Sparse linear solvers: iterative methods and preconditioning

L. Grigori

ALPINES INRIA and LJLL, UPMC

March 2017

Sparse linear solvers

Sparse matrices and graphs Classes of linear solvers

Krylov subspace methods Conjugate gradient method

Iterative solvers that reduce communication

CA solvers based on s-step methods Enlarged Krylov methods

Sparse linear solvers

Sparse matrices and graphs Classes of linear solvers

Krylov subspace methods

Iterative solvers that reduce communication

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- A 1M-by-1M submatrix of the web connectivity graph, constructed from an archive at the Stanford WebBase.

Figure : Nonzero structure of the matrix

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure : Nonzero structure of the matrix Figure : Its undirected graph Examples from Tim Davis's Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

5 of 45

Sparse matrices and graphs

Semiconductor simulation matrix from Steve Hamm, Motorola, Inc. circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix

Figure : Its undirected graph

Examples from Tim Davis's Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse linear solvers

Direct methods of factorization

- For solving Ax = b, least squares problems
 - \Box Cholesky, LU, QR, LDL^{T} factorizations
- Limited by fill-in/memory consumption and scalability

Iterative solvers

- For solving Ax = b, least squares, $Ax = \lambda x$, SVD
- When only multiplying A by a vector is possible
- Limited by accuracy/convergence

Hybrid methods

As domain decomposition methods

Sparse linear solvers

Krylov subspace methods Conjugate gradient method

Iterative solvers that reduce communication

Krylov subspace methods

Solve Ax = b by finding a sequence $x_1, x_2, ..., x_k$ that minimizes some measure of error over the corresponding spaces

$$x_0 + \mathcal{K}_i(A, r_0), \quad i = 1, ..., k$$

They are defined by two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathcal{K}_k(A, r_0)$
- 2. Petrov-Galerkin condition: $r_k \perp \mathscr{L}_k$

$$\iff (r_k)^t y = 0, \ \forall \ y \in \mathscr{L}_k$$

where

- x₀ is the initial iterate, r₀ is the initial residual,
- $\mathcal{K}_k(A, r_0) = span\{r_0, Ar_0, A^2r_0, ..., A^{k-1}r_0\}$ is the Krylov subspace of dimension k,
- \mathscr{L}_k is a well-defined subspace of dimension k.

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

- Russian mathematician Alexei Krylov writes first paper, 1931.
- Lanczos introduced an algorithm to generate an orthogonal basis for such a subspace when the matrix is symmetric.
- Hestenes and Stiefel introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to matrix computations (Householder), Quicksort, Fast multipole, FFT.

Choosing a Krylov method

All methods (GMRES, CGS,CG...) depend on SpMV (or variations...) See www.netlib.org/templates/Templates.html for details

Source slide: J. Demmel

11 of 45

Conjugate gradient (Hestenes, Stieffel, 52)

A Krylov projection method for SPD matrices where L_k = K_k(A, r₀).
 Finds x* = A⁻¹b by minimizing the quadratic function

$$\phi(x) = \frac{1}{2}(x)^t A x - b^t x$$

$$\nabla \phi(x) = A x - b = 0$$

After j iterations of CG,

$$||x^* - x_j||_A \le 2||x - x_0||_A \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^j,$$

where x_0 is starting vector, $||x||_A = \sqrt{x^T A x}$ and $\kappa(A) = |\lambda_{max}(A)|/|\lambda_{min}(A)|$.

Conjugate gradient

Computes A-orthogonal search directions by conjugation of the residuals

$$\begin{cases} p_1 = r_0 = -\nabla \phi(x_0) \\ p_k = r_{k-1} + \beta_k p_{k-1} \end{cases}$$
(1)

At k-th iteration,

$$x_k = x_{k-1} + \alpha_k p_k = \operatorname{argmin}_{x \in x_0 + \mathcal{K}_k(A, r_0)} \phi(x)$$

where α_k is the step along p_k .

CG algorithm obtained by imposing the orthogonality and the conjugacy conditions

$$r_k^T r_i = 0$$
, for all $i \neq k$,
 $p_k^T A p_i = 0$, for all $i \neq k$.

Algorithm 1 The CG Algorithm

1:	$r_0 = b - Ax_0$, $\rho_0 = r_0 _2^2$, $p_1 = r_0$, $k = 1$
2:	while ($\sqrt{ ho_k} > \epsilon b _2$ and $k < k_{max}$) do
3:	if $(k \neq 1)$ then
4:	$\beta_k = (r_{k-1}, r_{k-1})/(r_{k-2}, r_{k-2})$
5:	$p_k = r_{k-1} + \beta_k p_{k-1}$
6:	end if
7:	$\alpha_k = (r_{k-1}, r_{k-1})/(Ap_k, p_k)$
8:	$x_k = x_{k-1} + \alpha_k \boldsymbol{p}_k$
9:	$r_k = r_{k-1} - \alpha_k A p_k$
10:	$\rho_k = \mathbf{r}_k _2^2$
11:	k = k + 1
12:	end while

Challenge in getting efficient and scalable solvers

• A Krylov solver finds x_{k+1} from $x_0 + \mathcal{K}_{k+1}(A, r_0)$ where

$$\mathcal{K}_{k+1}(A, r_0) = span\{r_0, Ar_0, A^2r_0, ..., A^kr_0\},\$$

such that the Petrov-Galerkin condition $b - Ax_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors [x₁,...,x_k]
- Finds best solution x_{k+1} as linear combination of [x₁,...,x_k]

Typically, each iteration requires

- Sparse matrix vector product → point-to-point communication
- Dot products for orthogonalization
 → global communication

Challenge in getting efficient and scalable solvers

• A Krylov solver finds x_{k+1} from $x_0 + \mathcal{K}_{k+1}(A, r_0)$ where

$$\mathcal{K}_{k+1}(A, r_0) = span\{r_0, Ar_0, A^2r_0, ..., A^kr_0\},\$$

such that the Petrov-Galerkin condition $b - Ax_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors [x₁,...,x_k]
- Finds best solution x_{k+1} as linear combination of [x₁,...,x_k]

Typically, each iteration requires

- Sparse matrix vector product → point-to-point communication
- Dot products for orthogonalization
 → global communication

- Improve the performance of sparse matrix-vector product.
- Improve the performance of collective communication.
- Change numerics reformulate or introduce Krylov subspace algorithms to:
 - reduce communication,
 - □ increase arithmetic intensity compute sparse matrix-set of vectors product.
- Use preconditioners to decrease the number of iterations till convergence.

Sparse linear solvers

Krylov subspace methods

Iterative solvers that reduce communication

CA solvers based on s-step methods Enlarged Krylov methods

Iterative solvers that reduce communication

Communication avoiding based on s-step methods

- Unroll k iterations, orthogonalize every k steps.
- A factor of O(k) less messages and bandwidth in sequential.
- A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

- Decrease the number of iterations to decrease the number of global communication.
- Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

To avoid communication, unroll k-steps, ghost necessary data,

- generate a set of vectors W for the Krylov subspace $\mathcal{K}_k(A, r_0)$,
- (A)-orthogonalize the vectors using a communication avoiding orthogonalization algorithm (e.g. TSQR(W)).

References

- Van Rosendale '83, Walker '85, Chronopoulous and Gear '89, Erhel '93, Toledo '95, Bai, Hu, Reichel '91 (Newton basis), Joubert and Carey '92 (Chebyshev basis), etc.
- Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers, preconditioners)

CA-GMRES

GMRES: find x in $span\{b, Ab, ..., A^kb\}$ minimizing $||Ax - b||_2$ Cost of k steps of standard GMRES vs new GMRES

```
Standard GMRES
 for i=1 to k
  w = A \cdot v(i-1)
  MGS(w, v(0),...,v(i-1))
  update v(i), H
 endfor
 solve LSQ problem with H
Sequential: #words moved =
      O(k·nnz) from SpMV
    + O(k^2 \cdot n) from MGS
Parallel: #messages =
      O(k) from SpMV
    + O(k^2 \cdot \log p) from MGS
```

Source of following 11 slides: J. Demmel

CA-GMRES

GMRES: find x in span{ $b, Ab, ..., A^k b$ } minimizing $||Ax - b||_2$ Cost of k steps of standard GMRES vs new GMRES

```
Standard GMRES
for i=1 to k
w = A · v(i-1)
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H
```

```
Sequential: \#words\_moved = O(k \cdot nnz) from SpMV
+ O(k^{2} \cdot n) from MGS
Parallel: \#messages = O(k) from SpMV
+ O(k^{2} \cdot \log p) from MGS
```

Source of following 11 slides: J. Demmel

Communication-avoiding GMRES W = [v, Av, A²v, ..., A^kv] [Q,R] = TSQR(W) ... "Tall Skinny QR" Build H from R, solve LSQ problem

Sequential: #words_moved = O(nnz) from SpMV + O(k·n) from TSQR Parallel: #messages = O(1) from computing W + O(log p) from TSQR

- Generate the set of vectors {Ax, A²x,...A^kx} in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3

- Generate the set of vectors $\{Ax, A^2x, \dots, A^kx\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3

- Generate the set of vectors {Ax, A²x, ..., A^kx} in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3

- Generate the set of vectors $\{Ax, A^2x, \dots, A^kx\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3

- Generate the set of vectors $\{Ax, A^2x, \dots, A^kx\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3

- Generate the set of vectors $\{Ax, A^2x, \dots, A^kx\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, n = 32, k = 3
- Shaded triangles represent data computed redundantly

Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with modest surface-to-volume ratio.

- Parallel: block-row partitioning based on (hyper)graph partitioning,
- Sequential: top-to-bottom processing based on traveling salesman problem.

Challenges and research opportunities

Length of the basis k is limited by

- Size of ghost data
- Loss of precision

Preconditioners: lots of recent work

- Highly decoupled preconditioners: Block Jacobi
- Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)
- CA-ILU0, deflation (Carson, Demmel, Knight)

Performance

- Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]
- Used both optimizations:
 - sequential (moving data from DRAM to chip)
 - parallel (moving data between cores on chip)

Performance (contd)

Enlarged Krylov methods [Grigori et al., 2014a]

- Partition the matrix into t domains
- split the residual r_{k-1} into t vectors corresponding to the t domains,

generate t new basis vectors, obtain an enlarged Krylov subspace

$$\mathscr{K}_{t,k}(A, r_0) = span\{T_s(r_0), AT_s(r_0), A^2T_s(r_0), ..., A^{k-1}T_s(r_0)\}$$

• search for the solution of the system Ax = b in $\mathcal{K}_{t,k}(A, r_0)$

Properties of enlarged Krylov subspaces

• The Krylov subspace $\mathcal{K}_k(A, r_0)$ is a subset of the enlarged one

$$\mathcal{K}_k(A, r_0) \subset \mathscr{K}_{t,k}(A, r_0)$$

■ For all *k* < *k*_{max} the dimensions of *ℋ*_{t,k} and *ℋ*_{t,k+1} are strictly increasing by some number *i*_k and *i*_{k+1} respectively, where

 $t\geq i_k\geq i_{k+1}\geq 1.$

• The enlarged subspaces are increasing subspaces, yet bounded.

 $\mathscr{K}_{t,1}(A, r_0) \subsetneq ... \subsetneq \mathscr{K}_{t,k_{max}-1}(A, r_0) \subsetneq \mathscr{K}_{t,k_{max}}(A, r_0) = \mathscr{K}_{t,k_{max}+q}(A, r_0), \forall q > 0$

Properties of enlarged Krylov subspaces: stagnation

• Let
$$\mathcal{K}_{p_{max}} = \mathcal{K}_{p_{max}+q}$$
 and $\mathscr{K}_{t,k_{max}} = \mathscr{K}_{t,k_{max}+q}$ for $q > 0$. Then
 $k_{max} \leq p_{max}$.

• The solution of the system Ax = b belongs to the subspace $x_0 + \mathscr{K}_{t,k_{max}}$.

Defined by the subspace $\mathscr{K}_{t,k}$ and the following two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathscr{K}_{t,k}$
- 2. Orthogonality condition: $r_k \perp \mathscr{K}_{t,k}$
- At each iteration, the new approximate solution x_k is found by minimizing φ(x) = ½(x)^tAx − b^tx over x₀ + ℋ_{t,k}:

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathscr{K}_{t,k}(A, r_0)\}$$

Convergence analysis

Given

- A is an SPD matrix, x^* is the solution of Ax = b
- $||\overline{e}_k||_A = ||x^* \overline{x}_k||_A$ is the k^{th} error of CG
- $||e_k||_A = ||x^* x_k||_A$ is the k^{th} error of enlarged methods
- CG converges in \overline{K} iterations

Result

Enlarged Krylov methods converge in K iterations, where $K \leq \overline{K} \leq n$.

$$||e_k||_A = ||x^* - x_k||_A \le ||\overline{e}_k||_A$$

LRE-CG: Long Recurrence Enlarged CG

- Use the entire basis to approximate the new solution
- Q_k = [W₁W₂...W_k] is an n × tk matrix containing the basis vectors of *K*_{t,k}
- At each kth iteration, approximate the solution as

$$x_k = x_{k-1} + Q_k \alpha_k$$

such that

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathscr{K}_{t,k}\}$$

• Either x_k is the solution, or t new basis vectors and the new approximation $x_{k+1} = x_k + Q_{k+1}\alpha_{k+1}$ are computed.

SRE-CG: Short recurrence enlarged CG

- By A-orthonormalizing the basis vectors $Q_k = [W_1, W_2, \dots, W_k]$, we obtain a short recurrence enlarged CG.
- Given that $Q_{k-1}^t r_{k-1} = 0$, we obtain the recurrence relations:

$$\alpha_k = W_k^t r_{k-1},$$

$$x_k = x_{k-1} + W_k \alpha_k,$$

$$r_k = r_{k-1} - A W_k \alpha_k,$$

• W_k needs to be A-orthormalized only against W_{k-1} and W_{k-2} .

SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm

Input: A, b, x_0 , ϵ , k_{max} **Output:** x_k , the approximate solution of the system Ax = b1: $r_0 = b - Ax_0$, $\rho_0 = ||r_0||_2^2$, k = 12: while $(\sqrt{\rho_{k-1}} > \epsilon ||b||_2$ and $k < k_{max}$) do if k = 1 then 3: Let $W_1 = T(r_0)$, A-orthonormalise its vectors 4: 5: else 6: Let $W_{k} = AW_{k-1}$ A-orthonormalise W_k against W_{k-1} and W_{k-2} if k > 27: A-orthonormalise the vectors of W_k 8: end if g٠ $\alpha_k = (W_k^t r_{k-1})$ 10: $x_k = x_{k-1} + W_k \alpha_k$ 11: 12: $r_{k} = r_{k-1} - AW_{k}\alpha_{k}$ 13: $\rho_k = ||r_k||_2^2$ k = k+114. 153 ...end while

Cost of \bar{k} iterations of CG is:

Total Flops	\approx	$2nnz\cdot ar{k}/t + 4nar{k}/t$
# words	\approx	$O(\bar{k})$ (from SpMV)
# messages	\approx	$2 \text{ k} \log(t) + O(k)$ (from SpMV)

Cost of k iterations of SRE-CG is:

Total Flops	\approx	$2nnz \cdot k + O(ntk)$
# words	\approx	$kt^2 log(t) + O(k)$ (from SpMV)
# messages	\approx	klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster ($k = \bar{k}/t$) \Rightarrow SRE-CG has a factor of \bar{k}/k less global communication. Block Krylov methods (O'Leary 1980): solve systems with multiple rhs

$$AX = B$$
,

by searching for an approximate solution $X_k \in X_0 + \mathscr{K}_k(A, R_0)$,

$$\mathscr{K}_k(A, R_0) = block - span\{R_0, AR_0, A^2R_0, ..., A^{k-1}R_0\}.$$

 coopCG (Bhaya et al, 2012): solve one system by starting with t different initial guesses, equivalent to solving

$$AX = b * ones(1, t)$$

where X_0 is a block-vector containing the *t* initial guesses.

Algorithm 3 Classic CG	Algorithm 4 ECG(Odir)
1: $r_0 = b - Ax_0$ 2: $p_1 = \frac{r_0}{\sqrt{r_t^4 Ar_0}}$ 3: while $ r_{k-1} _2 > \varepsilon b _2$ do 4: $\alpha_k = p_k^t r_{k-1}$ 5: $x_k = x_{k-1} + p_k \alpha_k$ 6: $r_k = r_{k-1} - Ap_k \alpha_k$ 7: $p_{k+1} = r_k - p_k (p_k^t Ar_k)$ 8: $p_{k+1} = \frac{\rho_{k+1}}{\sqrt{\rho_{k+1}^t A\rho_{k+1}}}$ 9: end while	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EK-CG based on Orthodir (Lanczos formula) [Ashby et al., 1990]

• More stable than Orthomin [OLeary., 1980],

$$P_{k+1} = R_k - P_k(P_k^t A R_k).$$

Algorithm 5 Classic CG

1: $r_0 = b - Ax_0$ 2: $p_1 = \frac{r_0}{\sqrt{r_0^t Ar_0}}$ 3: while $||r_{k-1}||_2 > \varepsilon ||b||_2$ do 4: $\alpha_k = p_k^t r_{k-1}$ 5: $x_k = x_{k-1} + p_k \alpha_k$ 6: $r_k = r_{k-1} - Ap_k \alpha_k$ 7: $p_{k+1} = r_k - p_k (p_k^t Ar_k)$ 8: $p_{k+1} = \frac{p_{k+1}}{\sqrt{p_{k+1}^t Ap_{k+1}}}$ 9: end while

messages per iteration O(1) from SpMV + O(log P) from dot prod + norm

messages per iteration
O(1) from SpMV +
O(log P) from BCGS + A-ortho

Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

$$\begin{aligned} -\operatorname{div}(\kappa(x)\nabla u) &= f \text{ in } \Omega \\ u &= 0 \text{ on } \partial\Omega_D \\ \frac{\partial u}{\partial n} &= 0 \text{ on } \partial\Omega_N \end{aligned}$$

discretized on a 3D grid , where

 $\kappa(x) = \begin{cases} 10^3 * ([10 * x_2] + 1), if [10 * x_i] = 0 \mod(2), i = 1, 2, 3, \\ 1, & otherwise. \end{cases}$

3D Anisotropic layers - ANI3D

- Ω divided into 10 layers parallel to z = 0, of size 0.1
- in each layer, the coefficients are constants (κ_x equal to 1, 10² or 10⁴, $\kappa_y = 10\kappa_x$, $\kappa_z = 1000\kappa_x$).

Test cases (contd)

Linear elasticity 3D problem

$$\begin{aligned} \operatorname{div}(\sigma(u)) + f &= 0 & \text{on } \Omega, \\ u &= u_D & \text{on } \partial \Omega_D, \\ \sigma(u) \cdot n &= g & \text{on } \partial \Omega_N, \end{aligned}$$

Figure : The distribution of Young's modulus

- $u \in \mathbb{R}^d$ is the unknown displacement field, f is some body force.
- Young's modulus *E* and Poisson's ratio ν take two values, $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.25)$, and $(E_2, \nu_2) = (10^7, 0.45)$.
- Cauchy stress tensor $\sigma(u)$ is given by Hooke's law, defined by E and ν .

Matrices

Generated with FreeFem++.

matrix	n(A)	nnz(A)	Description
SKY3D	8000	53600	Skyscraper
ANI3D	8000	53600	Anisotropic Layers
ELAST3D	11253	373647	Linear Elasticity P1 FE

Convergence of different CG versions

	CG		SRE	E-CG
Pa	lter Err		lter	Err
SK	Y3D			
8	902	1E-5	211	1E-5
16	902	1E-5	119	9E-6
32	902	1E-5	43	4E-6
A	ANI3D			
2	4187	4e-5	875	7e-5
4	4146	4e-5	673	8e-5
8	4146	4e-5	449	1e-4
16	4146	4e-5	253	2e-4
32	4146	4e-5	148	2e-4
64	4146	4e-5	92	1e-4
ELAST3D				
2	1098	1e-7	652	1e-7
4	1098	1e-7	445	1e-7
8	1098	1e-7	321	8e-8
16	1098	1e-7	238	4e-8
32	1098	1e-7	168	5e-8
64	1098	1e-7	116	1e-8

Comparison with PETSc

- \blacksquare Run on MeSU (UPMC cluster) \rightarrow 24 cpus by node
- Compiled with Intel Suite 15, Petsc 3.7.4
- Results from [Grigori and Tissot, 2017]

Detailed profiling (source slide O. Tissot)

- Ela400 on 96 cores
- Orthodir ECG(12)
- Around 50% of the time spent in applying the preconditioner
- Around 30% of the time spent in Sparse Matrix-Matrix

Method	iter	time (s)	time/iter
ECG(12)	318	1.3	$4.1 imes10^{-3}$
PETSc	5198	3.3	$6.3 imes10^{-4}$

Table : Comparison with PETSc PCG. PETSc iteration is 6.5 times faster than ECG(12) one. MKL-Pardiso has a strange behaviour with multiple rhs n our experiments: 1 rhs solve is 3 times faster than 2 rhs solve.

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods. SIAM Journal on Numerical Analysis, 27(6):1542–1568.

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers. In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.

Grigori, L. and Moufawad, S. (2014).

Communication avoiding incomplete LUO factorization. SIAM Journal on Scientific Computing, in press. Also as INRIA TR 8266.

Grigori, L., Moufawad, S., and Nataf, F. (2014a).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication. Technical Report 8597, INRIA.

Grigori, L., Nataf, F., and Yousef, S. (2014b).

Robust algebraic Schur complement preconditioners based on low rank corrections. Research Report RR-8557.

A parallel two-level preconditioner for cosmic microwave background map-making. Proceedings of the ACM/IEEE Supercomputing SC12 Conference.

Grigori, L. and Tissot, O. (2017).

Reducing the communication and computational costs of enlarged krylov subspaces conjugate gradient. Research Report RR-9023.

References (2)

OLeary., D. P. (1980).

The block conjugate gradient algorithm and related methods. *Linear Algebra and Its Applications*, 29:293–322.

Szydlarski, M., Grigori, L., and Stompor, R. (2014).

Accelerating the cosmic microwave background map-making problem through preconditioning. Astronomy and Astrophysics Journal, Section Numerical methods and codes, 572.

Tang, J. M., Nabben, R., Vuik, C., and Erlangga, Y. A. (2009).

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput., 39:340–370.