Fast Distance Queries

Laurent Viennot

MPRI - Graph Mining 2/8
Problem
Given a graph G assign a label L_u to each node u s.t. for all $s, t \ d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set H_u $\subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels : $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query : $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$
in $O(|H_s| + |H_t|)$ time.
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$
in $O(|H_s| + |H_t|)$ time.
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels : $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query : $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
2-hop labeling [Cohen, Halperin, Kaplan, Zwick ’03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
 - select a, S s.t. $\frac{\text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S}}{|S|} \max$.

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix a, what is the best S?
- G_a graph with edges uv s.t. P_{uv} uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best S. Hint: average degree δ increases when removing a node with degree $< \delta/2$.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick ’03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
 - select a, S s.t. \[
 \text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S} \max \frac{|S|}{|S|} \]

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix a, what is the best S?

G_a graph with edges uv s.t. P_{uv} uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best S. Hint: average degree δ increases when removing a node with degree $< \delta/2$.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick ’03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
 - select a, S s.t. \[
 \text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S} \max
 \]

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix a, what is the best S?
- G_a graph with edges uv s.t. P_{uv} uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best S. Hint: average degree δ increases when removing a node with degree $< \delta/2$.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick ‘03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
- select a, S s.t. $\frac{\text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S}}{|S|}$ max.

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix a, what is the best S?
- G_a graph with edges uv s.t. P_{uv} uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best S. Hint: average degree δ increases when removing a node with degree $< \delta/2$.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick ’03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
 - select a, S s.t. $\frac{\text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S}}{|S|}$ max.

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix a, what is the best S?
- G_a graph with edges uv s.t. P_{uv} uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best S. Hint: average degree δ increases when removing a node with degree $< \delta/2$.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Graph property ensuring small hub sets and efficient ordering for CH.

Definition
Highway dimension $h = \max_{u,r} \min_H \text{hitting set of } \mathcal{P}_{ur} |H|$
where $\mathcal{P}_{ur} = \{P \in \mathcal{P}_r | \bar{P} \cap B(u, r) \neq \emptyset\}$, $\mathcal{P}_r = \{P | \ell(P) > \frac{r}{2}\}$, and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem
Any graph G with highway dimension h and diameter D has hub sets of size $O(h \log D)$ ($O(h \log h \log D)$ for polyn. time).

Lemma
For all r, G has an (h, r)-sparse hitting set, i.e. a set C s.t. $C \cap P \neq \emptyset$ for all $P \in \mathcal{P}_r$ and $|B(u, r) \cap C| \leq h$ for all $u \in V(G)$.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Graph property ensuring small hub sets and efficient ordering for CH.

Definition

Highway dimension \(h = \max_{u, r} \min_{H} |H| \) hitting set of \(\mathcal{P}_{ur} \)

where \(\mathcal{P}_{ur} = \{ P \in \mathcal{P}_r | \overline{P} \cap B(u, r) \neq \emptyset \} \), \(\mathcal{P}_r = \{ P | \ell(P) > \frac{r}{2} \} \),

and \(\overline{P} \) is any shortest path extending \(P \) by 0 or 1 edge at each extremity.

Theorem

Any graph \(G \) with highway dimension \(h \) and diameter \(D \) has hub sets of size \(O(h \log D) \) \((O(h \log h \log D) \) for polyn. time).

Lemma

For all \(r, G \) has an \((h, r) \)-sparse hitting set, i.e. a set \(C \) s.t. \(C \cap P \neq \emptyset \) for all \(P \in \mathcal{P}_r \) and \(|B(u, r) \cap C| \leq h \) for all \(u \in V(G) \).
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Graph property ensuring small hub sets and efficient ordering for CH.

Definition
Highway dimension $h = \max_{u, r} \min_H |H|$ hitting set of P_{ur}
where $P_{ur} = \{P \in \mathcal{P}_r | \bar{P} \cap B(u, r) \neq \emptyset\}$, $\mathcal{P}_r = \{P | \ell(P) > \frac{r^2}{2}\}$, and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem
Any graph G with highway dimension h and diameter D has hub sets of size $O(h \log D)$ ($O(h \log h \log D)$ for polyn. time).

Lemma
For all r, G has an (h, r)-sparse hitting set, i.e. a set C s.t. $C \cap P \neq \emptyset$ for all $P \in \mathcal{P}_r$ and $|B(u, r) \cap C| \leq h$ for all $u \in V(G)$.

⇒ ? ⇒
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Graph property ensuring small hub sets and efficient ordering for CH.

Definition
Highway dimension $h = \max_{u,r} \min_{H} \text{hitting set of } P_{u,r} |H|
where $P_{u,r} = \{P \in P_r : \bar{P} \cap B(u,r) \neq \emptyset\}$, $P_r = \{P : \ell(P) > \frac{r}{2}\}$,
and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem
Any graph G with highway dimension h and diameter D has
hub sets of size $O(h \log D)$ ($O(h \log h \log D)$ for polyn. time).

Lemma
For all r, G has an (h, r)-sparse hitting set, i.e. a set C s.t.
$C \cap P \neq \emptyset$ for all $P \in P_r$ and $|B(u, r) \cap C| \leq h$ for all $u \in V(G)$.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH^opt_π produces at most $O(nh \log D)$ shortcuts and $CH_\pi + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.

Exercise: use CH to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(hn \log D)$ shortcuts and $CH_{\pi} + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(\text{nh log } D)$ shortcuts and $CH_\pi + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_\pi p_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH^{opt}_{π} produces at most $O(nh \log D)$ shortcuts and $CH_{\pi} + \text{RP bidir. Dij. visits}$ $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(nh \log D)$ shortcuts and $CH_{\pi} + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH^opt_π produces at most $O(nh \log D)$ shortcuts and $CH_\pi + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Pruned Labeling [Akiba, Iwata, Yoshida ’13]

Procedure **PrunedLab** \((G, \pi)\)

- Distance labels \(L_u := \emptyset\) for all \(u\).
- For each \(a \in V(G)\) in decreasing order of \(\pi\) do
 - **PrunedDijkstra** \((G, a, L)\)
 - Add \((a, d(a, u))\) to \(L_u\) for each visited node \(u\).

Procedure **PrunedDijkstra** \((G, a, L)\)

- Starting from \(u = a\), visit \(u\) if \(d(u) < \text{Dist}(L_a, L_u)\).

Theorem

PL computes the canonical HHL associated to \(\pi\) in \(O(nL \log n + mL^2)\) time where \(L\) is maximum label size.

Exercise : \(O(\log n)\) approximation for HHL (find a good \(\pi\)).

Open pb : charac. classes of graphs with \(|HHL| = O(|HL|)\).
Pruned Labeling [Akiba, Iwata, Yoshida ’13]

Procedure PrunedLab \((G, \pi)\)

- Distance labels \(L_u := \emptyset\) for all \(u\).
- For each \(a \in V(G)\) in decreasing order of \(\pi\) do
 - PrunedDijkstra \((G, a, L)\)
 - Add \((a, d(a, u))\) to \(L_u\) for each visited node \(u\).

Procedure PrunedDijkstra \((G, a, L)\)

- Starting from \(u = a\), visit \(u\) if \(d(u) < \text{Dist}(L_a, L_u)\).

Theorem

PL computes the canonical HHL associated to \(\pi\) in \(O(nL \log n + mL^2)\) time where \(L\) is maximum label size.

Exercise : \(O(\log n)\) approximation for HHL (find a good \(\pi\)).

Open pb : charac. classes of graphs with \(|\text{HHL}| = O(|\text{HL}|)\).
Pruned Labeling [Akiba, Iwata, Yoshida '13]

Procedure **PrunedLab** \((G, \pi)\)

- Distance labels \(L_u := \emptyset\) for all \(u\).
- For each \(a \in V(G)\) in decreasing order of \(\pi\) do
 - **PrunedDijkstra** \((G, a, L)\)
 - Add \((a, d(a, u))\) to \(L_u\) for each visited node \(u\).

Procedure **PrunedDijkstra** \((G, a, L)\)

- Starting from \(u = a\), visit \(u\) if \(d(u) < \text{Dist}(L_a, L_u)\).

Theorem

PL computes the canonical HHL associated to \(\pi\) in \(O(nL \log n + mL^2)\) time where \(L\) is maximum label size.

Exercise : \(O(\log n)\) approximation for HHL (find a good \(\pi\)).

Open pb : charac. classes of graphs with \(|\text{HHL}| = O(|\text{HL}|)\).
HL on massive networks [Delling, Goldberg, Pajor, Werneck ’14]

HHL using random sampling to approximate greedy cover (for π) in combination with pruned labeling (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice.
HL on massive networks [Delling, Goldberg, Pajor, Werneck ‘14]

HHL using random sampling to approximate greedy cover (for π) in combination with pruned labeling (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice.
Skeleton dimension [Kosowski, V. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski, V. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Graph property ensuring small hub sets.

The *skeleton dimension* k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum "width" of a "pruned" shortest path tree (see pres.).

Theorem

Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski, V. ’17]

Graph property ensuring small hub sets.

The skeleton dimension \(k \) of \(G \) is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph \(G \) with skeleton dimension \(k \) and diameter \(D \) has hub sets of size \(O(k \log \log k \log D) \) (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Barcelona shortest path tree
Barcelona skeleton: prune last third
Tree skeleton
Tree skeleton

\[P_{uv}^{2/3} \]

\[\left\{ w \in P_{uv} : d(u,w) \leq \frac{2}{3} d(u,v) \right\} \]
Tree skeleton

\[\text{Reach}_{P_{uv}}(w) \geq \frac{d(u, w)}{2} \]
Tree skeleton

\[T_u = \bigcup_{v \in \mathcal{P}_{uv}} \]
Tree skeleton

\[T_u^* = U_P^{2/3} \]

\[T_u = U_P \]
Tree skeleton

\[T_u^* = \bigcup_{v} \mathcal{P}_{uv}^{2/3} \]

\[T_u = \bigcup_{v} \mathcal{P}_{uv} \]

\(\text{Cut}_u(T_u) \)
Tree skeleton

Width(T_u^*) = $\max_{r \in R} |\text{Cut}_r(T_u^*)|$
Tree skeleton

$$\text{skel. dim. } k = \max_u \text{Width}(T_u^*)$$

$$T_u^* = \bigvee_{\nu} P_{\nu u}^{2/3}$$

$$T_u = \bigvee_{\nu} P_{\nu u}$$
Hub set selection
Hub set selection
Hub set selection

\[\omega \text{ s.t. } p(\omega) \min \text{ in } P_{uv}^{2/3} \cap P_{vu}^{2/3} \]

\[T_u^* \]

\[T_v^* \]
Hub set selection
Hub set selection

\[\frac{d(u, w)}{6} = \frac{d(u, y)}{6} \]\n
such that \(w = x_y \)
Hub set selection

\[\omega \text{ s.t. } P(\omega) \min \text{ in } P_{x\omega w} \alpha \text{ in } P_{wy} \]

\[\frac{d(u, w)}{6} \]

\[\frac{d(u, y)}{6} \]

\[w = x_y \]

\[T^*_u \]

\[T^*_v \]
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{w \mid \rho(w) \text{ min. in } P_{x_{ww}}\} \cup \{x_y \mid \rho(x_y) \text{ min. in } P_{x_{yy}}\}$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path $P_{x_{yy}}$ has length $\frac{d(u, y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u, y)}$.

$E[|H_u|] \leq \sum_{y \in V(T^*_u)} \frac{12}{d(u, y)} \leq \sum_r |\text{Cut}_r(T^*_u)| \frac{12}{r} = O(k \log D)$
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{w \mid \rho(w) \text{ min. in } P_{xww} \} \cup \{x_y \mid \rho(x_y) \text{ min. in } P_{xyy} \}$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_{r} |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{ w \mid \rho(w) \text{ min. in } P_{xww} \} \cup \{ x_y \mid \rho(x_y) \text{ min. in } P_{xyy} \}$

(CanBe computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$
E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)
$$
Road networks: two tree skeletons
What ... maps do?
What ... maps do?
What ...maps do?
Skeleton dimension of grids

\[k = \Theta(\log n) \]

\[\mathbf{B}(u, r) \]
Skeleton dimension of grids

$$k = \Theta(\log n)$$
Skeleton dimension of grids

\[k = \Theta(\log n) \]
Highway dimension \geq skeleton dimension

$$\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \}$$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

$k \leq h : \text{Cut}_r(T^*_u) \text{ induces a packing in } \mathcal{P}_{ur}, \text{ and } |\text{Cut}_r(T^*_u)| \leq |H|$.
Highway dimension \geq skeleton dimension

$\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \}$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_H \text{hits } \mathcal{P}_{ur} |H|

k \leq h : \text{Cut}_r(T^*_u) \text{ induces a packing in } \mathcal{P}_{ur}, \text{ and } |\text{Cut}_r(T^*_u)| \leq |H|$.
Highway dimension \geq skeleton dimension

$\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \}$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_H \text{ hits } \mathcal{P}_{ur} |H|$

$k \leq h : \text{Cut}_r(T_u^*)$ induces a packing in \mathcal{P}_{ur}, and $|\text{Cut}_r(T_u^*)| \leq |H|$.
Highway dimension \geq skeleton dimension

\[\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap \overline{B(u, r)} \neq \emptyset \} \]

\(H \) hits \(\mathcal{P}_{ur} \) if \(H \cap P \neq \emptyset \) for all \(P \in \mathcal{P}_{ur} \)

Highway dim. \(h = \max_{u \in \mathcal{P}_{ur}} \min_{H \text{ hits } \mathcal{P}_{ur}} |H| \)

\(k \leq h : \text{Cut}_r(T^*_u) \) induces a packing in \(\mathcal{P}_{ur} \), and \(|\text{Cut}_r(T^*_u)| \leq |H| \).
Highway dimension \geq skeleton dimension

$\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \}$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{\text{hits } \mathcal{P}_{ur}} |H|$

$k \leq h : \text{Cut}_r(T^*_u) \text{ induces a packing in } \mathcal{P}_{ur}, \text{ and } |\text{Cut}_r(T^*_u)| \leq |H|$.
Highway dimension \geq skeleton dimension

$\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \}$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$ \[k \leq h : \text{Cut}_r(T_u^*) \text{ induces a packing in } \mathcal{P}_{ur}, \text{ and } |\text{Cut}_r(T_u^*)| \leq |H| \]
Highway dimension \geq skeleton dimension

\[P_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \} \]

H hits P_{ur} if $H \cap P \neq \emptyset$ for all $P \in P_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } P_{ur}} |H|$

$k \leq h : \text{Cut}_r(T_u^*)$ induces a packing in P_{ur}, and $|\text{Cut}_r(T_u^*)| \leq |H|$.
Highway dimension \geq skeleton dimension

$$\mathcal{P}_{ur} = \{P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset\}$$

H hits \mathcal{P}_{ur} if $H \cap P \neq \emptyset$ for all $P \in \mathcal{P}_{ur}$

Highway dim. $h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H|$

$k \leq h$: $\text{Cut}_r(T_u^*)$ induces a packing in \mathcal{P}_{ur}, and $|\text{Cut}_r(T_u^*)| \leq |H|$.
Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48
Open: random grid

$k = 70 \quad k = 49 \ (fpp \ [1, 4]) \quad k = 49 \ (prob \ 2/3)$
What about general graphs?
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin ‘17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv} : \exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem

If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem

If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem

In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}: \exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem

If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem

If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem

In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise : prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski, V. ‘17] and [Alstrup et al ‘16]).

Idea (for $\Delta = O(1)$):

- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2 \log \Delta}$ (at most \sqrt{n} nodes).
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski, V. ‘17] and [Alstrup et al ‘16]).

Idea (for $\Delta = O(1)$):
- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2 \log \Delta}$ (at most \sqrt{n} nodes).
Theorem [Kosowski, Uznański, V. ‘19]: There exists graphs with max-degree 3 such that any hubsets have average size \(\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}} \right) \).

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into \(n \) induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size \(\frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}} \).

Open problem: does any sparse graph have a (centralized) distance oracle of size \(O(n^{1.5}) \) and query time \(O(n^{0.5}) \)?
Lower bound on hub labeling of general graphs

Theorem [Kosowski, Uznański, V. ’19]: There exists graphs with max-degree 3 such that any hubsets have average size \(\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right) \).

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into \(n \) induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size \(\frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}} \).

Open problem: does any sparse graph have a (centralized) distance oracle of size \(O(n^{1.5}) \) and query time \(O(n^{0.5}) \)?
Lower bound on hub labeling of general graphs

Theorem [Kosowski, Uznański, V. ’19] : There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size $\frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}}$.

Open problem : does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
Lower bound on hub labeling of general graphs

Theorem [Kosowski, Uznański, V. ‘19]: There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size $\frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}}$.

Open problem: does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
HL hard instance: $2\ell + 1$ grids of dim. $\ell = \sqrt{\log n}$

$G_X = G \setminus \{ y_\ell \mid X_y = 0 \}$, send $x = 2a, L_{x_0}, z = 2b, L_{z_{2\ell}}$, check $d(x_0, z_{2\ell})$.

$V_{2\ell}$

V_ℓ

V_0

(1,0)

(2,1)

(3,2)
What about more hops?
Given a connected weighted undirected graph G, we define the \textbf{h-hop distance} $d^h_G(u, v)$ between u and v as the minimum weight of a path from u to v with h edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most h hops.) The usual distance from u to v is thus $d_G(u, v) = d^{n-1}_G(u, v)$. We define a \textbf{h-hopset of G} as a set H of edges such that $d^h_{G \cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have weight $d^h_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Given a connected weighted undirected graph \(G \), we define the \(h \)-hop distance \(d^h_G(u, v) \) between \(u \) and \(v \) as the minimum weight of a path from \(u \) to \(v \) with \(h \) edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most \(h \) hops.) The usual distance from \(u \) to \(v \) is thus \(d_G(u, v) = d^{n-1}_G(u, v) \). We define a \(h \)-hopset of \(G \) as a set \(H \) of edges such that \(d^h_{G \cup H}(u, v) = d_G(u, v) \) where each edge \(uv \) of \(H \) is considered to have weight \(d_G(u, v) \).

(a) What is the minimum number of edges in \(G \cup H \) when \(H \) is a 1-hopset of \(G \)?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that \(G \) is a path of length \(n \), propose a 3-hopset of \(G \) with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset \(H \) of a graph \(G \). Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when \(G \) is a path of length \(n \)?
Given a connected weighted undirected graph \(G \), we define the \(h \)-hop distance \(d^h_G(u, v) \) between \(u \) and \(v \) as the minimum weight of a path from \(u \) to \(v \) with \(h \) edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most \(h \) hops.) The usual distance from \(u \) to \(v \) is thus \(d_G(u, v) = d^{n-1}_G(u, v) \). We define a \(h \)-hopset of \(G \) as a set \(H \) of edges such that \(d^h_{G \cup H}(u, v) = d_G(u, v) \) where each edge \(uv \) of \(H \) is considered to have weight \(d_G(u, v) \).

(a) What is the minimum number of edges in \(G \cup H \) when \(H \) is a 1-hopset of \(G \)?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that \(G \) is a path of length \(n \), propose a 3-hopset of \(G \) with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset \(H \) of a graph \(G \). Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when \(G \) is a path of length \(n \)?
Given a connected weighted undirected graph G, we define the h-hop distance $d^h_G(u,v)$ between u and v as the minimum weight of a path from u to v with h edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most h hops.) The usual distance from u to v is thus $d_G(u,v) = d^{n-1}_G(u,v)$. We define a h-hopset of G as a set H of edges such that $d^h_{G\cup H}(u,v) = d_G(u,v)$ where each edge uv of H is considered to have weight $d_G(u,v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Given a connected weighted undirected graph G, we define the h-hop distance $d^h_G(u, v)$ between u and v as the minimum weight of a path from u to v with h edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most h hops.) The usual distance from u to v is thus $d_G(u, v) = d^{n-1}_G(u, v)$. We define a h-hopset of G as a set H of edges such that $d^h_{G \cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have weight $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?
(b) What notion seen in course is tightly related to the notion of 2-hopset?
(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).
(d) Same question for a 4-hopset.
(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Given a connected weighted undirected graph G, we define the h-hop distance $d^h_G(u, v)$ between u and v as the minimum weight of a path from u to v with h edges at most. (Each edge of a path is called a “hop”, it thus corresponds to the distance using at most h hops.) The usual distance from u to v is thus $d_G(u, v) = d^{n-1}_G(u, v)$. We define a h-hopset of G as a set H of edges such that $d^h_{G∪H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have weight $d_G(u, v)$.

(a) What is the minimum number of edges in $G∪H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
3-Hopsets in Graphs with Bounded Skeleton Dimension

Theorem (Gupta, Kosowski, V. 2019)

For a unique shortest path graph with skeleton dimension k and polylog average link length, there exists a randomized construction of a 3-hopset distance oracle of size $|H| = O(n k \log k \log \log n)$, which for an arbitrary queried node pair performs distance queries in expected time $O(k^2 \log^2 k \log^2 \log n)$ (where the expectation is taken over the randomized construction of the oracle).