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The QR factorization

Given a matrix A € R™" m > n, its QR factorization is
Ry
A=QR=(& @)(])=0aR
where @ € R™*™ is orthogonal and R € R™*" is upper triangular.
If A has full rank, the factorization @ R; is essentialy unique (modulo signs

of diagonal elements of R).

B ATA= RlTRl is a Cholesky factorization and A = ARl_lRl isa QR
factorization.

B A= Q1D - DRy, D = diag(£1) is a QR factorization.
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Householder transformation

The Householder matrix
2
P=1——w'
vTv”
has the following properties:

® is symmetric and orthogonal, span(v)
P2 =1, v

® is independent of the scaling of v,

® it reflects x about the hyperplane
span(v)*+

2vTx
. VTV - e .
Presentation of Householder transformations and stability analysis from

[N.J.Higham, 2002].

Px = x — V=X—aQVv
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Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a
vector x, except first one.

Px=y, lixlla=lyll2, y=oe, o==[x]2

With the choice of sign made to avoid cancellation when computing
vi = x1 — o, we have

X—y=x—o0ey,

Q
Il

—sign(x1)||x]|2, v = x — oey,
2

P = I — ﬁVVT,ﬁ = -

viv
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Householder based QR factorization

X X X X X X 1 X X X
AZXXX=P10XX=P1(I5>0XX=R
X X X 0 x x 2 0 0 x

So we have
Q"A = P,P,_i...PLA=R,
Q = (I- ﬁlvlvlT)' (= ﬂn—lvn—lvl;r—l)(l - 5nVnVr;r)

#flops = 2n*(m — n/3)
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Error analysis of Householder transformations

Lemma (Lemma 19.1 in [N.J.Higham, 2002])

Consider the computation of P = | — Bwv T, where Px = oe;, v € R™, as

1: v=X

2: s = sign(x1)||x]l2, %o = —s
3 vi=wvi+s

4 B=1/(sv1)

Then we have

v(2:n) = v(2:n)
A B(1 + gm)7 0=w(l+ QNm), where |§m| <Am

Proof based on the fact that fI(x"x) = (14 6,,)x” x. The result can be
re-written as
V=v+Av, ‘AV| S:}’/m|v|

In the following results, v = /Bv, # =1, and so ||v|> = V2.
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Error analysis of Householder transformations

Lemma (Lemma 19.2 in [N.J.Higham, 2002])
Consider the computation y = Pb = (I — 99T )b, where b, ¥ € R™. Then

y=(P+AP)b, |AP|F < Hm. (1)
Proof.
W= f(0(0Th)) = (V4 A0 (0T (b+ Ab)), |AV| < u|0| and |Ab| < v b
= (v+Av+AD)(v+Av) (b+ Ab)
Hence

w=v(v'b)+ Aw, where |[Aw| < Fp|v||vT]|b|
O
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Error analysis of Householder transformations

Continued proof of the previos lemma. We obtain
g=1fb—w)=b—v(v'b)—Aw+ Ay, |Ay|<ulb— W]

Since
| — Aw + Ay | < ulb| + Fm|v||v7]|b]

we obtain
9=Pb+ADy, |Aylz < Tmllb|2

Finally, with AP = Ayb" /b7 b, we have

y=(P+AP)b,  [[AP|F = [|Ayll2/[lbll2 < Fm
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Error analysis of a sequence of transformations

Lemma ([N.J.Higham, 2002])
Let Q=P,P,_1...Py and let A, 11 = QTA, AcR™" We have

Ari=QT(A+DA),  ||Agl2 < rmllajll2, j=1:n

Sketch of the proof: Let a; be the j-th column of A.
8 = (P, + AP,)...(PL+ AP, |APlF < Fm, k=17
We obtain
Y = QT(a+ Aay),

- ry "
1Aajllz < ((L+Fm)" = Dllajlla < 37— = ;"& ajll2 = rimllajll2
m
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Error analysis of the QR factorization

The following result follows

Theorem ([N.J.Higham, 2002])

Let R € R™" pe the computed factor of A € R™*" obtained by using
Householder transformations. Then there is an orthogonal Q € R™*™ such
that A

A+ AA = QR, where ||Aaj|l> < Amnllajll, j=1:n
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Householder-QR factorization

Require: A € R™*"
1: Let R € R™" be initialized with zero matrix
2: for k = 1tondo

3: > Compute Householder matrix P, = | — ﬂkvkva s.t.
PiA(k : m, k) = £||A(k : m, k)||2e1. Store v in Y() and Bk in
T (k)
4: R(k, k) k—ksg:(,:ﬁ\k(k LK) - JACK 2 m K)||2
5. T(k)= 7ng k)
7: > Update trailing matrix
8: Ak:mk+1:n=(-Yk+1:mkTkYk+1:

m,k)T)- Ak : m,k+1:n)
o: R(k,k+1:n)=A(k,k+1:n)
10: end for
Assert: A= QR, where Q =P;...P,= (I —1viv])...(I — Bavav,]), the
Householder vectors vy are stored in Y and 7T is an array of size n.
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Computational complexity

= Flops per iterations
U Dot product w = v A(k : m,k +1:n): 2(m— k)(n— k)
0 Outer product vkw : (m — k)(n — k)
0 Subtraction A(k: m,k+1:n)—...: (m—k)(n— k)

= Flops of Householder-QR

> a(m—k)(n—k)=4> (mn—k(m+ n)+ k%)

k=1
~ 4mn® — 4(m + n)n?/2 + 4n*/3 = 2mn® — 2n%/3
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Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]
Q=QQ...Q=0-pwvv])...(I —Bewv)=1-YTYT

Example for k = 2

Y = (V1|V2), T = (601 _61\272—V2ﬂ2)

Example for combining two compact representations

= (I-YTY)(I = YaToY))

o T1 — T1 YlT Y2 T2
o 0 T,
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Block algorithm for computing the QR factorization

Partitioning of matrix A of size m x n

A A
A=
[ Axn Ax }

where Ay; is of size b X b, Ay is of size (m — b) x b, Ajp is of size
b x (n— b) and Ay is of size (m — b) x (n— b).

Block QR algebra
The first step of the block QR factorization algorithm computes:

R R
ora= (B )

The algorithm continues recursively on the trailing matrix A®.
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Algebra of block QR factorization

- A11 A12 o Rll R12
A_(A21 A22)_Ql< Al)
Block QR algebra

1. Compute the factorization

A1
= @R
(A12) Q1R
2. Compute the compact representation Q; =/ — YTY T
3. Apply @/ on the trailing matrix

= (A )= (a ) (v (42)

4. The algorithm continues recursively on the trailing matrix Al.
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Parallel implementation of the QR factorization

QR factorization on a P = P, x P, grid of processors
Forib =1 to n-1 step b
1. Compute panel factorization on P, processors

A
<A“> = QRu1=(—-YTYDRy,
12

2. The P, processors broadcast along the rows their parts of Y and T
3. Apply QlT on the trailing matrix:
= All processors compute their local part of
Wi = Y, (Ao Acay)
' The processors owning block row ib compute the sum over W, that is
W = Y7 (Au; Ax)

and then compute W' = TTW
01 The processors owning block row ib broadcast along the columns their part
of W’
4. All processors compute

(Ad1: A) = (Ao1; Ax) — (A Ax) x W/
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Cost of parallel QR factorization

<6mnb —3nb  n’b  2mn® — 2n3/3>
f)/ . - + _ + -
2p, 2pc p
2mn — n? n2)

+ B <nb|ogp,—|———|——
pr Pc

2n
+ - 2n|ogpr+?|ogpc .
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Solving least squares problems

Given matrix A € R™*", rank(A) = n, vector b € R™*1,
the unique solution to min, ||Ax — b|| is

x=A"th, At =(ATA)IAT
Using the QR factorization of A

A=QR=(Q Q) <'§1) 2

We obtain

7113

lb—Ax|3=1lb— (@1 @) (’;1) x|[3
Q

Q Ry 2 ! b— Rix\ 2
(&) o= (B) =1 (@ o7, ) e

1Q4 b — Rux|l3 +11Q2 bll3

Solve Rix = @/ b to minimize ||r||,.
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Acknowledgement

m Stability analysis results presented from [N.J.Higham, 2002]
® Some of the examples taken from [Golub and Van Loan, 1996]
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