Rank revealing factorizations, and low rank approximations

L. Grigori

Inria Paris, UPMC

February 2017

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Plan

Low rank matrix approximation

Rank revealing QR factorization

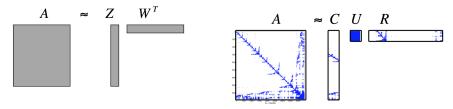
LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Randomized algorithms for low rank approximation

Low rank matrix approximation

Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.



- Problem with diverse applications
 - $\hfill\Box$ from scientific computing: fast solvers for integral equations, H-matrices
 - $\hfill\Box$ to data analytics: principal component analysis, image processing, \dots

$$Ax \rightarrow ZW^Tx$$
Flops $2mn \rightarrow 2(m+n)k$

Singular value decomposition

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$ its singular value decomposition is

$$A = U\Sigma V^{T} = \begin{pmatrix} U_1 & U_2 & U_3 \end{pmatrix} \cdot \begin{pmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} V_1 & V_2 \end{pmatrix}^{T}$$

where

- U is $m \times m$ orthogonal matrix, the left singular vectors of A , U_1 is $m \times k$, U_2 is $m \times n k$, U_3 is $m \times m n$
- Σ is $m \times n$, its diagonal is formed by $\sigma_1(A) \ge ... \ge \sigma_n(A) \ge 0$ Σ_1 is $k \times k$, Σ_2 is $n - k \times n - k$
- V is $n \times n$ orthogonal matrix, the right singular vectors of A, V_1 is $n \times k$, V_2 is $n \times n k$

Norms

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sigma_1^2(A) + \dots \sigma_n^2(A)}$$

 $||A||_2 = \sigma_{max}(A) = \sigma_1(A)$

Some properties:

$$||A||_2 \le ||A||_F \le \sqrt{\min(m,n)}||A||_2$$

Orthogonal Invariance: If $Q \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ are orthogonal, then

$$|QAZ||_F = ||A||_F$$

 $||QAZ||_2 = ||A||_2$

Low rank matrix approximation

Best rank-k approximation $A_k = U_k \Sigma_k V_k$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$\min_{\text{rank}(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_2 = ||A - A_k||_2 = \sigma_{k+1}(A)$$
 (1)

$$\min_{rank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_F = ||A - A_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$
 (2)

Original image of size 919×707

Rank-38 approximation, SVD

Rank-75 approximation, SVD

Image source: https:

//upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

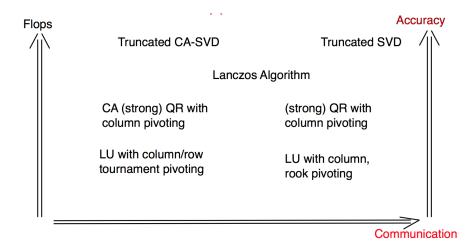
Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added progressively.

- Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
- Weakly streaming algorithm: can solve a problem with O(1) passes over the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

Low rank matrix approximation: trade-offs



Plan

Low rank matrix approximation

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Randomized algorithms for low rank approximation

Rank revealing QR factorization

Given A of size $m \times n$, consider the decomposition

$$AP_c = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix}, \tag{3}$$

where R_{11} is $k \times k$, P_c and k are chosen such that $||R_{22}||_2$ is small and R_{11} is well-conditioned.

 By the interlacing property of singular values [Golub, Van Loan, 4th edition, page 487],

$$\sigma_i(R_{11}) \le \sigma_i(A)$$
 and $\sigma_j(R_{22}) \ge \sigma_{k+j}(A)$

for $1 \le i \le k$ and $1 \le j \le n - k$.

 $\sigma_{k+1}(A) \leq \sigma_{max}(R_{22}) = ||R_{22}||$

Rank revealing QR factorization

Given A of size $m \times n$, consider the decomposition

$$AP_c = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix}. \tag{4}$$

If $||R_{22}||_2$ is small,

• Q(:,1:k) forms an approximate orthogonal basis for the range of A,

$$a(:,j) = \sum_{i=1}^{\min(j,k)} r_{ij}Q(:,i) \in span\{Q(:,1), \dots Q(:,k)\}$$

$$ran(A) \in span\{Q(:,1), \dots Q(:,k)\}$$

• $P_c \begin{bmatrix} -R_{11}^{-1}R_{12} \\ I \end{bmatrix}$ is an approximate right null space of A.

Rank revealing QR factorization

The factorization from equation (4) is rank revealing if

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq q_1(n,k),$$

for $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$, where

$$\sigma_{max}(A) = \sigma_1(A) \ge \ldots \ge \sigma_{min}(A) = \sigma_n(A)$$

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

$$||R_{11}^{-1}R_{12}||_{max} \le q_2(n,k)$$

- Gu and Eisenstat show that given k and f, there exists a P_c such that $q_1(n,k) = \sqrt{1 + f^2 k(n-k)}$ and $q_2(n,k) = f$.
- Factorization computed in 4mnk (QRCP) plus O(mnk) flops.

QR with column pivoting [Businger and Golub, 1965]

Idea:

- At first iteration, trailing columns decomposed into parallel part to first column (or e_1) and orthogonal part (in rows 2 : m).
- The column of maximum norm is the column with largest component orthogonal to the first column.

Implementation:

- Find at each step of the QR factorization the column of maximum norm.
- Permute it into leading position.
- If rank(A) = k, at step k + 1 the maximum norm is 0.
- No need to compute the column norms at each step, but just update them since

$$Q^T v = w = \begin{bmatrix} w_1 & w(2:n) \end{bmatrix}, ||w(2:n)||_2^2 = ||v||_2^2 - w_1^2$$

QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm

```
column norm vector: colnrm(j) = ||A(:,j)||_2, j = 1 : n.
for j = 1 : n do
   Find column p of largest norm
   if colnrm[p] > \epsilon then
       1. Pivot: swap columns j and p in A and modify colnrm.
       2. Compute Householder matrix H_i s.t.
          H_iA(j:m,j) = \pm ||A(j:m,j)||_2 e_1.
       3. Update A(j:m,j+1:n) = H_i A(j:m,j+1:n).
       4. Norm downdate colnrm(j + 1 : n)^2 - = A(j, j + 1 : n)^2.
   else Break
   end if
end for
```

If algorithm stops after k steps

$$\sigma_{max}(R_{22}) \le \sqrt{n-k} \max_{1 \le j \le n-k} ||R_{22}(:,j)||_2 \le \sqrt{n-k}\epsilon$$

Strong RRQR [Gu and Eisenstat, 1996]

Since

$$det(R_{11}) = \prod_{i=1}^{k} \sigma_i(R_{11}) = \sqrt{det(A^T A)} / \prod_{i=1}^{n-k} \sigma_i(R_{22})$$

a stron RRQR is related to a large $det(R_{11})$. The following algorithm interchanges columns that increase $det(R_{11})$, given f and k.

Compute a strong RRQR factorization, given k:

```
Compute A\Pi = QR by using QRCP while there exist i and j such that det(\tilde{R}_{11})/det(R_{11}) > f, where R_{11} = R(1:k,1:k), \Pi_{i,j+k} permutes columns i and j+k, R\Pi_{i,j+k} = Q\tilde{R}, \tilde{R}_{11} = \tilde{R}(1:k,1:k) do Find i and j Compute R\Pi_{i,j+k} = Q\tilde{R} and \Pi = \Pi\Pi_{i,j+k} end while
```

Strong RRQR (contd)

It can be shown that

$$\frac{\det(\tilde{R}_{11})}{\det(R_{11})} = \sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^{2} + \omega_{i}^{2}\left(R_{11}\right)\chi_{j}^{2}\left(R_{22}\right)}$$
(5)

for any $1 \le i \le k$ and $1 \le j \le n-k$ (the 2-norm of the j-th column of A is $\chi_j(A)$, and the 2-norm of the j-th row of A^{-1} is $\omega_j(A)$).

Compute a strong RRQR factorization, given k:

Compute
$$A\Pi = QR$$
 by using QRCP while $\max_{1 \leq i \leq k, 1 \leq j \leq n-k} \sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^{2} + \omega_{i}^{2}\left(R_{11}\right)\chi_{j}^{2}\left(R_{22}\right)} > f$ do Find i and j such that $\sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^{2} + \omega_{i}^{2}\left(R_{11}\right)\chi_{j}^{2}\left(R_{22}\right)} > f$ Compute $R\Pi_{i,j+k} = Q\tilde{R}$ and $\Pi = \Pi\Pi_{i,j+k}$ end while

Strong RRQR (contd)

• $det(R_{11})$ strictly increases with every permutation, no permutation repeats, hence there is a finite number of permutations to be performed.

Strong RRQR (contd)

Theorem

[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in equation (4) satisfies inequality

$$\sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^{2} + \omega_{i}^{2}\left(R_{11}\right)\chi_{j}^{2}\left(R_{22}\right)} < f$$

for any $1 \le i \le k$ and $1 \le j \le n - k$, then

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + f^2 k(n-k)},$$

for any $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$.

Sketch of the proof ([Gu and Eisenstat, 1996])

Assume A is full column rank. Let $\alpha = \sigma_{max}(R_{22})/\sigma_{min}(R_{11})$, and let

$$R = \begin{bmatrix} R_{11} & \\ & R_{22}/\alpha \end{bmatrix} \begin{bmatrix} I_k & R_{11}^{-1}R_{12} \\ & \alpha I_{n-k} \end{bmatrix} = \tilde{R}_1 W_1.$$

We have

$$\sigma_i(R) \leq \sigma_i(\tilde{R}_1)||W_1||_2, 1 \leq i \leq n.$$

Since $\sigma_{\min}(R_{11}) = \sigma_{\max}(R_{22}/\alpha)$, then $\sigma_i(\tilde{R}_1) = \sigma_i(R_{11})$, for $1 \leq i \leq k$.

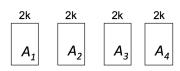
$$\begin{aligned} ||W_{1}||_{2}^{2} &\leq 1 + ||R_{11}^{-1}R_{12}||_{2}^{2} + \alpha^{2} = 1 + ||R_{11}^{-1}R_{12}||_{2}^{2} + ||R_{22}||_{2}^{2}||R_{11}^{-1}||_{2}^{2} \\ &\leq 1 + ||R_{11}^{-1}R_{12}||_{F}^{2} + ||R_{22}||_{F}^{2}||R_{11}^{-1}||_{F}^{2} \\ &= 1 + \sum_{i=1}^{k} \sum_{i=1}^{n-k} \left((R_{11}^{-1}R_{12})_{i,j}^{2} + \omega_{i}^{2}(R_{11}) \chi_{j}^{2}(R_{22}) \right) \leq 1 + f^{2}k(n-k) \end{aligned}$$

We obtain,

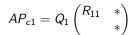
$$\frac{\sigma_i(A)}{\sigma_i(R_{11})} \le \sqrt{1 + f^2 k(n-k)}$$

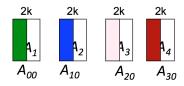
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting

$$AP_{c1} = Q_1 \begin{pmatrix} R_{11} & * \\ & * \end{pmatrix}$$



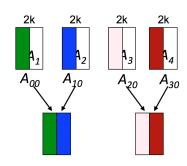
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting





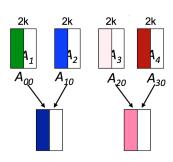
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting

$$AP_{c1} = Q_1 \begin{pmatrix} R_{11} & * \\ & * \end{pmatrix}$$



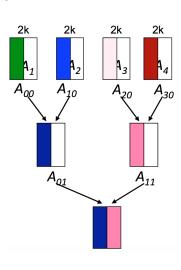
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting

$$AP_{c1} = Q_1 \begin{pmatrix} R_{11} & * \\ & * \end{pmatrix}$$



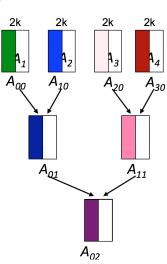
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \Box At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting

$$AP_{c1} = Q_1 \begin{pmatrix} R_{11} & * \\ & * \end{pmatrix}$$



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \Box At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Permute A_{ji} in leading positions, compute QR with no pivoting

$$AP_{c1} = Q_1 \begin{pmatrix} R_{11} & * \\ & * \end{pmatrix}$$



Select k columns from a tall and skinny matrix

Given W of size $m \times 2k$, m >> k, k columns are selected as:

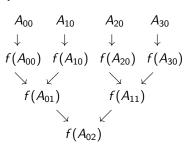
$$W = QR_{02}$$
 using TSQR
 $R_{02}P_c = Q_2R_2$ using QRCP
Return $WP_c(:, 1:k)$

Parallel:
$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\rightarrow} \begin{array}{c} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{array} \xrightarrow{\nearrow} \begin{array}{c} R_{01} \\ R_{02} \\ R_{11} \end{array}$$

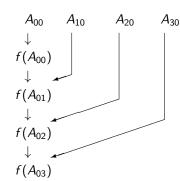
Reduction trees

Any shape of reduction tree can be used during CA_RRQR, depending on the underlying architecture.

Binary tree:



Flat tree:



Notation: at each node of the reduction tree, $f(A_{ij})$ returns the first b columns obtained after performing (strong) RRQR of A_{ij} .

Rank revealing properties of CA-RRQR

It is shown in [Demmel et al., 2015] that the column permutation computed by CA-RRQR satisfies

$$\chi_j^2(R_{11}^{-1}R_{12}) + (\chi_j(R_{22})/\sigma_{\min}(R_{11}))^2 \le F_{TP}^2$$
, for $j = 1, \dots, n - k$. (6)

where F_{TP} depends on k, f, n, the shape of reduction tree used during tournament pivoting, and the number of iterations of CARRQR.

CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with the following bounds:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)},$$
$$||R_{11}^{-1}R_{12}||_{max} \leq F_{TP}$$

■ Binary tree of depth $\log_2(n/k)$,

$$F_{TP} \le \frac{1}{\sqrt{2k}} \left(n/k \right)^{\log_2\left(\sqrt{2}fk\right)}. \tag{7}$$

The upper bound is a decreasing function of k when $k > \sqrt{n/(\sqrt{2}f)}$.

• Flat tree of depth n/k,

$$F_{TP} \le \frac{1}{\sqrt{2k}} \left(\sqrt{2}fk\right)^{n/k}.\tag{8}$$

Cost of CA-RRQR

Cost of CA-RRQR vs QR with column pivoting

 $n \times n$ matrix on $\sqrt{P} \times \sqrt{P}$ processor grid, block size k

Flops:
$$4n^3/P + O(n^2klogP/\sqrt{P})$$
 vs $(4/3)n^3/P$
Bandwidth: $O(n^2\log P/\sqrt{P})$ vs same

Bandwidth:
$$O(n^2 \log P/\sqrt{P})$$
 v

Latency:
$$O(n \log P/k)$$
 vs $O(n \log P)$

Communication optimal, modulo polylogarithmic factors, by choosing

$$k = \frac{1}{2log^2P} \frac{n}{\sqrt{P}}$$

Numerical results

- Stability close to QRCP for many tested matrices.
- Absolute value of diagonals of R, L referred to as R-values, L-values.
- Methods compared
 - RRQR: QR with column pivoting
 - CA-RRQR-B with tournament pivoting based on binary tree
 - CA-RRQR-F with tournament pivoting based on flat tree
 - SVD

Numerical results - devil's stairs

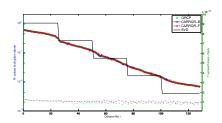
Devil's stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code: Length = 20; s = zeros(n,1); Nst = floor(n/Length);

```
for i = 1: Nst do s(i-1):Length*(i-1):Length*(i-1): s(i-1): end for s(Length*Nst:end) = -0.6*(Nst-1); s = 10. \land s; A = orth(rand(n))* diag(s)* orth(randn(n)):
```

QLP decomposition (Stewart)

$$AP_{c_1} = Q_1R_1$$
 using ca_rrqr
 $R_1^T = Q_2R_2$



Numerical results - devil's stairs

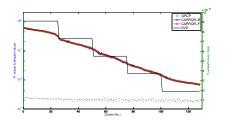
Devil's stairs (Stewart), a matrix with multiple gaps in the singular values.

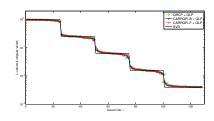
Matlab code: Length = 20; s = zeros(n,1); Nst = floor(n/Length);

for i = 1: Nst do s(1+Length*(i-1):Length*(i) = -0.6*(i-1); end for $s(\text{Length*} \ Nst : end) = -0.6*(Nst - 1);$ s = 10. $\land s$; s = 10. $\land s$; d = 10. d = 10. d = 10.

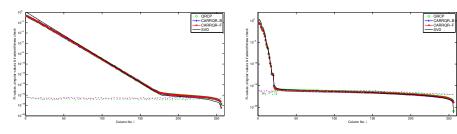
QLP decomposition (Stewart)

$$AP_{c_1} = Q_1R_1$$
 using ca_rrqr
 $R_1^T = Q_2R_2$





Numerical results (contd)



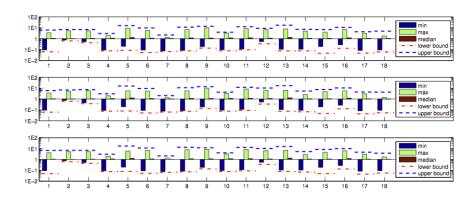
- Left: exponent exponential Distribution, $\sigma_1 = 1$, $\sigma_i = \alpha^{i-1}$ (i = 2, ..., n), $\alpha = 10^{-1/11}$ [Bischof, 1991]
- Right: shaw 1D image restoration model [Hansen, 2007]

$$\epsilon \min\{||(A\Pi_0)(:,i)||_2, ||(A\Pi_1)(:,i)||_2, ||(A\Pi_2)(:,i)||_2\}$$
(9)

$$\epsilon \max\{||(A\Pi_0)(:,i)||_2, ||(A\Pi_1)(:,i)||_2, ||(A\Pi_2)(:,i)||_2\}$$
 (10)

where $\Pi_j(j=0,1,2)$ are the permutation matrices obtained by QRCP, CARRQR-B, and CARRQR-F, and ϵ is the machine precision.

Numerical results - a set of 18 matrices



- Ratios $|R(i,i)|/\sigma_i(R)$, for QRCP (top plot), CARRQR-B (second plot), and CARRQR-F (third plot).
- The number along x-axis represents the index of test matrices.

Plan

Low rank matrix approximation

Rank revealing QR factorization

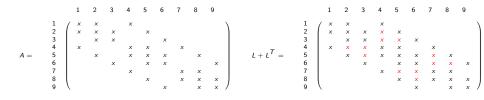
LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Randomized algorithms for low rank approximation

LU versus QR - filled graph $G^+(A)$

- Consider A is SPD and $A = LL^T$
- Given G(A) = (V, E), $G^+(A) = (V, E^+)$ is defined as: there is an edge $(i, j) \in G^+(A)$ iff there is a path from i to j in G(A) going through lower numbered vertices.
- $G(L + L^T) = G^+(A)$, ignoring cancellations.
- Definition holds also for directed graphs (LU factorization).



LU versus QR

Filled column intersection graph $G_{\cap}^{+}(A)$

- Graph of the Cholesky factor of A^TA
- $G(R) \subseteq G_{\cap}^+(A)$
- \blacksquare A^TA can have many more nonzeros than A

LU versus QR

Numerical stability

lacksquare Let \hat{L} and \hat{U} be the computed factors of the block LU factorization. Then

$$\hat{L}\hat{U} = A + E, \quad \|E\|_{max} \le c(n)\epsilon \left(\|A\|_{max} + \|\hat{L}\|_{max} \|\hat{U}\|_{max} \right).$$
 (11)

■ For partial pivoting, $||L||_{max} \le 1$, $||U||_{max} \le 2^n ||A||_{max}$ In practice, $||U||_{max} \le \sqrt{n} ||A||_{max}$

Low rank approximation based on LU factorization

Given desired rank k, the factorization has the form

$$P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix}, \quad (12)$$

where $A \in \mathbb{R}^{m \times n}$, $\bar{A}_{11} \in \mathbb{R}^{k,k}$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12}$.

■ The rank-k approximation matrix \tilde{A}_k is

$$\tilde{A}_{k} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} = \begin{pmatrix} A_{11} \\ \bar{A}_{21} \end{pmatrix} \bar{A}_{11}^{-1} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix}. \tag{13}$$

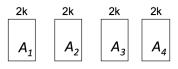
- $ar{A}_{11}^{-1}$ is never formed, its factorization is used when \tilde{A}_k is applied to a vector.
- In randomized algorithms, $U = C^+AR^+$, where C^+, R^+ are Moore-Penrose generalized inverses.

Design space

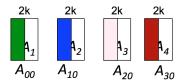
Non-exhaustive list for selecting k columns and rows:

- 1. Select k linearly independent columns of A (call result B), by using
 - 1.1 (strong) QRCP/tournament pivoting using QR,
 - 1.2 LU / tournament pivoting based on LU, with some form of pivoting (column, complete, rook),
 - 1.3 randomization: premultiply X = ZA where random matrix Z is short and fat, then pick k rows from X^T , by some method from 2) below,
 - 1.4 tournament pivoting based on randomized algorithms to select columns at each step.
- 2. Select k linearly independent rows of B, by using
 - 2.1 (strong) QRCP / tournament pivoting based on QR on B^T , or on Q^T , the rows of the thin Q factor of B,
 - 2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook) on B,
 - 2.3 tournament pivoting based on randomized algorithms to select rows.

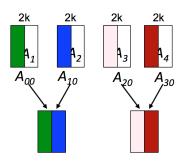
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



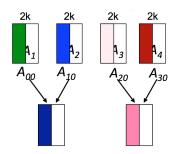
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



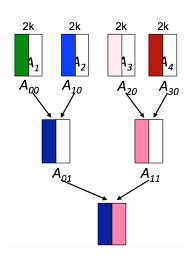
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



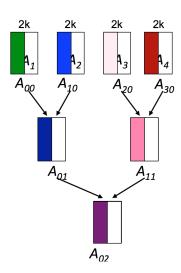
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \Box At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{jj}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \Box At each node i do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{jj}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ii}



LU_CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting on matrix A of size $m \times n$:

1. Select k columns by using tournament pivoting, permute them in front, bounds for s.v. governed by $q_1(n, k)$

$$AP_c = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$$

2. Select k rows from $(Q_{11}; Q_{21})^T$ of size $m \times k$ by using tournament pivoting,

$$P_rQ = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix}$$

such that $||\bar{Q}_{21}\bar{Q}_{11}^{-1}||_{max} \leq F_{TP}$ and bounds for s.v. governed by $q_2(m,k)$.

Orthogonal matrices

Given orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and its partitioning

$$Q = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix}, \tag{14}$$

the selection of k cols by tournament pivoting from $(Q_{11}; Q_{21})^T$ leads to the factorization

$$P_{r}Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix} = \begin{pmatrix} I & & \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ & S(\bar{Q}_{11}) \end{pmatrix}$$
(15)

where
$$S(\bar{Q}_{11}) = \bar{Q}_{22} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{Q}_{12} = \bar{Q}_{22}^{-T}.$$

Orthogonal matrices (contd)

The factorization

$$P_{r}Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix} = \begin{pmatrix} I & & \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ & S(\bar{Q}_{11}) \end{pmatrix}$$
(16)

satisfies:

$$\rho_j(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP},$$
 (17)

$$\frac{1}{q_2(m,k)} \leq \sigma_i(\bar{Q}_{11}) \leq 1, \tag{18}$$

$$\sigma_{min}(\bar{Q}_{11}) = \sigma_{min}(\bar{Q}_{22}) \tag{19}$$

for all $1 \le i \le k$, $1 \le j \le m-k$, where $\rho_j(A)$ is the 2-norm of the j-th row of A, $q_2(m,k) = \sqrt{1 + F_{TP}^2(m-k)}$.

Sketch of the proof

$$P_{r}AP_{c} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ S(\bar{A}_{11}) \end{pmatrix}$$
$$= \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ S(\bar{Q}_{11}) \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}$$
(20)

where

$$\begin{array}{rcl} \bar{Q}_{21}\bar{Q}_{11}^{-1} & = & \bar{A}_{21}\bar{A}_{11}^{-1}, \\ S(\bar{A}_{11}) & = & S(\bar{Q}_{11})R_{22} = \bar{Q}_{22}^{-T}R_{22}. \end{array}$$

Sketch of the proof (contd)

$$\bar{A}_{11} = \bar{Q}_{11}R_{11},$$
 (21)

$$S(\bar{A}_{11}) = S(\bar{Q}_{11})R_{22} = \bar{Q}_{22}^{-T}R_{22}.$$
 (22)

We obtain

$$\sigma_i(A) \geq \sigma_i(\bar{A}_{11}) \geq \sigma_{min}(\bar{Q}_{11})\sigma_i(R_{11}) \geq \frac{1}{q_1(n,k)q_2(m,k)}\sigma_i(A),$$

We also have that

$$\sigma_{k+j}(A) \leq \sigma_j(S(\bar{Q}_{11})) = \sigma_j(S(\bar{Q}_{11})R_{22}) \leq ||S(\bar{Q}_{11})||_2 \sigma_j(R_{22}) \\
\leq q_1(n,k)q_2(m,k)\sigma_{k+j}(A),$$

where
$$q_1(n,k) = \sqrt{1 + F_{TP}^2(n-k)}$$
, $q_2(m,k) = \sqrt{1 + F_{TP}^2(m-k)}$.

LU_CRTP factorization - bounds if rank = k

Given A of size $m \times n$, one step of LU_CRTP computes the decomposition

$$\bar{A} = P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{Q}_{21} \bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ S(\bar{A}_{11}) \end{pmatrix}$$
(23)

where \bar{A}_{11} is of size $k \times k$ and

43 of 73

$$S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12} = \bar{A}_{22} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{A}_{12}. \tag{24}$$

It satisfies the following properties:

$$\rho_{I}(\bar{A}_{21}\bar{A}_{11}^{-1}) = \rho_{I}(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP}, \tag{25}$$

$$||S(\bar{A}_{11})||_{max} \leq \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^2(m-k)\sigma_k(A)})$$

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(A_{11}))}{\sigma_{k+i}(A)} \leq q(m, n, k), \tag{26}$$

for any
$$1 \le l \le m - k$$
, $1 \le i \le k$, and $1 \le j \le \min(m, n) - k$, $q(m, n, k) = \sqrt{(1 + F_{TP}^2(n - k))(1 + F_{TP}^2(m - k))}$.

LU_CRTP factorization - bounds if rank = K = Tk

Consider T block steps of LU_CRTP factorization

$$P_{r}AP_{c} = \begin{pmatrix} I & & & & & \\ L_{21} & I & & & & \\ \vdots & \vdots & \ddots & & & \\ L_{T1} & L_{T2} & \dots & I & \\ L_{T+1,1} & L_{T+1,2} & \dots & L_{T+1,T} & I \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & \dots & U_{1T} & U_{1,T+1} \\ & U_{22} & \dots & U_{2T} & U_{2,T+1} \\ & & \ddots & \vdots & \vdots \\ & & & U_{TT} & U_{T,T+1} \\ & & & & U_{T+1,T+1} \end{pmatrix} (2)$$

where U_{tt} is $k \times k$ for $1 \le t \le T$, and $U_{T+1,T+1}$ is $(m-Tk) \times (n-Tk)$. Then:

$$\rho_{I}(L_{i+1,j}) \leq F_{TP},
||U_{K}||_{max} \leq \min \left((1 + F_{TP}\sqrt{k})^{K/k} ||A||_{max}, q_{2}(m,k)q(m,n,k)^{K/k-1} \sigma_{K}(A) \right),$$

for any
$$1 \le l \le k$$
. $q_2(m, k) = \sqrt{1 + F_{TP}^2(m - k)}$, and $q(m, n, k) = \sqrt{(1 + F_{TP}^2(n - k))(1 + F_{TP}^2(m - k))}$.

LU_CRTP factorization - bounds if rank = K = Tk

Consider T = K/k block steps of our LU_CRTP factorization

$$P_{r}AP_{c} = \begin{pmatrix} I & & & & & \\ L_{21} & I & & & & \\ \vdots & \vdots & \ddots & & & \\ L_{T1} & L_{T2} & \dots & I & \\ L_{T+1,1} & L_{T+1,2} & \dots & L_{T+1,T} & I \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & \dots & U_{1T} & U_{1,T+1} \\ & U_{22} & \dots & U_{2T} & U_{2,T+1} \\ & & \ddots & \vdots & \vdots \\ & & & U_{TT} & U_{T,T+1} \\ & & & & U_{T+1,T+1} \end{pmatrix} (2)$$

where U_{tt} is $k \times k$ for $1 \le t \le T$, and $U_{T+1,T+1}$ is $(m-Tk) \times (n-Tk)$. Then:

$$\frac{1}{\prod_{v=0}^{t-2} q(m-vk, n-vk, k)} \leq \frac{\sigma_{(t-1)k+i}(A)}{\sigma_{i}(U_{tt})} \leq q(m-(t-1)k, n-(t-1)k, k),$$

$$1 \leq \frac{\sigma_{j}(U_{T+1, T+1})}{\sigma_{K+j}(A)} \leq \prod_{v=0}^{K/k-1} q(m-vk, n-vk, k),$$

for any $1 \le i \le k$, $1 \le t \le T$, and $1 \le j \le \min(m, n) - K$. Here $q_2(m, k) = \sqrt{1 + F_{TP}^2(m - k)}$, and $q(m, n, k) = \sqrt{(1 + F_{TP}^2(n - k))(1 + F_{TP}^2(m - k))}$.

Arithmetic complexity - arbitrary sparse matrices

- Let d_i be the number of nonzeros in column i of A, $nnz(A) = \sum_{i=1}^n d_i$.
- A is permuted such that $d_1 \leq \ldots \leq d_n$.
- $A = [A_{00}, ..., A_{n/k,0}]$ is partitioned into n/k blocks of columns.

At first step of TP:

■ Pick k cols from $A_1 = [A_{00}, A_{10}]$ $nnz(A_1) \le 2k \sum_{i=1}^{2k} d_i,$ $flops_{QR}(A_1) \le 8k^2 \sum_{i=1}^{2k} d_i.$

At the second step of TP:

Pick k cols from A_2 $nnz(A_2) \le 2k \sum_{i=k+1}^{3k} d_i$ $flops_{QR}(A_2) \le 8k^2 \sum_{i=k+1}^{3k} d_i$

Bounds attained when:

$$A = \begin{bmatrix} * & 0 & & 0 \\ \vdots & \vdots & & \vdots \\ * & 0 & & 0 \\ 0 & * & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & * & & 0 \\ & & \ddots & & \vdots \\ 0 & * & & 0 \\ & & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & & * & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & * & \vdots \end{bmatrix}$$

Arithmetic complexity - arbitrary sparse matrices (2)

$$\begin{array}{ll} \mathit{nnz}_{\mathit{max}}(\mathit{TP}_{\mathit{FT}}) & \leq & 4d_nk^2 \\ \mathit{nnz}_{\mathit{total}}(\mathit{TP}_{\mathit{FT}}) & \leq & 2k \left(\sum_{i=1}^{2k} d_i + \sum_{i=k+1}^{3k} d_i + \ldots + \sum_{i=n-2k+1}^{n} d_i\right) \leq \\ & \leq & 4k \sum_{i=1}^{n} d_i = 4\mathit{nnz}(A)k, \\ \mathit{flops}(\mathit{TP}_{\mathit{FT}}) & \leq & 16\mathit{nnz}(A)k^2, \end{array}$$

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure
$$G(A^TA)$$
 is an $n^{1/2}$ - separable graph $flops(TP_{FT}) \leq 16nnz(A)k^2$ $flops(TP_{FT}) \leq O(nnz(A)k^{3/2})$ $flops(TP_{BT}) \leq 8\frac{nnz(A)}{P}k^2\log\frac{n}{k}$ $flops(TP_{BT}) \leq O(\frac{nnz(A)}{P}k^{3/2}\log\frac{n}{k})$

Randomized algorithm by Clarkson and Woodruff, STOC'13

- Given $n \times n$ matrix A, it computes LDW^{T} , where D is $k \times k$ such that with failure probability 1/10 $||A LDW^{T}||_{F} \le (1 + \epsilon)||A A_{k}||_{F}$, A_{k} is best rank-k approximation.
- The cost of this algorithm i

$$flops \leq O(nnz(A)) + nk^2 \epsilon^{-4} log^{O(1)} (nk^2 \epsilon^{-4})$$

Tournament pivoting is faster if $\epsilon \le \frac{1}{(nnz(A)/n)^{1/4}}$ or if $\epsilon = 0.1$ and $nnz(A)/n \le 10^4$.

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure
$$G(A^TA)$$
 is an $n^{1/2}$ - separable graph $flops(TP_{FT}) \leq 16nnz(A)k^2$ $flops(TP_{BT}) \leq 0(nnz(A)k^{3/2})$ $flops(TP_{BT}) \leq 8\frac{nnz(A)}{D}k^2\log\frac{n}{L}$ $flops(TP_{BT}) \leq O(\frac{nnz(A)}{D}k^{3/2}\log\frac{n}{L})$

Randomized algorithm by Clarkson and Woodruff, STOC'13

- Given $n \times n$ matrix A, it computes LDW^T , where D is $k \times k$ such that with failure probability 1/10 $||A LDW^T||_F \le (1 + \epsilon)||A A_k||_F$, A_k is best rank-k approximation.
- The cost of this algorithm is

$$flops \leq O(nnz(A)) + nk^2 \epsilon^{-4} log^{O(1)}(nk^2 \epsilon^{-4})$$

Tournament pivoting is faster if $\epsilon \leq \frac{1}{(nnz(A)/n)^{1/4}}$ or if $\epsilon = 0.1$ and $nnz(A)/n \leq 10^4$.

Plan

Low rank matrix approximation

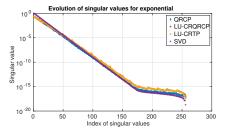
Rank revealing QR factorization

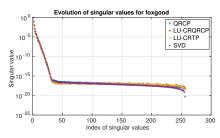
LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

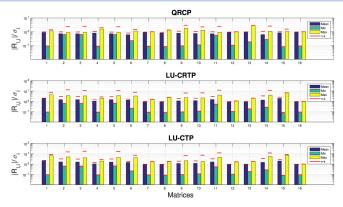
Numerical results





- Left: exponent exponential Distribution, $\sigma_1 = 1$, $\sigma_i = \alpha^{i-1}$ (i = 2, ..., n), $\alpha = 10^{-1/11}$ [Bischof, 1991]
- Right: foxgood Severely ill-posed test problem of the 1st kind Fredholm integral equation used by Fox and Goodwin

Numerical results



- Here k = 16 and the factorization is truncated at K = 128 (bars) or K = 240 (red lines).
- LU_CTP: Column tournament pivoting + partial pivoting
- lacksquare All singular values smaller than machine precision, ϵ , are replaced by $\epsilon.$
- The number along x-axis represents the index of test matrices.

Results for image of size 919×707

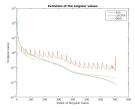
Original image

Rank-38 approx, LUPP

Rank-38 approx, SVD

Rank-38 approx, LU_CRTP

Singular value distribution

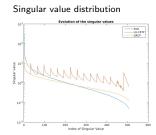


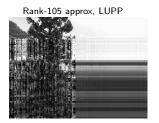
Rank-75 approx, LU_CRTP

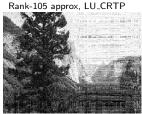
Results for image of size 691×505

Original image

Rank-105 approx, SVD







Comparing nnz in the factors L, U versus Q, R

Name/size	Nnz	Rank K	Nnz QRCP/	Nnz LU_CRTP/		
	A(:,1:K)		Nnz LU_CRTP	Nnz LUPP		
gemat11	1232	128	2.1	2.2		
4929	4895	512	3.3	2.6		
	9583	1024	11.5	3.2		
wang3	896	128	3.0	2.1		
26064	3536	512	2.9	2.1		
	7120	1024	2.9	1.2		
Rfdevice	633	128	10.0	1.1		
74104	2255	512	82.6	0.9		
	4681	1024	207.2	0.0		
Parab_fem	896	128	_	0.5		
525825	3584	512	_	0.3		
	7168	1024	_	0.2		
Mac_econ	384	128	_	0.3		
206500	1535	512	_	0.3		
	5970	1024	_	0.2		

Performance results

Selection of 256 columns by tournament pivoting

- Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: dimension at leaves on 32 procs

■ Parab_fem: 528825 × 528825 528825 × 16432

■ Mac_econ: 206500 × 206500 206500 × 6453

	Time Time leaves		Number of MPI processes							
	2k cols	32procs	16	32	64	128	256	512	1024	
		SPQR + dGEQP3								
Parab_fem	0.26	0.26 + 1129	46.7	24.5	13.7	8.4	5.9	4.8	4.4	
Mac_econ	0.46	25.4 + 510	132.7	86.3	111.4	59.6	27.2	_		

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Randomized algorithms for low rank approximation

Randomized algorithms - main idea

- Construct a low dimensional subspace that captures the action of *A*.
- Restrict A to the subspace and compute a standard QR or SVD factorization.

Obtained as follows:

1. Compute an approximate basis for the range of A ($m \times n$) find Q ($m \times k$) with orthonormal columns and approximate A by the projection of its columns onto the space spanned by Q:

$$A \approx QQ^T A$$

2. Use Q to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Why a random projection works

Johnson-Lindenstrauss Lemma

For any $0 < \epsilon < 1$, and any set of vectors $x_1, ..., x_n$ in \mathbb{R}^m , let $k \ge 4(\epsilon^2/2 - \epsilon^3/3)^{-1} ln(n)$. Let F be a random $k \times m$ orthogonal matrix multiplied by $\sqrt{m/k}$. Then with probability at 1/n, for all 1 <= i, j <= n

$$(1-\epsilon)||x_i-x_j||^2 <= ||F(x_i-x_j)||^2 <= (1+\epsilon)||x_i-x_j||^2$$

- Any m-vector can be embedded in $k = O(\log(n)/\epsilon^2)$ dimensions while incurring a distortion of at most $1 \pm \epsilon$ between all pairs of m-vectors.
- JL relies on F being uniformly distributed random orthonormal matrix.
- Such an F can be obtained by computing the QR factorization of an $m \times k$ matrix of i.i.d. N(0,1) random variables.

Source: Theorem 2.1 and proof in S. Dasgupta, A. Gupta, 2003, *An Elementary Proof of a Theorem of Johnson and Lindenstrauss*

Typical randomized truncated SVD

Algorithm

Input: $m \times n$ matrix A, desired rank k, l = p + k exponent q.

- 1. Sample an $n \times I$ test matrix G with independent mean-zero, unit-variance Gaussian entries.
- 2. Compute $Y = (AA^T)^q AG$ /* Y is expected to span the column space of A */
- 3. Construct $Q \in \mathbb{R}^{m \times l}$ with columns forming an orthonormal basis for the range of Y.
- 4. Compute $B = Q^T A$
- 5. Compute the SVD of $B = \hat{U} \Sigma V^T$

Return the approximation $\tilde{A}_k = Q\hat{U} \cdot \Sigma \cdot V^T$

Randomized truncated SVD (q = 0)

The best approximation is when Q equals the first k+p left singular vectors of A. Given $A=U\Sigma V^T$,

$$QQ^{T}A = U(1:m,1:k+p)\Sigma(1:k+p,1:k+p)(V(1:n,1:k+p))$$

||A-QQ^{T}A||₂ = \sigma_{k+p+1}

Theorem 1.1 from Halko et al. If G is chosen to be i.i.d. N(0,1), $k, p \ge 2$, q = 1, then the expectation with respect to the random matrix G is

$$\mathbb{E}(||A - QQ^TA||_2) \leq \left(1 + \frac{4\sqrt{k+p}}{p-1}\sqrt{\min(m,n)}\right)\sigma_{k+1}(A)$$

and the probability that the error satisfies

$$||A - QQ^TA||_2 \le \left(1 + 11\sqrt{k+p} \cdot \sqrt{\min(m,n)}\right)\sigma_{k+1}(A)$$

is at least $1 - 6/p^p$.

For p = 6, the probability becomes .99.

Randomized truncated SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same hypotheses as Theorem 1.1 from Halko et al.,

$$\mathbb{E}(||A - QQ^TA||_2) \leq \left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1}(A) + \frac{e\sqrt{k+p}}{p}\left(\sum_{j=k+1}^n \sigma_j^2(A)\right)^{1/2}$$

- Fast decay of singular values: If $\left(\sum_{j>k}\sigma_j^2(A)\right)^{1/2} \approx \sigma_{k+1}$ then the approximation should be accurate.
- Slow decay of singular values: If $\left(\sum_{j>k}\sigma_j^2(A)\right)^{1/2}\approx \sqrt{n-k}\sigma_{k+1}$ and n large, then the approximation might not be accurate.

Source: G. Martinsson's talk

Power iteration $q \ge 1$

The matrix $(AA^T)^qA$ has a faster decay in its singular values:

- has the same left singular vectors as A
- its singular values are:

$$\sigma_j((AA^T)^q A) = (\sigma_j(A))^{2q+1}$$

Cost of randomized truncated SVD

- Randomized SVD requires 2q + 1 passes over the matrix.
- The last 3 steps of the algorithms cost:
 - (2) Compute $Y = (AA^T)^q AG$: $2(2q+1) \cdot nnz(A) \cdot (k+p)$
 - (3) Compute QR of Y: $2m(k+p)^2$
 - (4) Compute $B = Q^T A$: $2nnz(A) \cdot (k + p)$
 - (5) Compute SVD of *B*: $O(n(k+p)^2)$
- If $nnz(A)/m \ge k + p$ and q = 1, then (2) and (4) dominate (3).
- To be faster than deterministic approaches, the cost of (2) and (4) need to be reduced.

Fast Johnson-Lindenstrauss transform

Find sparse or structured G such that computing AG is cheap, e.g. a subsampled random Fourier trasnform (SRFT),

$$G = \sqrt{\frac{n}{k+p}}D \times F \times S$$
, where

- D is $n \times n$ diagonal with entries uniformly distributed on unit circle in \mathbb{C}
- F is $n \times n$ discrete Fourier transform, $F_{jk} = \frac{1}{\sqrt{n}} e^{-2\pi i (j-1)(k-1)/n}$
- S is $n \times (k + p)$ random subset of the columns of the identity (draws k + p columns at random from DF).

Computational cost

- (2) Compute AG in $O(mn\log(n))$ or $O(mn\log(k+p))$ via a subsampled FFT
- (4) Compute $B = Q^T A$ still expensive ! can be reduced by row sampling References: Ailon and Chazelle (2006), Liberty, Rokhlin, Tygert and Woolfe (2006).

Summary of computation cost

Dense matrix A of size $m \times n$

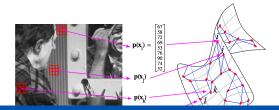
- QR with column pivoting: 4mnk
- Randomized SVD with a Gaussian matrix: O(mnk)
- Randomized SVD with an SRFT: $O(mn \log(k))$

Results from image processing (from Halko et al)

- A matrix A of size 9025×9025 arising from a diffusion geometry approach.
- A is a graph Lapacian on the manifold of 3×3 patches.
- 95×95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095 .
- Vector $x^{(i)} \in \mathbb{R}^9$ gives the intensities of the pixels in a 3 × 3 neighborhood of pixel *i*.
- W reflects similarities between patches, $\sigma = 50$ reflects the level of sensitivity,

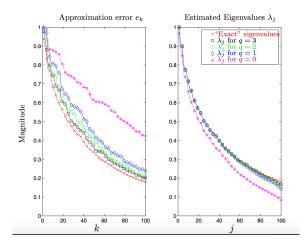
$$w_{ij} = exp\{-||x^{(i)} - x^{(j)}||^2/\sigma^2\},$$

■ Sparsify W, compute dominant eigenvectors of $A = D^{-1/2}WD^{-1/2}$.



Experimental results (from Halko et al)

- Approximation error : $||A QQ^TA||_2$
- Estimated eigenvalues for k = 100



Clarksson and Woodruff, STOC 2013

- Based on randomized sparse embedding
- Let S, of size $poly(k/\epsilon) \times n$ be formed such that each column has one non-zero, ± 1 , randomly chosen

$$S = \left(\begin{array}{cccccc} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{array}\right)$$

■ Given A of size $n \times n$ and rank k, for certain $poly(k/\epsilon)$, with probability at least 9/10, the column space of A is preserved, that is for all $x \in \mathbb{R}^n$,

$$||SAx||_2 = (1 \pm \epsilon)||Ax||_2$$

• SA can be computed in nnz(A) time

Source: Woodruff's talk, STOC 2013

Clarksson and Woodruff, STOC 2013

Main idea

Let A be an $n \times n$ matrix S be an $v \times n$ sparse embedding matrix, $v = \Theta(\epsilon^{-4}k^2\log^6(k/\epsilon))$ R an $t \times n$ sparse embedding matrix, $t = O(k\epsilon^{-1}\log(k/\epsilon))$

$$A' = AR^{T}(SAR^{T})^{-1}SA$$

- Extract low rank approximation from A'
- More details in Theorem 47 from STOC 2013
- Theorem 47 relies on S and R being the product of a sparse embedding and a SRHT matrix

Clarkson and Woodruff, STOC 2013

Given $n \times n$ matrix A, it computes LDW^T , where D is $k \times k$ such that with failure probability 1/10

$$||A - LDW^{\dagger}||_F \le (1 + \epsilon)||A - A_k||_F$$
, A_k is best rank-k approximation.

$$flops \le O(nnz(A)) + (nk^2\epsilon^{-4} + k^3\epsilon^{-5})log^{O(1)}(nk^2\epsilon^{-4} + k^3\epsilon^{-5})$$

More details on CA deterministic algorithms

- [Demmel et al., 2015] Communication avoiding rank revealing QR factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J. Matrix Analysis and Applications, 2015.
- Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, with S. Cayrols and J. Demmel, Inria TR 8910.

References (1)

Bischof, C. H. (1991).

A parallel QR factorization algorithm with controlled local pivoting. SIAM J. Sci. Stat. Comput., 12:36–57.

Businger, P. A. and Golub, G. H. (1965).

Linear least squares solutions by Householder transformations. Numer. Math., 7:269–276.

Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).

Communication-avoiding rank-revealing qr decomposition.

SIAM Journal on Matrix Analysis and its Applications, 36(1):55–89.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. Psychometrika. 1:211–218.

Eisenstat, S. C. and Ipsen, I. C. F. (1995).

Relative perturbation techniques for singular value problems. *SIAM J. Numer. Anal.*, 32(6):1972–1988.

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869.

Hansen, P. C. (2007).

Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. $Numerical\ Algorithms,\ (46):189-194.$

Results used in the proofs

Interlacing property of singular values [Golub, Van Loan, 4th edition, page 487]

Let $A = [a_1 | \dots | a_n]$ be a column partitioning of an $m \times n$ matrix with

Let $A = [a_1| \dots |a_n]$ be a column partitioning of an $m \times n$ matrix with $m \ge n$. If $A_r = [a_1| \dots |a_r]$, then for r = 1 : n - 1

$$\sigma_1(A_{r+1}) \geq \sigma_1(A_r) \geq \sigma_2(A_{r+1}) \geq \ldots \geq \sigma_r(A_{r+1}) \geq \sigma_r(A_r) \geq \sigma_{r+1}(A_{r+1}).$$

Given $n \times n$ matrix B and $n \times k$ matrix C, then ([Eisenstat and Ipsen, 1995], p. 1977)

$$\sigma_{min}(B)\sigma_j(C) \leq \sigma_j(BC) \leq \sigma_{max}(B)\sigma_j(C), j=1,\ldots,k.$$