Fast Distance Queries

Laurent Viennot

MPRI - Theory of practical graph algorithms
Encoding distances in a graph

We are given a (weighted) (di-) graph $G = (V, E)$ with n nodes and m edges.

Make any useful pre-computation to answer efficiently online distance queries: what is distance $d(u_1, v_1)$?, $d(u_2, v_2)$?, $d(u_3, v_3)$?,...
Encoding a graph metric: distance oracles
Size S vs query time T tradeoff (sparse graphs, i.e. $m = O(n)$)
Encoding a graph metric: distance labelings

G

u

v

$S = n \cdot \text{DistLab}(n)$

Lu

Lv

$\text{DistLab}(n)$

Encoder

Decoder

$d_G(u,v)$
Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
2-hop labeling [Cohen, Halperin, Kaplan, Zwick '03]

Problem: Compute hub sets \((H_u)_{u \in V}\) of minimum size
\[|H| = \sum_u |H_u|.\]

Greedy cover all shortest paths:

- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a, \(S\) s.t.
 \[
 \text{rel. cost } \frac{|S|}{\text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S}} \text{ is min.}
 \]

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix a, what is the best \(S\)?

\(G_a\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating
the best \(S\).

Corollary: Hubsets with smallest average size can be
\(O(\log n)\)-approximated in polynomial time.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck '10-13]

Definition

Highway dimension $h = \max_{u,r} \min_H \text{hitting set of } \mathcal{P}_{ur} |H|$

where $\mathcal{P}_{ur} = \{P \in \mathcal{P}_r | \bar{P} \cap B(u, r) \neq \emptyset\}$, $\mathcal{P}_r = \{P | \ell(P) > \frac{r}{2}\}$, and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem

Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(nh \log D)$ shortcuts and $CH_{\pi} + \text{RP bidir. Dij. visits } O(h \log D)$ nodes.

Exercise: use CH to compute a HHL.
Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Pruned Labeling [Akiba, Iwata, Yoshida ’13]

Procedure \texttt{PrunedLab (G, \pi)}

- Distance labels $L_u := \emptyset$ for all u.
- \textbf{For each} $a \in V(G)$ \textbf{in decreasing order of} π \textbf{do}
 - \texttt{PrunedDijkstra (G, a, L)}
 - Add $(a, d(a, u))$ to L_u \textbf{for each visited node} u.

Procedure \texttt{PrunedDijkstra (G, a, L)}

- Starting from $u = a$, visit u if $d(u) < \text{Dist}(L_a, L_u)$.

Theorem

PL computes the canonical HHL associated to π in $O(nL \log n + mL^2)$ time where L is maximum label size.

Open pb : charac. classes of graphs with $|HHL| = O(|HL|)$.
HL on massive networks [Delling, Goldberg, Pajor, Werneck '14]

HHL using **random sampling** to approximate greedy cover (for π) in combination with **pruned labeling** (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice (and fastest distance oracle).
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Barcelona shortest path tree skeleton: prune last third
Tree skeleton

P_{uv}
Hub set selection
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{w | \rho(w) \text{ min. in } P_{x_w} \} \cup \{x_y | \rho(x_y) \text{ min. in } P_{x_y} \}$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{x_y} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$$
Road networks: two tree skeletons
What ... maps do?
Highway dimension ≥ skeleton dimension

\[\mathcal{P}_{ur} = \left\{ P : \ell(P) > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \right\} \]

H hits \(\mathcal{P}_{ur} \) if \(H \cap P \neq \emptyset \) for all \(P \in \mathcal{P}_{ur} \)

Highway dim. \(h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H| \)

\(k \leq h : \text{Cut}_r(T_u^*) \) induces a packing in \(\mathcal{P}_{ur} \), and \(|\text{Cut}_r(T_u^*)| \leq |H| \).
Dimension of grids

\[k = \left(\frac{\log n}{2} \right)^{1/3} \]
Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48
Open: random grid (here 500×500)

$k = 70 \quad k = 49 \ (\text{fpp } [1, 4]) \quad k = 49 \ (\text{prob } 2/3)$
What about general graphs?
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a **pre-hub labeling** if for all \(u, v\) pairs, hubs **cross** on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are **not** unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski et al. ’17] and [Alstrup et al. ’16]).

Idea (for $\Delta = O(1)$):

- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2\log \Delta}$ (at most \sqrt{n} nodes).
Lower bound on hub labeling of general graphs

Theorem [Kosowski et al. ‘19]: There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size $\geq \frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}}$.

Open problem: does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
Each V_i is a regular $2^\ell \times \cdots \times 2^\ell$ lattice of dim. $\ell \approx \sqrt{\log n}$ (here $\ell = 2$). Edges from V_{i-1} to V_i connect nodes differing on ith coordinate.
A graph is an **RS-graph** if it can be decomposed into n induced matchings.
A graph is an **RS-graph** if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi ’78])
Any RS-graph has at most $n^2/2^{O(\log^* n)}$ edges.

Define $RS(n)$ as the smallest integer such that there exists an RS-graph with n nodes and $n^2/RS(n)$ edges.

$$2^{\Omega(\log^* n)} \leq RS(n) \leq 2^{O(\sqrt{\log n})}$$

[Ruzsa, Szemerédi ’78] [Elkin ’10] [Fox ’11]
\[
G^D_y = \left\{ x_0 z_{2\ell} \mid y = \frac{x+z}{2} \text{ and } d_G(x, z) = D \right\} \quad \exists D \text{ s.t. } |\bigcup_y G^D_y| \geq \frac{n^2}{2^{O(\sqrt{\log n})}}
\]
What about more hops?
h-hop distance

\[d^h_G(u, v) = \min_{P \text{ uv-path of } \leq h \text{ edges}} \ell(P) \]

Usual distance: \[d_G(u, v) = d^{h-1}_G(u, v) \]
Exercise

We define a **h-hopset of G** as a set H of edges such that $d_{G \cup H}^h(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Theorem (Gupta et al. 2019)
For a unique shortest path graph with skeleton dimension \(k \) and polylog average link length, there exists a randomized construction of a 3-hopset distance oracle of size

\[|H| = O(n k \log k \log \log n) \]

which for an arbitrary queried node pair performs distance queries in expected time

\[O(k^2 \log^2 k \log^2 \log n) \]

(where the expectation is taken over the randomized construction of the oracle).

Open pb: Does there exists \(\varepsilon, \varepsilon' > 0 \) and distance oracles for constant degree graphs with size \(O(n^{2-\varepsilon}) \) and query time \(O(n^{1-\varepsilon'}) \)?

Open pb: Could it be a 3-hopset distance oracle?
Further reading

[Angelidakis, Makarychev, Oparin 2017]
Algorithmic and hardness results for the hub labeling problem.
SODA 2017.
https://arxiv.org/abs/1611.06605

[Kyng, Meierhans, Gutenberg 2022]
Incremental SSSP for sparse digraphs beyond the hopset barrier.
SODA 2022.
https://arxiv.org/abs/2110.11712