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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.
� A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure : Nonzero structure of the matrix
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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.

� GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse matrices and graphs

� Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse linear solvers

Direct methods of factorization
� For solving Ax = b, least squares problems

� Cholesky, LU, QR, LDLT factorizations

� Limited by fill-in/memory consumption and scalability

Iterative solvers

� For solving Ax = b, least squares, Ax = λx , SVD

� When only multiplying A by a vector is possible

� Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods
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Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0)

2. Petrov-Galerkin condition: rk ⊥ Lk

⇐⇒ (rk)ty = 0, ∀ y ∈ Lk

where
� x0 is the initial iterate, r0 is the initial residual,

� Kk (A, r0) = span{r0,Ar0,A2r0, ...,Ak−1r0} is the Krylov subspace of dimension k,

� Lk is a well-defined subspace of dimension k.
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One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

� Russian mathematician Alexei Krylov writes first paper, 1931.

� Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

� Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to

matrix computations (Householder), Quicksort, Fast multipole, FFT.
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Choosing a Krylov method

Source slide: J. Demmel
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Conjugate gradient (Hestenes, Stieffel, 52)

� A Krylov projection method for SPD matrices where Lk = Kk(A, r0).

� Finds x∗ = A−1b by minimizing the quadratic function

φ(x) =
1

2
(x)tAx − btx

5φ(x) = Ax − b = 0

� After j iterations of CG,

||x∗ − xj ||A ≤ 2||x − x0||A

(√
κ(A)− 1√
κ(A) + 1

)j

,

where x0 is starting vector, ||x ||A =
√
xTAx and κ(A) = |λmax(A)|/|λmin(A)|.
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Conjugate gradient

� Computes A-orthogonal search directions by conjugation of the residuals{
p1 = r0 = −5 φ(x0)
pk = rk−1 + βkpk−1

(1)

� At k-th iteration,

xk = xk−1 + αkpk = argminx∈x0+Kk (A,r0)φ(x)

where αk is the step along pk .

� CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rTk ri = 0, for all i 6= k ,

pTk Api = 0, for all i 6= k .
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CG algorithm

Algorithm 1 The CG Algorithm

1: r0 = b − Ax0, ρ0 = ||r0||22, p1 = r0, k = 1
2: while (

√
ρk > ε||b||2 and k < kmax ) do

3: if (k 6= 1) then
4: βk = (rk−1, rk−1)/(rk−2, rk−2)
5: pk = rk−1 + βkpk−1

6: end if
7: αk = (rk−1, rk−1)/(Apk , pk)
8: xk = xk−1 + αkpk
9: rk = rk−1 − αkApk

10: ρk = ||rk ||22
11: k = k + 1
12: end while
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Challenge in getting efficient and scalable solvers

� A Krylov solver finds xk+1 from x0 +Kk+1(A, r0) where

Kk+1(A, r0) = span{r0,Ar0,A2r0, ...,A
k r0},

such that the Petrov-Galerkin condition b − Axk+1 ⊥ Lk+1 is satisfied.

� Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

� Finds best solution xk+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication
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Ways to improve performance

� Improve the performance of sparse matrix-vector product.

� Improve the performance of collective communication.

� Change numerics - reformulate or introduce Krylov subspace algorithms
to:
� reduce communication,
� increase arithmetic intensity - compute sparse matrix-set of vectors product.

� Use preconditioners to decrease the number of iterations till convergence.
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Iterative solvers that reduce communication

Communication avoiding based on s-step methods

� Unroll k iterations, orthogonalize every k steps.

� A factor of O(k) less messages and bandwidth in sequential.

� A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

� Decrease the number of iterations to decrease the number of global
communication.

� Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

18 of 45



CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

� generate a set of vectors W for the Krylov subspace Kk(A, r0),

� (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References
� Van Rosendale ’83, Walker ’85, Chronopoulous and Gear ’89, Erhel ’93, Toledo ’95, Bai, Hu,

Reichel ’91 (Newton basis), Joubert and Carey ’92 (Chebyshev basis), etc.

� Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize
communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers,
preconditioners)
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CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel
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CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel
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Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...
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Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

� Parallel: block-row partitioning based on (hyper)graph partitioning,

� Sequential: top-to-bottom processing based on traveling salesman
problem.
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Challenges and research opportunities

Length of the basis k is limited by

� Size of ghost data

� Loss of precision

Preconditioners: lots of recent work

� Highly decoupled preconditioners:
Block Jacobi

� Hierarchical, semiseparable matrices
(M. Hoemmen, J. Demmel)

� CA-ILU0, deflation (Carson, Demmel,
Knight)

!A!different!polynomial!basis!does!converge:!
        [p1(A)x,…,pk(A)x] 
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Performance

� Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]

� Used both optimizations:
� sequential (moving data from DRAM to chip)
� parallel (moving data between cores on chip)
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Performance (contd)
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Enlarged Krylov methods [Grigori et al., 2014a]

� Partition the matrix into t domains

� split the residual rk−1 into t vectors corresponding to the t domains,

r0 → T (r0) =



∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗


� generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Ts(r0),ATs(r0),A2Ts(r0), ...,Ak−1Ts(r0)}

� search for the solution of the system Ax = b in Kt,k(A, r0)
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Properties of enlarged Krylov subspaces

� The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

� For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly
increasing by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

� The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) ( ... ( Kt,kmax−1(A, r0) ( Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0
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Properties of enlarged Krylov subspaces: stagnation

� Let Kpmax = Kpmax+q and Kt,kmax = Kt,kmax+q for q > 0. Then

kmax ≤ pmax .

� The solution of the system Ax = b belongs to the subspace x0 + Kt,kmax .
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Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 + Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x)tAx − btx over x0 + Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k(A, r0)}
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Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||ek ||A = ||x∗ − xk ||A is the k th error of CG

� ||ek ||A = ||x∗ − xk ||A is the k th error of enlarged methods

� CG converges in K iterations

Result
Enlarged Krylov methods converge in K iterations, where K ≤ K ≤ n.

||ek ||A = ||x∗ − xk ||A ≤ ||ek ||A
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LRE-CG: Long Recurrence Enlarged CG

� Use the entire basis to approximate the new solution

� Qk = [W1W2 . . .Wk ] is an n × tk matrix containing the basis vectors of
Kt,k

� At each k th iteration, approximate the solution as

xk = xk−1 + Qkαk

such that
φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k}

� Either xk is the solution, or t new basis vectors and the new
approximation xk+1 = xk + Qk+1αk+1 are computed.
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SRE-CG: Short recurrence enlarged CG

� By A-orthonormalizing the basis vectors Qk = [W1,W2, . . .Wk ], we
obtain a short recurrence enlarged CG.

� Given that Qt
k−1rk−1 = 0, we obtain the recurrence relations:

αk = W t
k rk−1,

xk = xk−1 + Wkαk ,

rk = rk−1 − AWkαk ,

� Wk needs to be A-orthormalized only against Wk−1 and Wk−2.
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SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm

Input: A, b, x0, ε, kmax

Output: xk , the approximate solution of the system Ax = b
1: r0 = b − Ax0, ρ0 = ||r0||22, k = 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax ) do

3: if k==1 then
4: Let W1 = T (r0), A-orthonormalise its vectors
5: else
6: Let Wk = AWk−1

7: A-orthonormalise Wk against Wk−1 and Wk−2 if k > 2
8: A-orthonormalise the vectors of Wk

9: end if
10: αk = (W t

k rk−1)
11: xk = xk−1 + Wkαk

12: rk = rk−1 − AWkαk

13: ρk = ||rk ||22
14: k = k+1
15: end while33 of 45



SRE-CG: cost on t processors

Cost of k̄ iterations of CG is:

Total Flops ≈ 2nnz · k̄/t + 4nk̄/t
# words ≈ O(k̄) (from SpMV)

# messages ≈ 2 k log(t) + O(k) (from SpMV)

Cost of k iterations of SRE-CG is:

Total Flops ≈ 2nnz · k + O(ntk)
# words ≈ kt2log(t) + O(k) (from SpMV)

# messages ≈ klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster (k = k̄/t)
⇒ SRE-CG has a factor of k̄/k less global communication.
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Related work

� Block Krylov methods (O’Leary 1980): solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 + Kk(A,R0),

Kk(A,R0) = block − span{R0,AR0,A
2R0, ...,A

k−1R0}.

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses, equivalent to solving

AX = b ∗ ones(1, t)

where X0 is a block-vector containing the t initial guesses.
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 3 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk )

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

Algorithm 4 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk ) −
Pk−1(Pt

k−1AAPk ) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

� EK-CG based on Orthodir (Lanczos formula) [Ashby et al., 1990]

� More stable than Orthomin [OLeary., 1980],
Pk+1 = Rk − Pk(P t

kARk).
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 5 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk )

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

# messages per iteration

O(1) from SpMV +

O(log P) from dot prod + norm

Algorithm 6 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk ) −
Pk−1(Pt

k−1AAPk ) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

# messages per iteration

O(1) from SpMV +

O(log P) from BCGS + A-ortho
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Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi ] = 0mod(2), i = 1, 2, 3,
1, otherwise.

3D Anisotropic layers - ANI3D

� Ω divided into 10 layers parallel to z = 0, of size 0.1

� in each layer, the coefficients are constants (κx equal to 1, 102 or 104,
κy = 10κx , κz = 1000κx).
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Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure : The distribution
of Young’s modulus

� u ∈ Rd is the unknown displacement field, f is some body force.

� Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

� Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.
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Test cases

Matrices
Generated with FreeFem++.

matrix n(A) nnz(A) Description
SKY3D 8000 53600 Skyscraper
ANI3D 8000 53600 Anisotropic Layers
ELAST3D 11253 373647 Linear Elasticity P1 FE
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Convergence of different CG versions

CG SRE-CG
Pa Iter Err Iter Err

SKY3D
8 902 1E-5 211 1E-5

16 902 1E-5 119 9E-6
32 902 1E-5 43 4E-6

ANI3D
2 4187 4e-5 875 7e-5
4 4146 4e-5 673 8e-5
8 4146 4e-5 449 1e-4

16 4146 4e-5 253 2e-4
32 4146 4e-5 148 2e-4
64 4146 4e-5 92 1e-4

ELAST3D
2 1098 1e-7 652 1e-7
4 1098 1e-7 445 1e-7
8 1098 1e-7 321 8e-8

16 1098 1e-7 238 4e-8
32 1098 1e-7 168 5e-8
64 1098 1e-7 116 1e-8
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Comparison with PETSc

� Run on MeSU (UPMC cluster) → 24 cpus by node

� Compiled with Intel Suite 15, Petsc 3.7.4

� Results from [Grigori and Tissot, 2017]

PETSc ECG(4) ECG(8) ECG(12) ECG(16) ECG(20) ECG(24)
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Detailed profiling (source slide O. Tissot)

beta = (AP)^t*Z
R = R - AP*alpha
A*P
A-CholQR
gamma = (AP_prev)^t*Z

Z = Z - P_prev*gamma

Z = M^-1*AP
Z = Z - P*beta
X = X + P*alpha
alpha = P^t*R

� Ela400 on 96 cores

� Orthodir ECG(12)

� Around 50% of the time spent in
applying the preconditioner

� Around 30% of the time spent in
Sparse Matrix-Matrix

Method iter time (s) time/iter
ECG(12) 318 1.3 4.1× 10−3

PETSc 5198 3.3 6.3× 10−4

Table : Comparison with PETSc PCG.
PETSc iteration is 6.5 times faster than
ECG(12) one. MKL-Pardiso has a
strange behaviour with multiple rhs n
our experiments: 1 rhs solve is 3 times
faster than 2 rhs solve.
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