut fromue S tov.

Gy is planar because it can be obtained from G by
removing edges inside Sy, removing nodes at depth within 1
and k — 1 and contracting edges between nodes at depth k or
deeper. We thus have m(6y) < 3n(6y) — 6 (Euler & 3f < 2m).

: The number of shortcuts with an extremity at depth k
is Nk < > sep, 1SIdegg, (S). If Dy = {S : degg, (S) > 3}, then
Nk < T8I+ S scry Sk(degs, (S)—3) < 3y tsi(m(6) 31Dy)
where G| = G¢[D} U SO] satisfies m(G}) < 3n(&,) implying
Ny < 3ny + 3si|So|. The Lemma follows from >, sk = O(v/n).

1/114 /22

CH complexity for planar graphs 3/3.

Corollary : The number of shortcuts generated by
contracting G according to w is O(nlogn).

Similarly to the previous Lemma, for each separator S
root of a subtree of n’ nodes, there are O(n’) shortcuts
with an extremity in S.

When summing all subtree sizes, a node is counted
O(logn) times.

=7= 17115/ 22

Transit node routing [Bast, Funke, Matjevic ‘07 ;
Sanders, Schultex '09]

Transit nodes T so that any long distance path goes through
a transit node x € T. Pre-compute all distances d(x,y) for
x,yeT.

Access nodes A(v) C T : any long path from/to v goes
through x € A(v).

Long distance query (s,) :
minxeA(s),yeA(T) d(S, X) + d(X, Y) + d(Y7 T)

Local query (s, 1) : Use bidirectional Dijkstra or even CH.

1/116 /22

Hi

ghway dimension [Abraham, Delling, Fiat,

Goldberg, Werneck '10-13]

Graph property ensuring efficient ordering for CH and fast
pruned bidir. Dijkstra.

Definition

Highway dimension h = maxyr min,, hitting set of Pur [H|
where Py = {P € P. | PN B(u,2r) # 0}, Pr = {P | £(P) > r},
and P is any shortest path extending P by O or 1 edge at
each extremity.

Theorem

Any graph G with highway dimension h and diameter D
admits a node ordering 7 s.t. CH, produces at most
O(nhlog D) shortcuts and CH, + RP bidir. Dij. visits

O(hlog D) nodes. (RP : prune v s.t. d(v) > 2/¢velV))

Lemma

For all r, G has an (h,r)-sparse hitting set, i.e. a set C s.1.
CNP+#(Qforall P e P.and |B(u,2r) NC| < hforallueV(6).

1/117 /22

Proof Lemma : Define C as a minimum hitting set for P..

Idea Theorem : Construct a (h,2'~!)-sparse hitting set C;
fori=0,...,[logD].

Define € = €\ UjsiCjand 7 = Ci, ..., Clyo o pyy-

For each shortcut vw withv e Ciand w € Cg withi <},
we have d(v,w) < 2.

Corl : Each node v has at most h [log D] shortcuts.
In CH bidir. Dijkstra query, prune v € C! s.t. d(v) > 2'.

Cor2 : At most h nodes of C; are visited.

1/118 /22

A striking remark on pruned Dijkstra

Rk : The O(hlog D) bound on pruned Dijkstra from s holds
even without the bidir. stopping condition.

Idea : Pre-compute this pruned Dijkstra D, for all v!

Result : For any s, T the distance (and the shortest path)
from s to t can be computed from Ds and Ds.

The collection (Dy)ycy form a distance labeling of G (subject

of next lecture).

1/119/ 22

Further reading

[Schild, Sommer 2015]

On balanced separators in road networks.

SEA 2015.
https://aschild.github.io/papers/roadseparator.pdf

[Delling, Goldberg, Pajor, Werneck 2017]

Customizable route planning in road networks.
Transportation Science 2017.
https://www.microsoft.com/en-us/research/wp-content/
uploads/2013/01/crp_web_130724.pdf

Analyze CH in H-minor-free graphs.

1/1 20/ 22

https://aschild.github.io/papers/roadseparator.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/crp_web_130724.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/crp_web_130724.pdf

Exercise

I : Bidirectional A*.

IT: Transit node routing in graphs of highway dim. h = O(1) :
. transit nodes : X = Cq with smallest g s.1. [C4| < v/m,
cA(V)={xeT,NXS.t.PxnNX={x}},

« TN algorithm (for a well chosen distance R) :

g(s, 1) = minxeA(s),yeA(’r) €(Psx) + £(Pxy) + £(Pyt):

if g(s,t) > R return g(s, 1) else return bidirDijCH(s, 1).

II.1 Show d(v,x) < 29~! foranyve V, x € A(v).

II.2 Show g(s,t) = d(s, t) when d(s, 1) > 291,

II.3 Upper bound g(s, t) when d(s,t) < 29! and deduce an

appropriate value for R.

IT.4 Bound |A(v)| forany v e V.

I1.5 What is the time complexity of a TN query when
g(s,t) > R when allowing linear space ?

1/121/22

Exercise for next week

Contraction order matters : Propose a bounded-degree tree
graph of n nodes and a contraction order that produce
contraction hierarchies of size ©(n?). (Nodes are
contracted one after an other in order. When contracting a
node v of the current graph G, we add shortcuts uw to G for
neighbors u,w of u such that dg(u,w) = dg(u,v) + dg(v,w)
and remove v. The size of the contraction hierarchies is
counted as the number of shortcuts added.)

Send a short argumented answer to
laurent.viennot@inria.fr.

1/1 22/ 22

