
Sparse linear solvers: iterative methods and
preconditioning

L. Grigori

ALPINES
INRIA and LJLL, UPMC

March 2017

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods
Conjugate gradient method

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

2 of 45

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods

Iterative solvers that reduce communication

3 of 45

Sparse matrices and graphs

� Most matrices arising from real applications are sparse.
� A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure : Nonzero structure of the matrix

4 of 45

Sparse matrices and graphs

� Most matrices arising from real applications are sparse.

� GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

5 of 45

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

� Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

6 of 45

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse linear solvers

Direct methods of factorization
� For solving Ax = b, least squares problems

� Cholesky, LU, QR, LDLT factorizations

� Limited by fill-in/memory consumption and scalability

Iterative solvers

� For solving Ax = b, least squares, Ax = λx , SVD

� When only multiplying A by a vector is possible

� Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods

7 of 45

Plan

Sparse linear solvers

Krylov subspace methods
Conjugate gradient method

Iterative solvers that reduce communication

8 of 45

Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0)

2. Petrov-Galerkin condition: rk ⊥ Lk

⇐⇒ (rk)ty = 0, ∀ y ∈ Lk

where
� x0 is the initial iterate, r0 is the initial residual,

� Kk (A, r0) = span{r0,Ar0,A2r0, ...,Ak−1r0} is the Krylov subspace of dimension k,

� Lk is a well-defined subspace of dimension k.

9 of 45

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

� Russian mathematician Alexei Krylov writes first paper, 1931.

� Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

� Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to

matrix computations (Householder), Quicksort, Fast multipole, FFT.

10 of 45

Choosing a Krylov method

Source slide: J. Demmel
11 of 45

Conjugate gradient (Hestenes, Stieffel, 52)

� A Krylov projection method for SPD matrices where Lk = Kk(A, r0).

� Finds x∗ = A−1b by minimizing the quadratic function

φ(x) =
1

2
(x)tAx − btx

5φ(x) = Ax − b = 0

� After j iterations of CG,

||x∗ − xj ||A ≤ 2||x − x0||A

(√
κ(A)− 1√
κ(A) + 1

)j

,

where x0 is starting vector, ||x ||A =
√
xTAx and κ(A) = |λmax(A)|/|λmin(A)|.

12 of 45

Conjugate gradient

� Computes A-orthogonal search directions by conjugation of the residuals{
p1 = r0 = −5 φ(x0)
pk = rk−1 + βkpk−1

(1)

� At k-th iteration,

xk = xk−1 + αkpk = argminx∈x0+Kk (A,r0)φ(x)

where αk is the step along pk .

� CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rTk ri = 0, for all i 6= k ,

pTk Api = 0, for all i 6= k .

13 of 45

CG algorithm

Algorithm 1 The CG Algorithm

1: r0 = b − Ax0, ρ0 = ||r0||22, p1 = r0, k = 1
2: while (

√
ρk > ε||b||2 and k < kmax) do

3: if (k 6= 1) then
4: βk = (rk−1, rk−1)/(rk−2, rk−2)
5: pk = rk−1 + βkpk−1

6: end if
7: αk = (rk−1, rk−1)/(Apk , pk)
8: xk = xk−1 + αkpk
9: rk = rk−1 − αkApk

10: ρk = ||rk ||22
11: k = k + 1
12: end while

14 of 45

Challenge in getting efficient and scalable solvers

� A Krylov solver finds xk+1 from x0 +Kk+1(A, r0) where

Kk+1(A, r0) = span{r0,Ar0,A2r0, ...,A
k r0},

such that the Petrov-Galerkin condition b − Axk+1 ⊥ Lk+1 is satisfied.

� Does a sequence of k SpMVs to get vectors [x1, ..., xk]

� Finds best solution xk+1 as linear combination of [x1, ..., xk]

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

15 of 45

Challenge in getting efficient and scalable solvers

� A Krylov solver finds xk+1 from x0 +Kk+1(A, r0) where

Kk+1(A, r0) = span{r0,Ar0,A2r0, ...,A
k r0},

such that the Petrov-Galerkin condition b − Axk+1 ⊥ Lk+1 is satisfied.

� Does a sequence of k SpMVs to get vectors [x1, ..., xk]

� Finds best solution xk+1 as linear combination of [x1, ..., xk]

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication

15 of 45

Ways to improve performance

� Improve the performance of sparse matrix-vector product.

� Improve the performance of collective communication.

� Change numerics - reformulate or introduce Krylov subspace algorithms
to:
� reduce communication,
� increase arithmetic intensity - compute sparse matrix-set of vectors product.

� Use preconditioners to decrease the number of iterations till convergence.

16 of 45

Plan

Sparse linear solvers

Krylov subspace methods

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

17 of 45

Iterative solvers that reduce communication

Communication avoiding based on s-step methods

� Unroll k iterations, orthogonalize every k steps.

� A factor of O(k) less messages and bandwidth in sequential.

� A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

� Decrease the number of iterations to decrease the number of global
communication.

� Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

18 of 45

CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

� generate a set of vectors W for the Krylov subspace Kk(A, r0),

� (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References
� Van Rosendale ’83, Walker ’85, Chronopoulous and Gear ’89, Erhel ’93, Toledo ’95, Bai, Hu,

Reichel ’91 (Newton basis), Joubert and Carey ’92 (Chebyshev basis), etc.

� Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize
communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers,
preconditioners)

19 of 45

CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel

20 of 45

CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel

20 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
� Ghost necessary data to avoid communication
� Example: A tridiagonal, n = 32, k = 3
� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
� Ghost necessary data to avoid communication
� Example: A tridiagonal, n = 32, k = 3
� Shaded triangles represent data computed redundantly

Ax =

∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =

∗
∗
∗
∗
...

21 of 45

Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

� Parallel: block-row partitioning based on (hyper)graph partitioning,

� Sequential: top-to-bottom processing based on traveling salesman
problem.

22 of 45

Challenges and research opportunities

Length of the basis k is limited by

� Size of ghost data

� Loss of precision

Preconditioners: lots of recent work

� Highly decoupled preconditioners:
Block Jacobi

� Hierarchical, semiseparable matrices
(M. Hoemmen, J. Demmel)

� CA-ILU0, deflation (Carson, Demmel,
Knight)

!A!different!polynomial!basis!does!converge:!
 [p1(A)x,…,pk(A)x]

23 of 45

Performance

� Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]

� Used both optimizations:
� sequential (moving data from DRAM to chip)
� parallel (moving data between cores on chip)

24 of 45

Performance (contd)

25 of 45

Enlarged Krylov methods [Grigori et al., 2014a]

� Partition the matrix into t domains

� split the residual rk−1 into t vectors corresponding to the t domains,

r0 → T (r0) =

∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗

� generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Ts(r0),ATs(r0),A2Ts(r0), ...,Ak−1Ts(r0)}

� search for the solution of the system Ax = b in Kt,k(A, r0)

26 of 45

Properties of enlarged Krylov subspaces

� The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

� For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly
increasing by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

� The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) (... (Kt,kmax−1(A, r0) (Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0

27 of 45

Properties of enlarged Krylov subspaces: stagnation

� Let Kpmax = Kpmax+q and Kt,kmax = Kt,kmax+q for q > 0. Then

kmax ≤ pmax .

� The solution of the system Ax = b belongs to the subspace x0 + Kt,kmax .

28 of 45

Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 + Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x)tAx − btx over x0 + Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k(A, r0)}

29 of 45

Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||ek ||A = ||x∗ − xk ||A is the k th error of CG

� ||ek ||A = ||x∗ − xk ||A is the k th error of enlarged methods

� CG converges in K iterations

Result
Enlarged Krylov methods converge in K iterations, where K ≤ K ≤ n.

||ek ||A = ||x∗ − xk ||A ≤ ||ek ||A

30 of 45

LRE-CG: Long Recurrence Enlarged CG

� Use the entire basis to approximate the new solution

� Qk = [W1W2 . . .Wk] is an n × tk matrix containing the basis vectors of
Kt,k

� At each k th iteration, approximate the solution as

xk = xk−1 + Qkαk

such that
φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k}

� Either xk is the solution, or t new basis vectors and the new
approximation xk+1 = xk + Qk+1αk+1 are computed.

31 of 45

SRE-CG: Short recurrence enlarged CG

� By A-orthonormalizing the basis vectors Qk = [W1,W2, . . .Wk], we
obtain a short recurrence enlarged CG.

� Given that Qt
k−1rk−1 = 0, we obtain the recurrence relations:

αk = W t
k rk−1,

xk = xk−1 + Wkαk ,

rk = rk−1 − AWkαk ,

� Wk needs to be A-orthormalized only against Wk−1 and Wk−2.

32 of 45

SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm

Input: A, b, x0, ε, kmax

Output: xk , the approximate solution of the system Ax = b
1: r0 = b − Ax0, ρ0 = ||r0||22, k = 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax) do

3: if k==1 then
4: Let W1 = T (r0), A-orthonormalise its vectors
5: else
6: Let Wk = AWk−1

7: A-orthonormalise Wk against Wk−1 and Wk−2 if k > 2
8: A-orthonormalise the vectors of Wk

9: end if
10: αk = (W t

k rk−1)
11: xk = xk−1 + Wkαk

12: rk = rk−1 − AWkαk

13: ρk = ||rk ||22
14: k = k+1
15: end while33 of 45

SRE-CG: cost on t processors

Cost of k̄ iterations of CG is:

Total Flops ≈ 2nnz · k̄/t + 4nk̄/t
words ≈ O(k̄) (from SpMV)

messages ≈ 2 k log(t) + O(k) (from SpMV)

Cost of k iterations of SRE-CG is:

Total Flops ≈ 2nnz · k + O(ntk)
words ≈ kt2log(t) + O(k) (from SpMV)

messages ≈ klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster (k = k̄/t)
⇒ SRE-CG has a factor of k̄/k less global communication.

34 of 45

Related work

� Block Krylov methods (O’Leary 1980): solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 + Kk(A,R0),

Kk(A,R0) = block − span{R0,AR0,A
2R0, ...,A

k−1R0}.

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses, equivalent to solving

AX = b ∗ ones(1, t)

where X0 is a block-vector containing the t initial guesses.

35 of 45

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 3 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk)

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

Algorithm 4 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk) −
Pk−1(Pt

k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

� EK-CG based on Orthodir (Lanczos formula) [Ashby et al., 1990]

� More stable than Orthomin [OLeary., 1980],
Pk+1 = Rk − Pk(P t

kARk).

36 of 45

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 5 Classic CG
1: r0 = b − Ax0

2: p1 =
r0√
rt
0
Ar0

3: while ||rk−1||2 > ε||b||2 do
4: αk = pt

k rk−1

5: xk = xk−1 + pkαk

6: rk = rk−1 − Apkαk

7: pk+1 = rk − pk (pt
kArk)

8: pk+1 =
pk+1√

pt
k+1

Apk+1

9: end while

messages per iteration

O(1) from SpMV +

O(log P) from dot prod + norm

Algorithm 6 ECG(Odir)
1: R0 = T (b − Ax0)
2: P1 = A-orthonormalize(R0)

3: while ||
∑t

i=1 R
(i)
k ||2 < ε||b||2 do

4: αk = Pt
kRk−1 . t × t

5: Xk = Xk−1 + Pkαk . n × t
6: Rk = Rk−1 − APkαk . n × t
7: Pk+1 = APk − Pk (Pt

kAAPk) −
Pk−1(Pt

k−1AAPk) . n × t

8: Pk+1 = A-orthonormalize(Pk+1)
9: end while

10: x =
∑t

i=1 X
(i)
k . n × 1

messages per iteration

O(1) from SpMV +

O(log P) from BCGS + A-ortho

37 of 45

Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0mod(2), i = 1, 2, 3,
1, otherwise.

3D Anisotropic layers - ANI3D

� Ω divided into 10 layers parallel to z = 0, of size 0.1

� in each layer, the coefficients are constants (κx equal to 1, 102 or 104,
κy = 10κx , κz = 1000κx).

38 of 45

Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure : The distribution
of Young’s modulus

� u ∈ Rd is the unknown displacement field, f is some body force.

� Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

� Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.

39 of 45

Test cases

Matrices
Generated with FreeFem++.

matrix n(A) nnz(A) Description
SKY3D 8000 53600 Skyscraper
ANI3D 8000 53600 Anisotropic Layers
ELAST3D 11253 373647 Linear Elasticity P1 FE

40 of 45

Convergence of different CG versions

CG SRE-CG
Pa Iter Err Iter Err

SKY3D
8 902 1E-5 211 1E-5

16 902 1E-5 119 9E-6
32 902 1E-5 43 4E-6

ANI3D
2 4187 4e-5 875 7e-5
4 4146 4e-5 673 8e-5
8 4146 4e-5 449 1e-4

16 4146 4e-5 253 2e-4
32 4146 4e-5 148 2e-4
64 4146 4e-5 92 1e-4

ELAST3D
2 1098 1e-7 652 1e-7
4 1098 1e-7 445 1e-7
8 1098 1e-7 321 8e-8

16 1098 1e-7 238 4e-8
32 1098 1e-7 168 5e-8
64 1098 1e-7 116 1e-8

41 of 45

Comparison with PETSc

� Run on MeSU (UPMC cluster) → 24 cpus by node

� Compiled with Intel Suite 15, Petsc 3.7.4

� Results from [Grigori and Tissot, 2017]

PETSc ECG(4) ECG(8) ECG(12) ECG(16) ECG(20) ECG(24)
0

1

2

3

4

5

6

7

8

T
im

e
 (

s)

Ela400, nproc = 48

24 48 96 192
nproc

0

2

4

6

8

10

12

14

T
im

e
 (

s)

Ela400

ECG(12)
PETSc

42 of 45

Detailed profiling (source slide O. Tissot)

beta = (AP)^t*Z
R = R - AP*alpha
A*P
A-CholQR
gamma = (AP_prev)^t*Z

Z = Z - P_prev*gamma

Z = M^-1*AP
Z = Z - P*beta
X = X + P*alpha
alpha = P^t*R

� Ela400 on 96 cores

� Orthodir ECG(12)

� Around 50% of the time spent in
applying the preconditioner

� Around 30% of the time spent in
Sparse Matrix-Matrix

Method iter time (s) time/iter
ECG(12) 318 1.3 4.1× 10−3

PETSc 5198 3.3 6.3× 10−4

Table : Comparison with PETSc PCG.
PETSc iteration is 6.5 times faster than
ECG(12) one. MKL-Pardiso has a
strange behaviour with multiple rhs n
our experiments: 1 rhs solve is 3 times
faster than 2 rhs solve.

43 of 45

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods.
SIAM Journal on Numerical Analysis, 27(6):1542–1568.

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.

Grigori, L. and Moufawad, S. (2014).

Communication avoiding incomplete LU0 factorization.
SIAM Journal on Scientific Computing, in press.
Also as INRIA TR 8266.

Grigori, L., Moufawad, S., and Nataf, F. (2014a).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

Grigori, L., Nataf, F., and Yousef, S. (2014b).

Robust algebraic Schur complement preconditioners based on low rank corrections.
Research Report RR-8557.

Grigori, L., Stompor, R., and Szydlarski, M. (2012).

A parallel two-level preconditioner for cosmic microwave background map-making.
Proceedings of the ACM/IEEE Supercomputing SC12 Conference.

Grigori, L. and Tissot, O. (2017).

Reducing the communication and computational costs of enlarged krylov subspaces conjugate gradient.
Research Report RR-9023.

44 of 45

References (2)

OLeary., D. P. (1980).

The block conjugate gradient algorithm and related methods.
Linear Algebra and Its Applications, 29:293–322.

Szydlarski, M., Grigori, L., and Stompor, R. (2014).

Accelerating the cosmic microwave background map-making problem through preconditioning.
Astronomy and Astrophysics Journal, Section Numerical methods and codes, 572.

Tang, J. M., Nabben, R., Vuik, C., and Erlangga, Y. A. (2009).

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
J. Sci. Comput., 39:340–370.

45 of 45

	Sparse linear solvers
	Sparse matrices and graphs
	Classes of linear solvers

	Krylov subspace methods
	Conjugate gradient method

	Iterative solvers that reduce communication
	CA solvers based on s-step methods
	Enlarged Krylov methods

