
Theory of Practical Graph Algorithms – Part
II

Laurent Viennot – Mauro Sozio

MPRI – laurent.viennot@inria.fr – Inria (rue Barrault)



Part II : Outline

• Diameter/radius computation – Hardness in P (1 lecture)

• Shortest path queries – Distance labeling (1.5 lectures)

• Temporal graphs (1 lecture)

• Graph neural networks (0.5 lecture)

⇐ ? ⇒ 1 / 1 2 / 39



Diameter/radius computation

Hardness of diameter computation and fine-grained
complexity

Practical algorithms and why they work

⇐ ? ⇒ 1 / 1 3 / 39



Shortest path queries

A line of practical algorithms

Some theoretical insight in their efficiency

Links with the theory of distance oracles

⇐ ? ⇒ 1 / 1 4 / 39



Temporal graphs

A hierarchy of models

Classical graph problems revisited

⇐ ? ⇒ 1 / 1 5 / 39



Graph neural networks

Expressive power and isomorphism tests

(under construction)

⇐ ? ⇒ 1 / 1 6 / 39



Diameter

⇐ ? ⇒ 1 / 1 7 / 39



How big is the world?

⇐ ? ⇒ 1 / 1 8 / 39



Longest straight line on water

Reddit user kepleronlyknows 2012 (in r/MapPorn) :

Longest Straight Line Paths on Water or Land on the Earth

Rohan Chabukswar⇤1 and Kushal Mukherjee†2

1United Technologies Research Center Ireland
2IBM Research India

May 8, 2018

Abstract

There has been some interest recently in determining the longest distance one can sail for on the
earth without hitting land, as well as in the converse problem of determining the longest distance
one could drive for on the earth without encountering a major body of water. In its basic form, this
is an optimisation problem, rendered chaotic by the presence of islands and lakes, and indeed the
fractal nature of the coasts. In this paper we present a methodology for calculating the two paths
using the branch-and-bound algorithm.

1 Introduction
On December 29, 2012, Reddit user kepleronlyknows posted a map (Figure 1) to r/MapPorn [1] showing
the longest straight line that can be sailed for on the earth without hitting land, from Pakistan to eastern
Russia. This was generated a lot of interest and led to subsequent attempts to prove and disprove the
user, along with discussions on solving the converse problem of determining the longest distance that
can be driven on land without hitting a major water body.

Figure 1: kepleronlyknows’s original map posted to r/MapPorn
⇤ChabukR@utrc.utc.com
†KushMukh@in.ibm.com
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Longest straight line on water
[Chabukswar, Mukherjee 2018] :

5.2.1 Longest Sailable Straight Line Path on Earth

The algorithm returned the path shown in Figure 7. Although it does not look like a straight line on the
map, the algorithm using great circles ensures that it is.

Figure 7: Longest Sailable Straight Line Path on Earth.

The fact that it is indeed a straight line can be seen from Figures 8a, 8b, and 8c, which are shown on
a globe with a perspective from above the path. Figure 8a shows the path originating in Sonmiani, Las
Bela, Balochistan, Pakistan (25�170 N, 66�400 E), threading the needle between Africa and Madagascar,
between Antarctica and Tiera del Fuego in South America (Figure 8b), and ending in Karaginsky District,
Kamchatka Krai, Russia (58�370 N, 162�140 E) (Figure 8c).

The path covers an astounding total angular distance of 288�350, for a distance of 32 090 kilometres.
This path is visually the same one as found by kepleronlyknows, thus proving his assertion.

(a) Start of Path (b) Threading the Needle (c) End of Path

Figure 8: Longest Sailable Straight Line Path on Earth.

5.2.2 Longest Drivable Straight Line Path on Earth

The algorithm returned the path shown in Figure 9. Again, although it does not look like a straight line
on the map, the algorithm using great circles ensures that it is.

9

“The problem was approached as a purely mathematical exercise.
The authors do not recommend sailing or driving along the found
paths.”
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Longest straight line on land
[Chabukswar, Mukherjee 2018] :

Figure 9: Longest Drivable Straight Line Path on Earth.

The fact that it is indeed a straight line can be seen from Figure 10, which is shown on a globe with a
perspective from above the path. Figure 9 shows the path originating near Jinjiang, Quanzhou, Fujian,
China (24�330 N, 118�380 E), weaving through China and Mongolia for a bit, passing though Kazakhstan
and Russia to further weave through Belarus and Ukraine, and passing through Poland, Czech Republic,
Germany, Austria, Liechtenstein, Switzerland, France, and Spain, to end near Sagres, Portugal (37�20 N
8�550 W), traversing a total of 15 countries.

Although not as long as the longest sailable path, the longest drivable path covers a still-respectable
total angular distance of 101�60, for a distance of 11 241 kilometres.

Figure 10: Longest Drivable Straight Line Path on Earth.

6 Limitations and Future Work
As mentioned in Section 2, our approach assumes the partition between land and water to be determined
by the height with respect to the mean sea level. This unfortunately discounts, among other features,
highland rivers, and low-lying plains. We also cannot consider bridges, although the probability of a
bridge lying at the precise location and direction of any given path is negligible.

Secondly, the ETOPO1 database has a resolution of 1-arcminute, about 1.8 kilometres at the equator.
The optimisation problem, therefore, has by necessity used this as the lower-limit of accuracy for analysis.

Both of these factors are the result of the input dataset.
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“The problem was approached as a purely mathematical exercise.
The authors do not recommend sailing or driving along the found
paths.”
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World longest road trips

http://gang.inria.fr/road/

⇐ ? ⇒ 1 / 1 12 / 39
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Graph notations

A (weighted directed) graph G is defined by :
a set V(G) of nodes/vertices (or simply V),
a set E(G) of arcs/edges (or simply E),
a length function ℓ : E → R+ : ℓ(uv) is the length/weight of
arc uv ∈ E (default is 1).
Size : n(G) = |V(G)| (or simply n) is the number of nodes, and
m(G) = |E(G)| (or simply m) is the number of edes.
G is undirected when uv ∈ E ⇐⇒ vu ∈ E.
G is unweighted when ℓ(uv) = 1 for all uv ∈ E.
A uv-path with k hops is a sequence of arcs
P = x0x1, . . . ,xk−1xk with x0 = u and xk = v, its length is
ℓ(P) =

∑k
i=1 ℓ(xi−1xk).

The distance dG(u, v) (or simply d(u, v)) from u to v is the
minimum length of a uv-path.

⇐ ? ⇒ 1 / 1 13 / 39



Graph parameters

Practical graphs : https://networkrepository.com/

General shape :
size, connectivity, average distance (Milgram exp.),...

Six degrees of separation

Node measures :
degree, pagerank, xx-centrality,...

Periodic Table of Network Centrality [Schoch 15]

⇐ ? ⇒ 1 / 1 14 / 39

https://networkrepository.com/
https://www.theguardian.com/technology/2008/aug/03/internet.email
http://schochastics.net/sna/periodic.html


Computing graph parameters
Average distance (degree of separation) :

• All pairs distances : O(nm) or O(nω log n) unweighted
[Alon et al 91 ; Seidel 95] or O(W(ω−1)/2n(3+ω)/2 log n) [Galil
Margalit 97] (with O(nω) matrix multiplication)

• Approximation with sampling and empirical average.
Centralitiy measures : what nodes are “central” ?

• betweenness b(v) =
∑

s,t
σst(v)
σst

[Freeman 77 ; Anthonisse 71]
σst : number of st-shortest paths, σst(v) : that pass through v

• stress s(v) =
∑

s,t σst(v) [Shimbel 53]
• (harmonic) closeness c(v) =

∑
t

1
d(v,t) [Marchiori, Latora

2000]
• graph closeness g(v) = 1

maxt d(v,t) [Hage Harary 95]
• eccentricity e(v) = maxt d(v, t) [Hage Harary 95]
• Often O(nm) (for all v) [Brandes 01]

Diameter : maximum distance
• Diameter diam(G) = maxv e(v)
• Radius rad(G) = minv e(v)

⇐ ? ⇒ 1 / 1 15 / 39



Diameter computation

Naive algorithm : compute e(v) through a BFS for all v ∈ V.

Complexity : Θ(nm) = O(m2).

Can we do better?

Should we search for O(mc)-time with c < 2?

⇐ ? ⇒ 1 / 1 16 / 39



The O(nm) barrier

Theorem [Roditty Vassilevska-Williams 13] : There is no
O(m2−ε)-time diameter algorithm under SETH (for any
ε > 0).
Proof idea : reduce SAT (satisfiability of a CNF formula
with N variables) to Diameter > 2.
Definition :
sk = inf

{
δ | k-SAT has a O(2δN)-time algorithm

}
Exponential time hypothesis (ETH) [Impagliazzo Paturi 01] :
s3 > 0. (ETH ⇒ P ̸= NP)
Strong ETH (SETH) (informal) : ∀ε > 0, there is no
O(2(1−ε)N)-time algorithm for SAT.
Formal SETH : limk→∞ sk = 1, i.e. for all ε > 0, there exists
k s.t. k-SAT cannot be solved in O(2(1−ε)N)-time.
Knwown upper bounds : 3-SAT in O(20.39N) and k-SAT in
O(2(1−c/k)N) for some c > 0. [PaturiPSZ 05, Hertli 14]

⇐ ? ⇒ 1 / 1 17 / 39



Hardness in P : fine-grained complexity

1
Introduction to Fine-Grained Complexity Theory

Version: 180

1.1 Overview over the course

Motivation

Suppose you are an algorithms & complexity theory researcher who
is approached by a practitioner, desperate to solve problem A. How
can you help her? If you manage to come up with a polynomial-time
algorithm, this would be a good starting point for her. However, if
you fail to find a polynomial-time algorithm, but can prove A to be
NP-hard, this is still a good outcome for her: it is likely to convince
her to relax the problem1 to a new formulation B instead of solving A. 1 She could, e.g., find a more specific for-

mulation, or resort to approximation, or
try to identify small input parameters
(cf. fixed-parameter tractability), or she
might feel justified to use heuristics.

NP

NP-C P ?

Figure 1.1: Is there an analogue for the
class of NP-complete problems inside P?

Now suppose you indeed manage to find a polynomial-time algo-
rithm for the relaxed problem B – say, it runs in quadratic time –, but it

performs infeasibly slow on her input data (think of modern, BIG
data applications). Could there still be a fast, e.g., (near-)linear time
algorithm? Obviously, to rule out this possibility, you cannot use NP-
hardness (after all, your quadratic-time algorithm proves A to be in
P). But if you neither manage to find a (near-)linear time algorithm,
nor can come up with a justification for this, both of you will be un-
happy: She receives no advice what to do (should she relax the prob-
lem? Should she try harder to find a fast algorithm?) and you will be
embarrassed that you could not help her.

The question arises: can we find tools to distinguish whether A
has only algorithms with a high polynomial running time like O(nc)

with a large c or whether it admits a solution running in near-linear
time Õ(n)? Notation: Õ(T) denotes a running time

TpolylogT.

Can we find an analogue of NP-hardness within P?

⇐ ? ⇒ 1 / 1 18 / 39



Hardness in P : fine-grained complexity

What is the true c in O(nc) algorithms?

Quasi-linear reduction : P ≤c Q if any O(nc−ε) algorithm for
Q can be turned into an O(nc−ε′) algorithm for P.

Exemple : OV=DisjSet ≤2 Diameter as the existence of two
disjoint sets in a collection of n sets in a universe of size
Õ(1) can be reduced to a diameter problem on Õ(n) nodes in
Õ(n) time.
(Õ(.) hide poly-log factors.)

Exercise : prove HitSet ≤2 Radius.

⇐ ? ⇒ 1 / 1 19 / 39



Hardness in P : fine-grained complexity

Tentative hard problems :
• HitSet for O(n2) : given two collections A,B, does a set

of A hits all sets of B?
• 3SUM for O(n2) : given n integers, do 3 of them sum to

0?
• All Pairs Shortest Paths (APSP) for O(nm).
• d-dim OV for O(n2) (d = c log n) : given two sets A,B of

binary vectors of dimension d, does there exists a ∈ A and
b ∈ B such that a and b are orthogonal.

• k-OV for O(nk) : given n vectors of dimension d, does
there exists k of them with product zero?
Conjectures :

• HitSet hypothesis : HitSet requires time n2−o(1).
• OVH : OV requires time n2−o(1).
• k-OVH : k-OV requires time nk−o(1).

Exercise : prove HitSetHyp ⇒ OVH.
⇐ ? ⇒ 1 / 1 20 / 39



Landscape of Polytime Problems
SETH-hard

3SUM-hard

APSP-hard

SETH

[Backurs,Indyk’16][B,Künnemann’15]

[Impagliazzo][B,Künnemann’15,
Abboud,Backurs,

V-Williams’15]

[Backurs,Indyk’15]

[B,Künnemann’15,Abboud,
Backurs,V-Williams’15][V-Williams,Roditty’13]

[B’14]

[Williams’05]

[Abboud,B,Hermelin,
Shabtay’17+]

[B,Gawrychowski,
Mozes,Weimann’18]

[Backurs,Dikkala,
Tzamos’16]

[V-Williams,
Williams’10]

[Gajentaan,Overmars’95]

3SUM !"

X+Y !" GeomBase !"

Separator !"

PlanarMotion
Planning !"

Colinear !"

APSP !#

Radius !#

Metricity !#

Betweenness
Centrality !#

NegTriangle !#

Maximum
Submatrix !#

Tree Edit 
Distance !#

OV !"k-DomSet !$

LCS !"

Frechet !"

Diameter !"

NFA-Acceptance !"

Dynamic Time Warping !"

Edit Distance !"

SubsetSum
! + &

RegExp Matching !"Longest Palindromic 
Subsequence !"

SAT 2(
[Patrascu,

Williams’10]

Survey: On some fine-grained questions in 
algorithms and complexity, V. Vassilevska Williams 

See Bringmann slides at https://conferences.mpi-inf.mpg.de/adfocs-18/⇐ ? ⇒ 1 / 1 21 / 39

https://conferences.mpi-inf.mpg.de/adfocs-18/


Hardness of approximation

Diameter can be 2-approximated in O(m)-time.

(2− 1/k− δ)-approximation requires time m1+1/(k−1)−o(1)

under SETH. [Dalirrooyfard, Li, Williams 21]

There exists a 3/2-approximation in Õ(m3/2)-time. [Chechik
LRSTW 14]

No (3/2− δ)-approximation in m2−ε-time under SETH.
[Roditty, Williams 13]

No 3/2-approximation (even 5/3− δ-approx) in m3/2−ε-time
under SETH. [Backurs RSWW 18]

⇐ ? ⇒ 1 / 1 22 / 39



Practical diameter

Diameter of Facebook graph is ?41 in 2011 [Backstrom et al
12] (720m nodes, 69g edges).

iFUB algorithm [Crescenzi et al 10] : carefully choose BFS
sources and improve lower/upper bounds on diam(G) (17
BFSs for Facebook2011).

⇐ ? ⇒ 1 / 1 23 / 39



iFUB (iterative Fringe Upper Bound)

Given a BFS from s, Fj are the nodes at distance j from s.

Lemma : If a node x in Fi with i ≤ j has eccentricity
e(x) > 2j, then some node y ∈ Fk with k > j has eccentricity
e(y) ≥ e(x) > 2j.

Corollary : If DL := maxy∈Fk,k>j e(y),
DL ≤ diam(G) ≤ max(2j,DL).

Algorithm : Scan nodes in Fj for j = e(s), . . . , 1 and update
DL := maxy∈Fj e(y) until 2j ≤ DL.

Analysis : a BFS for each node in Fk with k > diam(G)/2.

Exercise : choice of s?

Exercise : hard graph for iFub?

Efficient in random power-law graphs [Borassi et al 17].

⇐ ? ⇒ 1 / 1 24 / 39



Heuristic diameter

Two sweeps : Given G and u ∈ V(G), do BFS(u) and BFS(v)
where v = A(u) is the antipode of u (last visited node in
BFS(u)), return d(v,A(v)).

Theorem : correct if G is a tree [Handler 73], and +1
approximation if G is chordal [Corneil et al 03].
Chordal : no induced cycle of length > 3.

Often within +1 in practice.

Tentative center : the middle node in-between v and A(v).
Center : a node with minimum eccentricity.

⇐ ? ⇒ 1 / 1 25 / 39



Bound eccentricities [Takes, Kosters 2011]
(revisited)

A BFS from s provides bounds on eccentricities :

∀u, d(s, u) ≤ e(u) ≤ d(s, u) + e(s)

X := ∅ ; scanned nodes
Maintain eL(u) := maxs∈X d(u, s)
and eU(u) := mins∈X d(u, s) + e(s) for all u ∈ V(G).
While minu∈V eL(u) or maxu∈V eU(u) is not tight do

Select u ∈ V s.t. eL(u) is minimal and add it to X.
Select u ∈ V s.t. eU(u) is maximal and add it to X.

Last generation : exact sum-sweep [Borassi et al. 2017].

⇐ ? ⇒ 1 / 1 26 / 39



Why such algorithms work?

What graph property enables fast diameter computation?

iFUB :
• diam(G) close to 2 rad(G),
• few far nodes.

Takes and Kosters algorithm?

Practical graphs have small certificates.

⇐ ? ⇒ 1 / 1 27 / 39



Small certificate implies O(n2−ε) algorithm

X is a diameter certificate if
∀u,minx∈X d(u,x) + ecc(x) ≤ diam(G)

Certificate of size ℓ(n) implies a O(mℓ(n)) non-deterministic
algorithm.

Theorem [Dragan et al. 2024] For any class of graphs with
diameter certificates of size ℓ(n), there exists a
randomized algorithm for diameter running in
O(m

√
ℓ(n)n log3/2 n) time.

⇐ ? ⇒ 1 / 1 28 / 39



Diameter parameterized by certificate size

X is a diameter certificate if
∀u,minx∈X d(u,x) + ecc(x) ≤ diam(G)

Equivalently : V ⊆ ∪x∈XB[x,diam(G)− ecc(x)]
where B[x, r] = {u : d(u,x) ≤ r} (ball of radius r centered at
x).

X corresponds to a covering with certain balls !

⇐ ? ⇒ 1 / 1 29 / 39



Diameter parameterized by certificate size
Main idea : binary search the value D of the diameter,
while solving set cover with {B[y,D− ecc(y)] : y ∈ V}.
Problem : The set-cover instance may have size Ω(n2).
Workaround : Greedy set-cover with an implicit
representation through set/containment queries [Sen,
Muralidhara 2010].
Problem : Still requires to know ecc(y) for all y.
Workaround :

• Find for all y, an estimate r(y) ≤ ecc(y) s.t.
|B[y, r(y)]| ≥ (1− ε)n using random sampling (O(ε−1 log n)
BFSs) ;

• run greedy set-cover using {B[y,D− r(y)] : y ∈ V} and
selecting at most q = ℓ(n) log n balls with centers x1, . . . ,xq ;

• ∀i, check ecc(v) ≤ D for all v ∈ V \ B[y,D− r(xi)] (qεn
queries).
Plugging ε = 1√

nℓ(n) log n
yields the result.

⇐ ? ⇒ 1 / 1 30 / 39



Open questions

Certificates for diameter approximation?

Certificates for other hard problems in P?

⇐ ? ⇒ 1 / 1 31 / 39



Few far nodes [Borassi, Crescenzi, Trevisan 2017]

Random power law graph :
• sequence of degrees s.t. Θ(n/dβ) nodes with degree d,
• create edges according to the configuration model.

For 2 < β < 3,
• D = (1 + o(1))c(β) log n,
• distavg = (2 + o(1)) log1/(β−1) log n,
• nb vertices at dist ≥ D/2 from a random v is at most

nO(ε) for n > nβ (ε = 0.2 experimentally).

⇐ ? ⇒ 1 / 1 32 / 39



Diameter certificate [Dragan et al. 2018]

For any L,U ⊆ V(G) and u ∈ V(G) :

eL(u) ≤ e(u) ≤ eU(u), where
{

eU(u) = minx∈U d(u,x) + e(x)
eL(u) = maxx∈L d(u,x)

L is a radius certificate if eL(u) ≥ rad(G) for all u ∈ V.

For all u ∈ V, ∃x ∈ L such that d(x, u) ≥ rad(G) :
L is a covering with {B(u, rad(G)) : u ∈ V}.

U is a diameter certificate if eU(u) ≤ diam(G) for all u ∈ V.

For all u ∈ V, ∃x ∈ U, such that d(x, u) ≤ diam(G)− e(x) :
U is a covering with {B[u,diam(G)− e(u)] : u ∈ V}.

⇐ ? ⇒ 1 / 1 33 / 39



Example

q-2

q+1q+1

q-3
q-2

p

p

p

q+1 q+1 q+1

q-3q-3

a c b
2 2

R

D

U

1

23

4

5

6

7

8 ...

.

.

.

.

.

.

D : certificate for diam(G) = 4q− 2, R for rad(G) = 2q+ 1

Exercice : what about a path?, a grid?

⇐ ? ⇒ 1 / 1 34 / 39



Diameter computation as a primal-dual alg. [Dragan
et al. 2018]

U := ∅ ; K := ∅
Do

Select u such that eU(u) is maximal.
K := K ∪ {u}
Select x such that d(u,x) + e(x) = e(u). E.g. x := u.
U := U ∪ {x}

while maxu∈K e(u) < maxu∈V eU(u)
Return e(b), b and U where e(b) = maxu∈K e(u).

U is a covering with {B[u,diam(G)− e(u)] : u ∈ V}.

K is a packing for {B(u, 13(diam(G)− e(u))) : u ∈ V}.

Approximation ratio π1/3

π[1]
, O(π1/3) BFS.

Most practical graphs have diameter certificate |U| < 30.

⇐ ? ⇒ 1 / 1 35 / 39



Radius computation : iterate two-sweeps as a
primal-dual alg. [Dragan et al. 2018]

L := ∅ ; K := ∅
Do

Select u ∈ V such that eL(u) is minimal.
Compute distances from u (BFS from u).
a := argmaxv∈V(d(u, v), π(v)) /* Antipode of u. */
K := K ∪ {u}
L := L ∪ {a} (BFS from a)

while minu∈V eL(u) < minu∈K e(u).
Return e(c), c and L where c = argminu∈K e(u).

rad(G) = minu∈V e(u) ≥ minu∈V eL(u) and minu∈K e(u) ≥ rad(G)
K is a packing for {Antipode−1

r (u) : u ∈ V}.
O(|Antipoder(V)|) BFSs : 2 per round (from u and a).
Most practical graphs have < 40 antipodes and radius
certificate with |L| ≤ 5.

⇐ ? ⇒ 1 / 1 36 / 39



Best radius algorithm using one-to-all distances
queries

One-to-all distances algorithm :
• query distances from a node,
• use triangle inequality.

Theorem [Dragan et al. 2018] : If a one-to-all distances
algorithm queries only k nodes to obtain the radius of a
graph G, then G has a lower certificate of 2k nodes.

⇐ ? ⇒ 1 / 1 37 / 39



Further reading

[Vassilevska Williams 2018]
On some fine-grained questions in algorithms and
complexity.
ICM 2018.
https://people.csail.mit.edu/virgi/eccentri.pdf

⇐ ? ⇒ 1 / 1 38 / 39
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Exercize for next week

Prove HitSet ≤2 Radius.

Send a drawing and a short proof to
laurent.viennot@inria.fr.

⇐ ? ⇒ 1 / 1 39 / 39


