Fast Distance Queries

Laurent Viennot

MPRI - Graph Mining 2/8
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
2-hop labeling [Cohen, Halperin, Kaplan, Zwick '03]

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
- select \(a, S\) s.t. \(\frac{\text{nb path cov. if } a \text{ added to all } (H_u)_{u \in S}}{|S|}\) max.

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(a\), what is the best \(S\)?
- \(G_a\) graph with edges \(uv\) s.t. \(P_{uv}\) uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(S\). Hint: average degree \(\delta\) increases when removing a node with degree \(< \delta/2\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Graph property ensuring small hub sets and efficient ordering for CH.

Definition
Highway dimension $h = \max_{u, r} \min_{H} |H|$ hitting set of $\mathcal{P}_u \cap \mathcal{P}_r$
where $\mathcal{P}_u = \{P \in \mathcal{P}_r \mid \bar{P} \cap B(u, r) \neq \emptyset\}$, $\mathcal{P}_r = \{P \mid \ell(P) > \frac{r^2}{2}\}$, and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem
Any graph G with highway dimension h and diameter D has hub sets of size $O(h \log D)$ ($O(h \log h \log D)$ for polyn. time).

Lemma
For all r, G has an (h, r)-sparse hitting set, i.e. a set C s.t. $C \cap P \neq \emptyset$ for all $P \in \mathcal{P}_r$ and $|B(u, r) \cap C| \leq h$ for all $u \in V(G)$.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Theorem
Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(nh \log D)$ shortcuts and $CH_{\pi} + \text{RP bidir. Dij. visits}$ $O(h \log D)$ nodes.

Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow \pi(u) \leq \pi(v)$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} P_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Exercise: use CH to compute a HHL.
Pruned Labeling [Akiba, Iwata, Yoshida '13]

Procedure \(\text{PrunedLab} (G, \pi) \)

- Distance labels \(L_u := \emptyset \) for all \(u \).
- For each \(a \in V(G) \) in decreasing order of \(\pi \) do
 - \(\text{PrunedDijkstra} (G, a, L) \)
 - Add \((a, d(a, u)) \) to \(L_u \) for each visited node \(u \).

Procedure \(\text{PrunedDijkstra} (G, a, L) \)

- Starting from \(u = a \), visit \(u \) if \(d(u) < \text{Dist}(L_a, L_u) \).

Theorem

PL computes the canonical HHL associated to \(\pi \) in \(O(nL \log n + mL^2) \) time where \(L \) is maximum label size.

Exercise : \(O(\log n) \) approximation for HHL (find a good \(\pi \)).

Open pb : charac. classes of graphs with \(|HHL| = O(|HL|) \).
HL on massive networks [Delling, Goldberg, Pajor, Werneck ’14]

HHL using random sampling to approximate greedy cover (for π) in combination with pruned labeling (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice.
Skeleton dimension [Kosowski, V. '17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Barcelona shortest path tree skeleton: prune last third
Tree skeleton
Hub set selection
Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{w \mid \rho(w) \text{ min. in } P_{x_{ww}} \} \cup \{x_y \mid \rho(x_y) \text{ min. in } P_{x_yy}\}$

(Can be computed in $\tilde{O}(n+m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$E [|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$
Road networks: two tree skeletons
What ...maps do?
Skeleton dimension of grids

\[k = \left(\log n \right)^{1/16/29} \]
Highway dimension ≥ skeleton dimension

\[\mathcal{P}_{ur} = \{ P \mid |P| > \frac{r}{2} \text{ and } P \cap B(u, r) \neq \emptyset \} \]

\(H \) hits \(\mathcal{P}_{ur} \) if \(H \cap P \neq \emptyset \) for all \(P \in \mathcal{P}_{ur} \)

Highway dim. \(h = \max_{ur} \min_{H \text{ hits } \mathcal{P}_{ur}} |H| \)

\(k \leq h : \text{Cut}_r(T_u^*) \) induces a packing in \(\mathcal{P}_{ur} \), and \(|\text{Cut}_r(T_u^*)| \leq |H| \).
Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48
Open: random grid

\[k = 70 \quad k = 49 \ (\text{fpp} \ [1, 4]) \quad k = 49 \ (\text{prob} \ 2/3) \]
What about general graphs?
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski, V. ‘17] and [Alstrup et al ‘16]).

Idea (for $\Delta = O(1)$):

- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2 \log \Delta}$ (at most \sqrt{n} nodes).
Lower bound on hub labeling of general graphs

Theorem [Kosowski, Uznański, V. '19]: There exists graphs with max-degree 3 such that any hubsets have average size \(\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right) \).

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size \(\frac{\text{SUMINDEX}(n)}{2^{O(\sqrt{\log n})}} \).

Open problem: does any sparse graph have a (centralized) distance oracle of size \(O(n^{1.5}) \) and query time \(O(n^{0.5}) \)?
HL hard instance: $2\ell + 1$ grids of dim. $\ell = \sqrt{\log n}$

\[\mathcal{G}_X = \mathcal{G} \setminus \{ y_\ell \mid X_y = 0 \}, \text{ send } x = 2a, L_{x_0}, z = 2b, L_{z_{2\ell}}, \text{ check } d(x_0, z_{2\ell}). \]
What about more hops?
h-hop distance

\[d^h_G(u, v) = \min_{P \text{ uv-path of } \leq h \text{ edges}} \ell(P) \]

Usual distance: \(d_G(u, v) = d^{n-1}_G(u, v) \)
Exercize

We define a \textit{h-hopset of G} as a set H of edges such that
\[d_{G \cup H}^h(u, v) = d_G(u, v) \]
where each edge uv of H is considered to have weight \(d_G(u, v) \).

(a) What is the minimum number of edges in \(G \cup H \) when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
3-Hopsets in Graphs with Bounded Skeleton Dimension

Theorem (Gupta, Kosowski, V. 2019)
For a unique shortest path graph with skeleton dimension k and polylog average link length, there exists a randomized construction of a 3-hopset distance oracle of size $|H| = O(n k \log k \log \log n)$, which for an arbitrary queried node pair performs distance queries in expected time $O(k^2 \log^2 k \log^2 \log n)$ (where the expectation is taken over the randomized construction of the oracle).
3-hopset construction idea

\[\delta = D^{(1+\varepsilon)^i} \]

\[\delta^{1+\varepsilon} = D^{(1+\varepsilon)^{i+1}} \]

Distance ranges \(\delta \)

\[O(\log_{1+\varepsilon} \log n) \]