Sparse linear solvers: iterative methods and

preconditioning

L. Grigori

ALPINES
INRIA and LJLL, UPMC

March 2017

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods
Conjugate gradient method

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

2 of 45

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Sparse matrices and graphs

= Most matrices arising from real applications are sparse.
= A 1M-by-1M submatrix of the web connectivity graph, constructed from
an archive at the Stanford WebBase.

Connectivity Malrix (stanford edus)

0 1 2 3 4 5
nz = 3105536 t]

Figure : Nonzero structure of the matrix

4 of 45

Sparse matrices and graphs

Most matrices arising from real applications are sparse.
GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

E

3
e BT et o Y

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis's Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

5 of 45

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix Figure : lts undirected graph

Examples from Tim Davis's Sparse Matrix Collection,

http://wuw.cise.ufl.edu/research/sparse/matrices/

6 of 45 .

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse linear solvers

Direct methods of factorization

= For solving Ax = b, least squares problems
01 Cholesky, LU, QR, LDLT factorizations

® Limited by fill-in/memory consumption and scalability

Iterative solvers

® For solving Ax = b, least squares, Ax = Ax, SVD
= When only multiplying A by a vector is possible
® Limited by accuracy/convergence

Hybrid methods

As domain decomposition methods

Plan

Krylov subspace methods
Conjugate gradient method

Krylov subspace methods

Solve Ax = b by finding a sequence xi, xa, ..., Xx that minimizes some
measure of error over the corresponding spaces

Xo + ’C,‘(A, ro), i=1..k

They are defined by two conditions:

1. Subspace condition: xx € xo + K (A, ro)
2. Petrov-Galerkin condition: ry L %

= (n)'y=0, Vye

where
B xp is the initial iterate, rg is the initial residual,
B K (A, ro) = span{ro, Arg, A%y, ..., Ak~Trg} is the Krylov subspace of dimension k,

B % is a well-defined subspace of dimension k.

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:

Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

= Russian mathematician Alexei Krylov writes first paper, 1931.

® Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

m Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to
matrix computations (Householder), Quicksort, Fast multipole, FFT.

Choosing a Krylov method

Is storage Is A well- Is A well- Largest and smallest
expensive? conditioned? conditioned? eipenvalues known?
No Yes No Yes Yes No No Yes
Try GMRES | | Try CGS or Try QMR Try CG on Try MINRES Try CG Try CG with
Bi-CGStab or normal equations | | ora method for Chebyshev Accel.
GMRES(k) nonsymmetric A

All methods (GMRES, CGS,CG...) depend on SpMV (or variations...)
See www.netlib.org/templates/Templates.html for details

Source slide: J. Demmel

11 of 45

Conjugate gradient (Hestenes, Stieffel, 52)

m A Krylov projection method for SPD matrices where % = Kk(A, ro).
= Finds x* = A~1b by minimizing the quadratic function

d(x) = %(X)tAX — b'x
Vo(x) = Ax—b=0

= After j iterations of CG,

J
k(A)—1
x* —xilla < 2||x — x S|,
I =xla < 2| o||A< H(A)H)

where xg is starting vector, ||x||a = VxTAx and k(A) = |Amax(A)|/|Amin(A)].

12 of 45

Conjugate gradient

= Computes A-orthogonal search directions by conjugation of the residuals

pr = rn=—¢() (1)
Pk = frk—1+ Brpk—1
® At k-th iteration,
Xk = Xk—1-+ QPr = argminye, ic, (Ar)P(X)

where ay is the step along py.

= CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rlri = 0,foralli#k,
o) Ap; 0, for all i # k.

CG algorithm

Algorithm 1 The CG Algorithm
Lo =b—Ax, po = |Ino|l3, pr=r0, k=1
2: while (/px > €||b||2 and k < kpmax) do
if (k # 1) then
Bk = (rk—1, re—1)/(rk—2, rk—2)
Pk = rk—1 + BrPr—1
end if
ak = (rk—1, re—1)/(Apx, Px)
Xk = Xk—1 + Ok Pk
Mk = rk—1 — ouApx
0 pe= Il 3
11: k=k+1
12: end while

w

© ® N O R

14 of 45

Challenge in getting efficient and scalable solvers

m A Krylov solver finds xxt1 from xo + KCii1(A, ro) where
Kii1(A, 1) = span{ry, Ary, A’rg, ..., Aro},

such that the Petrov-Galerkin condition b — Axx41 L Zky1 is satisfied.
® Does a sequence of k SpMVs to get vectors [xi, ..., Xk]

® Finds best solution xx1 as linear combination of [x, ..., xk]

/—Overal\ runtime

H Communication
£
o
10" e p—)
-Computation
11t with Mag /
o | 1t with May
10 Ny,
PTx V,'+ (MPI-AllReduce)
PxV,
100 E'xVy
32 64 128 256 512 1024

Number of MPI processes
Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

Challenge in getting efficient and scalable solvers

m A Krylov solver finds xxt1 from xo + KCii1(A, ro) where
Kii1(A, r) = span{ry, Arg, Arg, ..., Ao},

such that the Petrov-Galerkin condition b — Axx41 L Zky1 is satisfied.
® Does a sequence of k SpMVs to get vectors [xi, ..., Xk]

® Finds best solution xx1 as linear combination of [x, ..., xk]

Typically, each iteration requires ol ,
/—Overal\ runtime.
= Sparse matrix vector product o commuricaon

Time [s]

— point-to-point communication ot i _
11t with Mg Computation
= Dot products for orthogonalization 02 | b e
. . ;xxv‘ll‘ +(MPI-AIReduce) ~ -=--
— global communication BRIEMY

32 64 128 256 512 1024
Number of MPI processes
Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

Ways to improve performance

Improve the performance of sparse matrix-vector product.

Improve the performance of collective communication.

Change numerics - reformulate or introduce Krylov subspace algorithms
to:

O reduce communication,
0 increase arithmetic intensity - compute sparse matrix-set of vectors product.

® Use preconditioners to decrease the number of iterations till convergence.

Plan

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

[terative solvers that reduce communication

Communication avoiding based on s-step methods

u Unroll k iterations, orthogonalize every k steps.
m A factor of O(k) less messages and bandwidth in sequential.
m A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

® Decrease the number of iterations to decrease the number of global
communication.

® Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,
m generate a set of vectors W for the Krylov subspace ICx(A, ro),

u (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References

B Van Rosendale '83, Walker '85, Chronopoulous and Gear '89, Erhel '93, Toledo '95, Bai, Hu,
Reichel '91 (Newton basis), Joubert and Carey '92 (Chebyshev basis), etc.

B Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize
communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers,
preconditioners)

CA-GMRES

GMRES: find x in span{b, Ab, ..., AXb} minimizing ||Ax — b||2
Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
fori=1tok
w=A"-v(i-1)
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H

Sequential: #words_moved =
O(k-nnz) from SpMV
+ 0(k?-n) from MGS
Parallel: #messages =
0O(k) from SpMV
+0(k? - log p) from MGS

Source of following 11 slides: J. Demmel

CA-GMRES

GMRES: find x in span{b, Ab, ..., AXb} minimizing ||Ax — b||2
Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
fori=1tok
w=A"-v(i-1)
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H

Sequential: #words_moved =
O(k-nnz) from SpMV
+ 0(k?-n) from MGS
Parallel: #messages =
0O(k) from SpMV
+0(k? - log p) from MGS

Source of following 11 slides: J. Demmel

Communication-avoiding GMRES
W = [v, Ay, Ay, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

Sequential: #words_moved =
0O(nnz) from SpMV
+ O(k-n) from TSQR
Parallel: #messages =
0O(1) from computing W
+ O(log p) from TSQR

20 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Ax} in parallel
= Ghost necessary data to avoid communication
® Example: A tridiagonal, n=32, k=3

* * *
* * * *
k * * * *
AX: =
* * * * *

AS.X....OOOO..IOOO e 06 0 0 0 0 0 06 06 0 06 0 0 0 0 0 0
AZ.XOOO.00.0.0OOOAOOOOOOOOOOOOOO..

Ax ® o © 00 0 e
X o A © 0 0 0. 0.0 000000 000060006060 00020000
123 4.. ... 32

21 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A2x, ... Akx} in parallel
= Ghost necessary data to avoid communication
® Example: A tridiagonal, n=32, k=3

* ok * *
* k% * *
* ok % * *

AX: =
* ok * * *

AS.XOOQOOO..OO.

AZ.X o 06 0 0 0 0 0 0 0 0 0
A'X o 0 o 06 0 0 0 0 0 0
X ® A e 06 0 0 0 0 o

123 4.. ... 32

21 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
= Ghost necessary data to avoid communication
= Example: A tridiagonal, n =32, k=3

*
* *
*
*

* ¥ ¥ *x

AS.XO.OOO..

AZ.XOOOOOCI

A.XOOOOOOO

21 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
= Ghost necessary data to avoid communication
® Example: A tridiagonal, n =32, k=3

* ok * *
* ok ok * *
Ax — * ok % * [| *
* * * *
A3.x. .POrOO(:}....O.Pl;o.c.z...l.O.....Oﬁl....

AZ.XOOQOOOOOQO00000000000.000000000.
A.XOOOOOOOOOOll....ll........ll....

X.l.........I.O....O....OO..I.O..

123 4. ...32

21 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... AFx} in parallel
= Ghost necessary data to avoid communication
= Example: A tridiagonal, n =32, k=3

Ax — * ok %

* X X ¥
* X ¥ *x

21 of 45

Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
® Ghost necessary data to avoid communication

® Example: A tridiagonal, n =32, k=3

® Shaded triangles represent data computed redundantly

* ok * *
* ok ok * *

*
Ax — * ok * | | *
* * *

1 23 4..

.32

21 of 45

Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

m Parallel: block-row partitioning based on (hyper)graph partitioning,

= Sequential: top-to-bottom processing based on traveling salesman
problem.

22 of 45

Challenges and research opportunities

Length of the basis k is limited by

Matrix diag-cond-1.000000e~11: rel. 2-nm resid.
T T T T

B Size of ghost data

Nonrestarted GMRES

v Restarted GMRES(192)
O Monomial-GMRES(24,8)
A Newton-GMRES(24.8)

B Loss of precision B
Preconditioners: lots of recent work

B Highly decoupled preconditioners:
Block Jacobi

B Hierarchical, semiseparable matrices
(M. Hoemmen, J. Demmel)

B CA-ILUO, deflation (Carson, Demmel, <t
Knight)

Log10 of 2-norm relative residual
!
&

A different polynomial basis does converge:
[pi(A)X,....p(A)x]

L n L n L L L L
100 200 300 400 500 600 700 800 900 1000
Inner iteration number

Performance

m Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]

® Used both optimizations:
U sequential (moving data from DRAM to chip)
U parallel (moving data between cores on chip)

7

»

3 6%

5

O

i

S,

8

c3

]

gz

5 1

a

o=

s v - & $ % v % E & ¢
Tz 2 8 % B 8 8 g g s
> 2 3 a4 ® 8 9 §
o o s o =5 g2 X
v © E 5 © g E
- « 9 14

©
£
Matrix

24 of 45

Performance (contd)

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

4.5]
. Matrix powers
1 S kernel .
3 TSQR
oo 35 Block Gram- |
2 — Schmidt
ho Small dense
KX 301 B crations i
5_%‘ o Sparse matrix-
gic* €3 vector product
St — Modified
5‘% Gram-Schmidt
=
=&
«s
=

xenon cant 1d3pt cfd shipsec
Sparse matrix name

25 of 45

Enlarged Krylov methods [Grigori et al., 2014a]

® Partition the matrix into t domains
= split the residual re_; into t vectors corresponding to the t domains,

* 0 0
ooa X
gugu s B e .
o .
o o g o * 0 0
=] g 0 * 0
o hg
nuagn o . . .
=] DDE =]
- ro—T(n)= |, . 0
= R = = |
=]
s f2fs
=]
o :bn =® 0 0 *
o Dq:n e
=] DDD .
| o o .

® generate t new basis vectors, obtain an enlarged Krylov subspace
Hik(Ar) = span{T(ro), ATs(ro), A>To(r0), ..., AK"1 T ()}

m search for the solution of the system Ax = b in J#; «(A, 1)

Properties of enlarged Krylov subspaces

m The Krylov subspace KCx(A, rp) is a subset of the enlarged one
Kk(A, r) C Kt k(A no)

® For all k < kmax the dimensions of J#; and J#; y41 are stricltly
increasing by some number i, and ix1 respectively, where

t> ik = k1 > 1.
® The enlarged subspaces are increasing subspaces, yet bounded.

He1(Ar0) S oo © ki —1(A 10) © ok (A 10) = Kt kppetq(A; 10), Vg > 0

Properties of enlarged Krylov subspaces: stagnation

w o let ICp,, = Kp,oitq and i k.. = Hi koitq for g > 0. Then

Pmax Kmax

kmax S pmax-

® The solution of the system Ax = b belongs to the subspace xg + J#; «

max *

Enlarged Krylov subspace methods based on CG

Defined by the subspace J7; x and the following two conditions:
1. Subspace condition: xx € xp + % «
2. Orthogonality condition: r, L J;

= At each iteration, the new approximate solution xi is found by
minimizing ¢(x) = 3(x)*Ax — b'x over xo + 4 k:

d(xk) = min{P(x),Vx € xo + H¢ k(A r0) }

Convergence analysis

Given

®m A is an SPD matrix, x* is the solution of Ax = b
= |[&k||a = ||x* — Xk||a is the k" error of CG
" |lex||a = ||[x* — xk||a is the k™ error of enlarged methods

» CG converges in K iterations

Result _
Enlarged Krylov methods converge in K iterations, where K < K < n.

llexlla = [Ix* — xk|[a < |[Ekl|a

30 of 45

LRE-CG: Long Recurrence Enlarged CG

u Use the entire basis to approximate the new solution
B Qx = [WiWs ... W] is an n x tk matrix containing the basis vectors of

Hr K
= At each k'™ iteration, approximate the solution as

X = Xpk—1 + Qrauk

such that
P(xk) = min{¢p(x),Vx € xo + Hz x}

® Either x, is the solution, or t new basis vectors and the new
approximation xx41 = xx + Qxr10441 are computed.

SRE-CG: Short recurrence enlarged CG

m By A-orthonormalizing the basis vectors Qx = [Wy, Wh, ... W], we
obtain a short recurrence enlarged CG.

m Given that Qf_;rk—1 = 0, we obtain the recurrence relations:

t
ar = Wing,
Xe = Xg—1+ Wiy,
e = k-1 — AWy,

= Wy needs to be A-orthormalized only against Wy _; and Wy _,.

SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm
Input: A, b, x0, €, Kmax
Output: xi, the approximate solution of the system Ax = b

Lo =b—Ax, po = |Ino|f3, k=1

2: while (\/px_1 > €||b||2 and k < kpax) do

3: if k==1 then

4: Let Wi = T(ro), A-orthonormalise its vectors
5: else

6: Let W, = AW, _4

7: A-orthonormalise W against Wj_1 and Wy_, if k > 2
8: A-orthonormalise the vectors of W

9: end if

10: [(Wktrk_l)

11: X = Xk—1 + Wioy

12: re = r—1 — AWy

13: pr = |l 13

14: = k+1

SRE-CG: cost on t processors

Cost of k iterations of CG is:

Total Flops =
7 words ~
7# messages =

Cost of k iterations of SRE-CG

Total Flops =
words R
messages =

2nnz - k/t + 4nk/t
O(k) (from SpMV)
2 k log(t) + O(k) (from SpMV)

is:

2nnz - k + O(ntk)
kt?log(t) + O(k) (from SpMV)
klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster (k = k/t)
= SRE-CG has a factor of k/k less global communication.

Related work

m Block Krylov methods (O'Leary 1980): solve systems with multiple rhs
AX = B,
by searching for an approximate solution Xy € Xy + #k(A, Ro),
(A, Ry) = block — span{Ry, ARy, A*Ry, ..., A 1 Ro}.

m coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses, equivalent to solving

AX = bx* ones(1,t)

where Xj is a block-vector containing the t initial guesses.

35 of 45

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 3 Classic CG Algorithm 4 ECG(Odir)
Ln=>b-Ax 1: Ry = T(b— Axo)
2. p = - 2: P; = A-orthonormalize(Ry)

(e R ¢)
3: while [|re_1||2 > €||b||2 do 3: while || Zi:% R, ||2 < e||b]|2 do
4: Q= pirk—1 4: ak = P Rk—1 >t Xt
5: Xk = Xk—1 + Prk 5: X = Xi—1 + Pra >nXt
6: re = re—1 — Apro 6: Rk = Rk—1 — APy . >nXt
T Pt = 1k — pic(PiAnK) T Py = AP — P(PEAAP) —
8 P — T Pr_1(P,_1AAPy) >nxt

’ et VPl APrt1 8: Py11 = A-orthonormalize(Py1)
9: end while 9: end while)
10: x =370, X,E') >nx1

® EK-CG based on Orthodir (Lanczos formula) [Ashby et al., 1990]

® More stable than Orthomin [OLeary., 1980],
Piy1 = R — Pk(PﬁARk).

36 of 45

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 5 Classic CG

Algorithm 6 ECG(Odir)

1: nn = b— AXO
2: =
pP1 = 'Aro

3: while ||rc_1|]2 > €||b||> do

4: Q= P;t{l’k71

5: Xk = Xk—1 + Prk

6: Mk = rg—1— APkOték

7: Pr+1 = rk — Pr(PiArk)

8: Prp1 = ——E—
VPP

9: end while

1: Ro = T(b— Ax)
2: Py = A-orthonormalize(Ry)
3: while || ¢, RV|[2 < ¢[|b]]2 do

4. = Pikal >tXt

5: Xk = Xk—1 + Pray >nXt

6: Rk = Rk—1 — APray >nXt

7 Pk+1 = APk — Pk(PEAAPk) —
Pi_1(Pf_;AAPy) >nXt

8: Pit1 = A-orthonormalize(Px1)

9: end while)

10: x =3¢, X,E') >nx1

messages per iteration
O(1) from SpMV +
O(log P) from dot prod + norm

7 messages per iteration
O(1) from SpMV +
O(log P) from BCGS + A-ortho

Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

—div(k(x)Vu) = finQ
u = 0on0Qp
%4 _ 0onon
% = on N

discretized on a 3D grid , where

i(x) 1 otherwise.

{ 103 % ([10 # xo] + 1), i [10 * x;] = Omod(2), i = 1,2,3,
3D Anisotropic layers - ANI3D

® Q) divided into 10 layers parallel to z = 0, of size 0.1

® in each layer, the coefficients are constants (kx equal to 1, 102 or 10%,
Ky = 10Ky, Kk, = 1000£y).

38 of 45

Test cases (contd)

Linear elasticity 3D problem

div(o(u))+f =0 on Q,
u =up on 9Qp,
o(u)-n = on Iy, Figure : The distribution

of Young's modulus

» uy € RY is the unknown displacement field, f is some body force.

® Young's modulus E and Poisson’s ratio v take two values,
(E1,v1) = (2-10'%,0.25), and (E,,1») = (107,0.45).
m Cauchy stress tensor o(u) is given by Hooke's law, defined by E and v.

39 of 45

Test cases

Matrices
Generated with FreeFem++-.

matrix n(A) | nnz(A) | Description

SKY3D 8000 | 53600 | Skyscraper

ANI3D 8000 | 53600 | Anisotropic Layers
ELAST3D | 11253 | 373647 | Linear Elasticity P1 FE

Convergence of different CG versions

CG SRE-CG
Pa lter | Err lter | Err
SKY3D
8 902 1E-5 211 1E-5
16 902 1E-5 119 | 9E-6
32 902 1E-5 43 4E-6
ANI3D
2 4187 | 4e-5 875 Te-5
4 4146 | 4e-5 673 8e-5
8 4146 4e-5 449 le-4
16 4146 | 4e-5 253 2e-4
32 4146 | 4e-5 148 2e-4
64 4146 4e-5 92 le-4
ELAST3D
2 1098 | le-7 652 | le-7
4 1098 le-7 445 le-7
8 1098 | le-7 321 | 8e-8
16 1098 le-7 238 | 4e-8
32 1098 | le-7 168 | 5e-8
64 1098 le-7 116 le-8

41 of 45

Comparison with PETSc

= Run on MeSU (UPMC cluster) — 24 cpus by node
= Compiled with Intel Suite 15, Petsc 3.7.4
® Results from [Grigori and Tissot, 2017]

Ela400, nproc = 48 Ela400

W ECG(12)
Emm PETSc |7

Time (s)

PETSc ECG(4) ECG(8) ECG(12) ECG(16) ECG(20) ECG(24) nproc

42 of 45

Detailed profiling (source slide O. Tissot)

= Ela400 on 96 cores

® Orthodir ECG(12)

= Around 50% of the time spent in
applying the preconditioner

= Around 30% of the time spent in
Sparse Matrix-Matrix

Method iter time (s) time/iter

CHOoaanEnm

beta = (AP)"t*Z

R = R - AP*alpha

A*P

A-CholQR

gamma = (AP_prev)"~t*Z
Z =Z - P_previgamma
Z = M™-1*AP

Z =Z - P*beta

X = X + P*alpha

alpha = P~t*R

ECG(12) 318 13 41x10°
PETSc 5198 33 63 x 10~

Table : Comparison with PETSc PCG.
PETSc iteration is 6.5 times faster than
ECG(12) one. MKL-Pardiso has a
strange behaviour with multiple rhs n
our experiments: 1 rhs solve is 3 times
faster than 2 rhs solve.

References

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods.
SIAM Journal on Numerical Analysis, 27(6):1542-1568

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference

Grigori, L. and Moufawad, S. (2014).

C ication avoiding i e LUO factorization.

SIAM Journal on Scientific Computing, in press.

Also as INRIA TR 8266.

Grigori, L., Moufawad, S., and Nataf, F. (2014a).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

Grigori, L., Nataf, F., and Yousef, S. (2014b).

Robust algebraic Schur complement preconditioners based on low rank corrections.
Research Report RR-8557

Grigori, L., Stompor, R., and Szydlarski, M. (2012).

A parallel two-level preconditioner for cosmic microwave background map-making.
Proceedings of the ACM/IEEE Supercomputing SC12 Conference

e P P P 1 N 7 N P

Grigori, L. and Tissot, O. (2017).

Reducing the communication and computational costs of enlarged krylov subspaces conjugate gradient.
Research Report RR-9023

44 of 45

References

@ OLeary., D. P. (1980).

The block conjugate gradient algorithm and related methods.
Linear Algebra and Its Applications, 29:293-322
Ia Szydlarski, M., Grigori, L., and Stompor, R. (2014).
Accelerating the cosmic microwave background map-making problem through preconditioning.

Astronomy and Astrophysics Journal, Section Numerical methods and codes, 572.

@ Tang, J. M., Nabben, R., Vuik, C., and Erlangga, Y. A. (2009).

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
J. Sci. Comput., 39:340-370.

	Sparse linear solvers
	Sparse matrices and graphs
	Classes of linear solvers

	Krylov subspace methods
	Conjugate gradient method

	Iterative solvers that reduce communication
	CA solvers based on s-step methods
	Enlarged Krylov methods

