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Part IT : Outline

. Diameter/radius computation - Hardness in P (1 lecture)

. Shortest path queries - Distance labeling (1.5 lectures)

. Temporal graphs (1 lecture)

« Graph neural networks (0.5 lecture)
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Diameter/radius computation

Hardness of diameter computation and fine-grained
complexity

Practical algorithms and why they work
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Shortest path queries

A line of practical algorithms
Some theoretical insight in their efficiency

Links with the theory of distance oracles
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Temporal graphs

A hierarchy of models

Classical graph problems revisited
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Graph neural networks

Expressive power and isomorphism tests

(under construction)
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How big is the world?
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Longest straight line on water
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Longest straight line on water
[Chabukswar, Mukherjee 2018] :

> ol Ny . L - - - —

"The problem was approached as a purely mathematical exercise.
The authors do not recommend sailing or driving along the found
paths.”
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Longest straight line on land
[Chabukswar, Mukherjee 2018] :

"The problem was approached as a purely mathematical exercise.
The authors do not recommend sailing or driving along the found
paths.”
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World longest road trips

http://gang.inria.fr/road/
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Graph notations

A (weighted directed) graph G is defined by :
a set V(G) of nodes/vertices (or simply V),
a set E(G) of arcs/edges (or simply E),

a : {(uv) is the of
arc uv € E (default is 1).

Size : n(6) = |V(6)| (or simply n) is the number of nodes, and
m(G) = |E(G)| (or simply m) is the number of edes.

G is undirected whenuv € E <= vu € E.
G is unweighted when £(uv) =1 for all uv € E.

A uv-path with k hops is a sequence of arcs

P =XxoXx1,...,Xk_1Xx With Xo = u and x, = v, its length is
0Py = oK 0(xi_1x).

The distance dg(u,v) (or simply d(u,v)) from u to v is the
minimum length of a uv-path.
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Graph parameters

Practical graphs : https://networkrepository.com/

General shape :
size, connectivity, average distance (Milgram exp.),...

Six degrees of separation

Node measures :
degree, pagerank, xx-centrality,...

Periodic Table of Network Centrality [Schoch 15]
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https://www.theguardian.com/technology/2008/aug/03/internet.email
http://schochastics.net/sna/periodic.html

Computing graph parameters

=7=

Average distance (degree of separation) :

. All pairs distances : O(nm) or O(n“ logn) unweighted
[Alon et al 91; Seidel 95] or O(W«@—1/2r(3+%)/2 |og n) [Galil
Margalit 971  (with O(n¥) matrix multiplication)

. Approximation with sampling and empirical average.
Centralitiy measures : what nodes are “central”?

. betweenness b(v) = 3¢, ”;*—sﬁ") [Freeman 77 ; Anthonisse 71]
ost + number of st-shortest paths, og(v) : that pass through v

. stress s(v) = 3 ¢ 1 ost(v) [Shimbel 53]

« (harmonic) closeness c(v) = >, ﬁ [Marchiori, Latora
2000]

. graph closeness g(v) = W [Hage Harary 95]

. eccentricity e(v) = maxz d(v,t) [Hage Harary 95]

. Often O(nm) (for all v) [Brandes 01]
Diameter : maximum distance

. Diameter diam(G) = max, e(v)

« Radius rad(G) = miny e(v)
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Diameter computation

Naive algorithm : compute e(v) through a BFS forall ve V.
Complexity : ©(nm) = O(m?).
Can we do better?

Should we search for O(m¢)-time with ¢ < 2?
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The O(nm) barrier

Theorem [Roditty Vassilevska-Williams 13] : There is no
O(m?~¢)-time diameter algorithm under SETH (for any
e > 0).

Proof idea : reduce SAT (satisfiability of a CNF formula
with N variables) to Diameter > 2.

Definition :

s, = inf {5 | k-SAT has a O(2°N)-time algor‘i‘rhm}

Exponential time hypothesis (ETH) [Impagliazzo Paturi 01]

s3 > 0. (ETH = P # NP)

Strong ETH (SETH) (informal) : Ve > 0, there is no
0(21=4N)_time algorithm for SAT.

Formal SETH : lim,_, sk =1, i.e. for all ¢ > 0, there exists

k s.t. k-SAT cannot be solved in O(2(1=9)N)_time.

Knwown upper bounds : 3-SAT in O(2%3°N) and k-SAT in
0(21=</kN) for some ¢ > 0. [PaturiPSZ 05, Hertli 14]
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Hardness in P : fine-grained complexity

- 1/1 18 / 39



Hardness in P : fine-grained complexity

What is the true c in O(n) algorithms?

Quasi-linear reduction : P <. Q if any O(n~¢) algorithm for
Q can be turned into an O(n°~*') algorithm for P.

Exemple : OV=DisjSet <, Diameter as the existence of two
disjoint sets in a collection of n sets in a universe of size

(3(1) can be reduced to a diameter problem on O(n) nodes in

O(n) time.
(O(.) hide poly-log factors.)

: prove HitSet <, Radius.

1/1 19/ 39



Hardness in P : fine-grained complexity

Tentative hard problems :

. HitSet for O(n?) : given two collections A, B, does a set
of A hits all sets of B?

« 3SUM for O(n?) : given n integers, do 3 of them sum to
0?

« All Pairs Shortest Paths (APSP) for O(nm).

. d-dim OV for O(n?) (d = clogn) : given two sets A, B of
binary vectors of dimension d, does there exists a € A and
b € B such that a and b are orthogonal.

. k-OV for O(n¥) : given n vectors of dimension d, does
there exists k of them with product zero?

Conjectures :
. HitSet hypothesis : HitSet requires time n?—°(),
. OVH : OV requires time n2—°(1)
« k-OVH : k-OV requires time nk—°o(1),
: prove HitSetHyp = OVH.
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SETH-hard

[Abboud,B,Herme
Shabtay’17+]

SETH

Williams™ 0L ~Twilliams'05]

SubsetSum X+Y n?
cbomSetnt OV n® e Colinear n?
- / \ [Backurs, Indyk'15]
Frechet n2 / Edit Distance n?
[B,Kiinnemann’15,Abboud,
[V-Williams,Roditty’13] Backurs,V-Williams’15]
Diameter n? Dynamic Time Warping n?
[B,Kiinnemann’15,

[Impagliazzo]
Abboud,Backurs,

LCS n?
V-Williams'15]

NFA-Acceptance n?
[Backurs,Dikkala,
[B,Kiinnemann’15] [Backurs,Indyk’16] Tzamos'16]

RegExp Matching n?

Longest Palindromic Maximum
Subsequence n?

Submatrix n®

[B,Gawrychowski,
Mozes,Weimann'18]

Tree Edit
Distance n®

N

<= 7 = See Bringmann slides at https://conferences.mpi-inf .mpg.de/adfocs-18/

Survey: On some fine-grained questions in
algorithms and complexity, V. Vassilevska Williams

Landscape of Polytime Problems

3SUM-hard

[Gajentaan,Overmars’93§

GeomBase n?
v

Separator n?
2

PlanarMotion
Planning n?

APSP-hard

Williams™10]

Radius n3

Metricity n®

Betweenness
Centrality n®

NegTriangle n3
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Hardness of approximation

Diameter can be 2-approximated in O(m)-time.

(2 — 1/k — &)-approximation requires time m!+!/(k=1)-o(1)
under SETH. [Dalirrooyfard, Li, Williams 21]

There exists a 3/2-approximation in O(m®2)-time. [Chechik
LRSTW 14]

No (3/2 — &)-approximation in m?—-time under SETH.
[Roditty, Williams 13]

No 3/2-approximation (even 5/3 — §-approx) in m3/>~=-time
under SETH. [Backurs RSWW 18]
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Practical diameter

Diameter of Facebook graph is ?41 in 2011 [Backstrom et al
121 (720m nodes, 69g edges).

iFUB algorithm [Crescenzi et al 10] : carefully choose BFS
sources and improve lower/upper bounds on diam(G) (17
BFSs for Facebook2011).

1/1 23/ 39



iFUB (iterative Fringe Upper Bound)

Given a BFS from s, Fj are the nodes at distance j from s.

Lemma : If a node x in F; with i < j has eccentricity
e(x) > 2j, then some node y € Fy with k > j has eccentricity
e(y) > e(x) > 2j.

Corollary : If Dy := maXycr, k-;e(y).
D, < diam(6) < max(2j,D, ).

Algorithm : Scan nodes in Fj for j = e(s),...,1 and update
DL = maxycr, e(y) until 2j < D,.

Analysis : a BFS for each node in Fy with k > diam(6) /2.
: choice of s?
: hard graph for iFub?

Efficient in random power-law graphs [Borassi et al 17].
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Heuristic diameter

Two sweeps : Given 6 and u € V(6G), do BFS(u) and BFS(v)
where v = A(u) is the antipode of u (last visited node in
BFS(u)), return d(v, A(v)).

Theorem : correct if G is a tree [Handler 73], and +1
approximation if G is chordal [Corneil et al 03].
Chordal : no induced cycle of length > 3.

Often within +1 in practice.

Tentative center : the middle node in-between v and A(v).
Center : a node with minimum eccentricity.
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Bound eccentricities [Takes, Kosters 2011]
(revisited)

A BFS from s provides bounds on eccenftricities :

Yu, d(s,u) <e(u) <d(s,u) +e(s)

X := (; scanned nodes

Maintain e (u) := maxscx d(u, s)

and eV (u) := mingx d(u,s) +e(s) for all u € V(6).

While min,cy e (u) or max,cye¥(u) is not tight do
Select u € Vs.t. e (u) is minimal and add it to X.

L Select u € Vs.t. eY(u) is maximal and add it to X.

Last generation : exact sum-sweep [Borassi et al. 2017].
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Why such algorithms work?

What graph property enables fast diameter computation?

iFUB :
. diam(G) close to 2rad(6),
. few far nodes.

Takes and Kosters algorithm?

Practical graphs have small certificates.
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Small certificate implies O(n**) algorithm

X is a diameter certificate if
Yu, mingex d(u, X) + ecc(x) < diam(6)

Certificate of size /(n) implies a O(m/(n)) non-deterministic
algorithm.

Theorem [Dragan et al. 2024] For any class of graphs with
diameter certificates of size /(n), there exists a
randomized algorithm for diameter running in

O(r’r\\/f(n)nlog?’/2 n) time.
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Diameter parameterized by certificate size

X is a diameter certificate if
Yu, mingex d(u, x) + ecc(x) < diam(6)

Equivalently : V C Uy-xB[x, diam(G) — ecc(x)]
where B(x,r] = {u: d(u,x) < r} (ball of radius r centered at
X).

X corresponds to a covering with certain balls!
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Diameter parameterized by certificate size

Main idea : binary search the value D of the diameter,
while solving with {Bly,D —ecc(y)] : y € V}.
Problem : The set-cover instance may have size Q(n?).
Workaround : Greedy set-cover with an implicit
representation through set/containment queries [Sen,
Muralidhara 2010].
Problem : Still requires to know ecc(y) for all y.
Workaround :

. Find for all y, an estimate r(y) < ecc(y) s.t.
Bly,r(y)]] > (1 — ¢)n using random sampling (O(s ! log n)
BFSs);

. run using {Bly.D —r(y)] : y € V} and
selecting at most q = /(n ) logn balls with centers xi,...,xq:

. Vi, check ecc(v) < D forall ve V\ Bly,D — r(x;)] (gen
queries).

Plugging = \/W yields the result.
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Open questions

Certificates for diameter approximation?

Certificates for other hard problems in P?
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Few far nodes [Borassi, Crescenzi, Trevisan 2017]

Random power law graph :
. sequence of degrees s.t. ©(n/d”) nodes with degree d,
. create edges according to the configuration model.

For2 < 3 < 3,

«D=(1+0(1))c(B)logn,

o distayg = (2+0(1)) logl/(ﬁfl) logn,

. nb vertices at dist > D/2 from a random v is at most
n®E) for n > ns (¢ = 0.2 experimentally).
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Diameter certificate [Dragan et al. 2018]

Forany L,UC V(6)andu e V(6) :

eV(u) = mingcy d(u, x) + e(x)
el (u) = maxye d(u, X)

e (u) < e(u) <eY(u), where {
L is a radius certificate if e (u) > rad(G) forallu e V.
Forallu eV, 3x € L such that d(x,u) > rad(6) :

L is a covering with {B(u,rad(6)) : u € V}.

U is a diameter certificate if eY(u) < diam(6) forall u € V.

ForallueV, 3x € U, such that d(x,u) < diam(6) — e(x) :
U is a covering with {B[u,diam(6) —e(u)] : u € V}.
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Example

D : certificate for diam(G) = 4q — 2, R for rad(6) = 2q + 1
Exercice : what about a path?, a grid?
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Diameter computation as a primal-dual alg. [Dragan
et al. 2018]

U:=0;K:=0
Do
Select u such that eY(u) is maximal.
K:=Ku{u}
Select x such that d(u, x) + e(x) = e(u). E.g. x:=u.
U:=VUuU{x}
while max, ¢ e(u) < max,cye
Return e(b), b and U where e(

Y (u)
b

= maxyck e(u).

U is a covering with {B[u,diam(6) —e(u)] : u € V}.
K is a packing for {B(u, :(diam(G) —e(u))) : u € V}.
Approximation ratio 7;1[113 O(my/3) BFS.

Most practical graphs have diameter certificate |U| < 30.
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Radius computation : iterate two-sweeps as a
primal-dual alg. [Dragan et al. 2018]

L:=0.K:==0

Do
Select u € V such that e (u) is minimal.
Compute distances from u (BFS from u).
a:=argmax,.(d(u,v),7(v)) /* Antipode of u. */
K:=Ku{u}
L :=LU{a} (BFS from a)

while min cy e (u) < mingcge(u).

Return e(c), c and L where ¢ = argmin e(u).

rad(G) = minycy e(u) > minycy e, (u) and minycg e(u) > rad(6)
K is a packing for {Antipode_'(u) : u € V}.
O(| Antipode,.(V)|) BFSs : 2 per round (from u and a).

Most practical graphs have < 40 antipodes and radius
certificate with |L| < 5.
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Best radius algorithm using one-to-all distances
queries

One-to-all distances algorithm :
. query distances from a node,
. use friangle inequality.

Theorem [Dragan et al. 2018] : If a one-to-all distances
algorithm queries only k nodes to obtain the radius of a
graph G, then G has a lower certificate of 2k nodes.
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Further reading

[Vassilevska Williams 2018]

On some fine-grained questions in algorithms and
complexity.

ICM 2018.
https://people.csail.mit.edu/virgi/eccentri.pdf
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Exercize for next week

Prove HitSet <, Radius.

Send a drawing and a short proof to
laurent.viennot@inria.fr.
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