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Johnson-Lindenstrauss transform

Definition 3 from [Woodruff, 2014].
A random matrix Ω1 ∈ Rk×m is a Johnson-Lindenstrauss transform with
parameters ε, δ, n, or JLT(n, ε, δ), if with probability at least 1− δ for any
n-element subset V ⊂ Rm, for all xi , xj ∈ V , we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (1)

� If xi = xj we obtain ‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2.
� It can also be expressed as: given all vectors xi , xj ∈ V are rescaled to be

unit vectors, then for all xi , xj ∈ V we require to hold:

‖Ω1xi‖2
2 = (1± ε)‖xi‖2

2 (2)

‖Ω1(xi + xj)‖2
2 = (1± ε)‖xi + xj‖2

2 (3)

Proof that we obtain relation (4):

〈Ω1xi ,Ω1xj〉 =
(
‖Ω1(xi + xj)‖2

2 − ‖Ω1xi‖2
2 − ‖Ω1xj‖2

2

)
/2

=
(
(1± ε)‖xi + xj‖2

2 − (1± ε)‖xi‖2
2 − (1± ε)‖xj‖2

2

)
/2

= 〈xi , xj〉 ± O(ε)
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Johnson-Lindenstrauss transform (contd)

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2 log (n/δ)), then Ω1 is a

JLT(n, ε, δ).

Source: Theorem 4 in [Woodruff, 2014], see also Theorem 2.1 and proof in S. Dasgupta,

A. Gupta, 2003, An Elementary Proof of a Theorem of Johnson and Lindenstrauss
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Oblivious subspace embedding

Let Ω1 ∈ Rk×m be a matrix whose entries are independent standard normal
random variables, multiplied by 1/

√
k . If k = O(ε−2(n + log (1/δ))), then

Ω1 is an oblivious subspace embedding (OSE) with parameters (n, ε, δ).
That is, with probability at least 1− δ for any n-dimensional subspace
V ⊂ Rm, for all xi , xj ∈ V, we have

|〈Ω1xi ,Ω1xj〉 − 〈xi , xj〉| ≤ ε‖xi‖2‖xj‖2 (4)

Source: Theorem 6 in [Woodruff, 2014]
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Least squares problems

Given A ∈ Rm×n and b ∈ Rn, with m� n, solve

y := arg min
x∈Rn
‖Ax − b‖2

1. Solve by computing QR factorization of A or using normal equations,

ATAx = ATb.

2. Solve by using randomization, with Ω1 ∈ Rk×m

y∗ := arg min
x∈Rn
‖Ω1(Ax − b)‖2
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Least squares problems with randomization

Solve by using randomization, with Ω1 ∈ Rk×m, k = O(ε−2(n + log (1/δ)),
being OSE with parameters (n, ε, δ) for V = range(A) + span(b)

y∗ := arg min
x∈Rn
‖Ω1(Ax − b)‖2

We obtain with probability 1− δ:

‖Ay∗ − b‖2
2 ≤ (1 + O(ε))‖Ay − b‖2

2
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Low rank matrix approximation

� Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k
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Singular value decomposition

For any given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 · (V1 V2

)T
where

� U ∈ Rm×m is orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

� Σ ∈ Rm×n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k, Σ2 is n − k × n − k

� V ∈ Rn×n is orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k

11 of 42



Properties of SVD

Given A = UΣV T , we have

� ATA = VΣTΣV T ,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

� AAT = UΣTΣUT ,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

� The non-negative singular values of A are the square roots of the
non-negative eigenvalues of ATA and AAT .

� If σk 6= 0 and σk+1, . . . , σn = 0, then
Range(A) = span(U1), Null(A) = span(V2),
Range(AT ) = span(V1), Null(A) = span(U2 U3).
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Norms

||A||p = max
||x||p=1

||Ax ||p

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2

1(A) + . . . σ2
n(A)

||A||2 = σmax(A) = σ1(A)

Some properties:

max
i,j
|A(i , j)| ≤ ||A||2 ≤

√
mnmax

i,j
|A(i , j)|

||A||2 ≤ ||A||F ≤
√

min(m, n)||A||2
Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2
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Low rank matrix approximation

� Best rank-k approximation Aopt,k = UkΣkVk is rank-k truncated SVD of
A [Eckart and Young, 1936]

min
rank(Ak )≤k

||A− Ak ||2 = ||A− Aopt,k ||2 = σk+1(A) (5)

min
rank(Ak )≤k

||A− Ak ||F = ||A− Aopt,k ||F =

√√√√ n∑
j=k+1

σ2
j (A) (6)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

� Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

� Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.
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Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

# messages = Ω (log2 P) .
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Idea underlying many algorithms

Compute Ãk = PA, where P = Po or P = Pso is obtained as:

1. Construct a low dimensional subspace X = range(AΩ1), Ω1 ∈ Rn×l that
approximates well the range o f A, e.g.

‖A− PoA‖2 ≤ γσk+1(A), for some γ ≥ 1,

where Q1 is orth. basis of (AΩ1)

Po = AΩ1(AΩ1)+ = Q1Q
T
1 , or equiv Poaj := arg min

x∈X
‖x − aj‖2

2. Select a semi-inner product 〈Θ1·,Θ1·〉2, Θ1 ∈ Rl′×m l ′ ≥ l , define

Pso = AΩ1(Θ1AΩ1)+Θ1, or equiv Psoaj := arg min
x∈X
‖Θ1(x − aj)‖2
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Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2019].

Definition 1
[low-rank approximation] A matrix Ak satisfying ‖A− Ak‖2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition 2
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition 3
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.
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Deterministic rank-k matrix approximation

Given A ∈ Rm×n, Θ =

(
Θ1

Θ2

)
∈ Rm×m, Ω =

(
Ω1 Ω2

)
∈ Rn×n, Θ,Ω

invertible, Θ1 ∈ Rl′×m, Ω1 ∈ Rn×l , k ≤ l ≤ l ′.

ΘAΩ = Ā =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
+
11 I

)(
Ā11 Ā12

S(Ā11)

)
= Θ

(
Q1 Q2

)(R11 R12

R22

)
,

where Ā11 ∈ Rl′,l , Ā+
11Ā11 = I , S(Ā11) = Ā22 − Ā21Ā

+
11Ā12.

� Generalized LU computes the approximation

Ak = Θ−1

(
I

Ā21Ā
+
11

)(
Ā11 Ā12

)
Ω−1

� QR computes the approximation

Ak = Q1

(
R11 R12

)
V−1 = Q1Q

T
1 A, where Q1 is orth basis for (AΩ1)
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Unified perspective: generalized LU factorization

Given Θ1,A,Ω1, Q1 orth. basis of (AΩ1), k = l = l ′, rank-k approximation,

Ak = AΩ1(Θ1AΩ1)−1Θ1A

Deterministic algorithms Randomized algorithms∗

Ω1 column permutation and ... Ω1 random matrix and ...
QR with column selection Randomized QR

(a.k.a. strong rank revealing QR) (a.k.a. randomized SVD)

Θ1 = QT
1 , Ak = Q1Q

T
1 A Θ1 = QT

1 , Ak = Q1Q
T
1 A

||R−1
11 R12||max is bounded

LU with column/row selection Randomized LU with row selection
(a.k.a. rank revealing LU) (a.k.a. randomized SVD via Row extraction)

Θ1 row permutation s.t. Θ1Q1 =

(
Q̄11

Q̄21

)
Θ1 row permutation s.t. Θ1Q1 =

(
Q̄11

Q̄21

)
||Q̄21Q̄

−1
11 ||max is bounded ||Q̄21Q̄

−1
11 ||max bounded

Randomized LU approximation
Θ1 random matrix

Deterministic algorithms will be discussed in a future lecture.
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Generalized LU factorization k ≤ l ≤ l ′ (contd)

Given Θ1,A,Ω1, Q1 orth. basis of (AΩ1), k ≤ l ≤ l ′, rank-k approximation,

Ak = [Θ+
1 (I − (Θ1AΩ1)(Θ1AΩ1)+) + (AΩ1)(Θ1AΩ1)+][Θ1A], (7)

where Θ1 and (Θ1AΩ1) are of dimensions l ′ ×m and l ′ × l respectively.

Remark Given that only Θ1 and Ω1 are required for computing Ak , Θ and Ω
are used only for the analysis, Θ2 and Ω2 are chosen to be the orthogonal of
Θ1 and Ω1 respectively.
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Properties of projection based approximations

Proposition 4 (Proposition 4.3 from [Demmel et al., 2019])
Let A ∈ Rm×n matrix with SVD A = UΣV T . Set [Q,R] = QR(AΩ), where
Ω ∈ Rn×n matrix, Ω = (Ω1,Ω2), Ω1 is full column rank and Ω2 is the
orthogonal of Ω1. Then the singular values of Q1Q

T
1 A− A are identical to

those of matrix R22 ∈ R(m−l)×(n−l). Moreover,

‖R22‖2
F ≤ ‖Σ1,2‖2

F + ‖Σ1,2(V TΩ)21(V TΩ)+
11‖

2
F

σj(A) ≥ σj(Q1Q
T
1 A) ≥ σj(AΩ1)σmin(Ω+

1 ), for j ≤ k (8)

as well as for any given j ≤ min(m, n)− k, there is an orthogonal n× (n− j)
matrix Ṽ independent of Ω such that

σ2
j (R22) ≤ σ2

j+k(A) + ‖Σj,2(Ṽ TΩ)21(Ṽ TΩ)+
11‖

2
2 (9)

with (Ṽ TΩ)11 ∈ Rk×l , and Σj,2 := diag(σk+j(A), . . . , σn(A), 0, . . . , 0), and
Σj,2 ∈ R(m−k)×(n−k), where diag denotes the diagonal matrix.
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Randomized algorithms - main idea

� Construct a low dimensional subspace that captures the action of A.

� Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:
1. Compute an approximate basis for the range of A (m × n)

find Q1 (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q1:

A ≈ Q1Q
T
1 A

2. Use Q1 to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

1. Compute an approximate basis for the range of A ∈ Rm×n

Sample Ω1 ∈ Rn×l , l = p + k , with independent mean-zero, unit-variance
Gaussian entries.
Compute Y = AΩ1, Y ∈ Rm×l expected to span column space of A.
� Cost of multiplying AΩ1: 2mnl flops

2. With Q1 being orthonormal basis of Y , approximate A as:

Ãk = Q1Q
T
1 A = PoA

� Cost of multiplying QT
1 A: 2mnl flops

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

Algorithm
Input: matrix A ∈ Rm×n, desired rank k , l = p + k .
1. Sample an n×l test matrix Ω1 with independent mean-zero, unit-variance

Gaussian entries.
2. Compute Y = (AAT )qAΩ1 /* Y is expected to span the column space

of A */
3. Construct Q1 ∈ Rm×l with columns forming an orthonormal basis for

the range of Y .
4. Compute B = QT

1 A, B ∈ Rl×n

5. Compute the rank-k truncated SVD of B as ÛΣV T , Û ∈ Rl×k , V T ∈
Rk×n

Return the approximation Ãk = Q1Û · Σ · V T
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Randomized SVD (q = 0)

The best approximation is when Q1 equals the first k + p left singular
vectors of A. Given A = UΣV T ,

Q1Q
T
1 A = U(1 : m, 1 : k + p)Σ(1 : k + p, 1 : k + p)(V (1 : n, 1 : k + p))T

||A− Q1Q
T
1 A||2 = σk+p+1

Theorem 1.1 from Halko et al. If Ω1 is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix Ω1 is

E(||A− Q1Q
T
1 A||2) ≤

(
1 +

4
√
k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− Q1Q
T
1 A||2 ≤

(
1 + 11

√
k + p ·

√
min(m, n)

)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.
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Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− Q1Q
T
1 A||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√
k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

� Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈ σk+1 then the approximation should be accurate.

� Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈
√
n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk
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Power iteration q ≥ 1

The matrix (AAT )qA has a faster decay in its singular values:

� has the same left singular vectors as A

� its singular values are:

σj((AAT )qA) = (σj(A))2q+1
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Cost of randomized truncated SVD

� Randomized SVD requires 2q + 1 passes over the matrix.

� The last 4 steps of the algorithm cost:
(2) Compute Y = (AAT )qAΩ1: 2(2q + 1) · nnz(A) · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QT
1 A: 2nnz(A) · (k + p)

(5) Compute SVD of B: O(n(k + p)2)

� If nnz(A)/m ≥ k + p and q = 1, then (2) and (4) dominate (3).

� To be faster than deterministic approaches, the cost of (2) and (4) need
to be reduced.
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Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω1 such that computing AΩ1 is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given n = 2p, l < n, the SRHT ensemble embedding Rn into Rl is defined as

Ω1 =

√
n

l
· P · H · D, where (10)

� D ∈ Rn×n is diagonal matrix of uniformly random signs, random variables
uniformly distributed on ±1

� H ∈ Rn×n is the normalized Walsh-Hadamard transform

� P ∈ Rl×n formed by subset of l rows of the identity, chosen uniformly at
random (draws l rows at random from HD).

References: Sarlos’06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and

Woolfe’06.
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Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh–Hadamard Matrix
For given n = 2p, Hn ∈ Rn×n is the non-normalized Walsh-Hadamard
transform defined recursively as,

H2 =

(
1 1
1 −1

)
, Hn =

(
Hn/2 Hn/2

Hn/2 −Hn/2

)
. (11)

The normalized Walsh-Hadamard transform is H = n−1/2Hn.

Cost of matrix vector multiplication (Theorem 2.1
in [Ailon and Liberty, 2008]):
For x ∈ Rn and Ω1 ∈ Rl×n, computing Ω1x costs 2n log2(l + 1) flops.
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Results from image processing (from Halko et al)

� A matrix A of size 9025× 9025 arising from a diffusion geometry
approach.

� A is a graph Lapacian on the manifold of 3× 3 patches.
� 95× 95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
� Vector x (i) ∈ R9 gives the intensities of the pixels in a 3× 3

neighborhood of pixel i .
� W reflects similarities between patches, σ = 50 reflects the level of

sensitivity,

wij = exp{−||x (i) − x (j)||2/σ2},
� Sparsify W , compute dominant eigenvectors of A = D−1/2WD−1/2.
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Experimental results (from Halko et al)

� Approximation error : ||A− Q1Q
T
1 A||2

� Estimated eigenvalues for k = 100
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Oblivious subspace embedding

Definition 5
A (k, ε, δ) oblivious subspace embedding (OSE) from Rn to Rl is a
distribution Ω1 ∼ D over l × n matrices. It satisfies with probability 1− δ

1− ε ≤ σ2
min(Ω1Q) ≤ σ2

max(Ω1Q) ≤ 1 + ε

for any given orthogonal n× k matrix Q. We will assume l ≥ k and ε < 1/6.

Definition 6
Ω1 ∈ Rl×n is (ε, δ, n) multiplication approximating, if for any A,B having n
rows, it satisfies with probability 1− δ,

‖ATΩT
1 Ω1B − ATB‖F ≤ ε‖A‖F‖B‖F . (12)
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Properties of SRHT ensembles

Additional property of the SRHT ensemble from Lemma 4.8 of
[Boutsidis and Gittens, 2013].

Lemma 7
Let Ω1 be drawn from an SRHT of dimension l × n. Then for m × n matrix
A with rank ρ, with probability 1− 2δ,

‖AΩT
1 ‖2

2 ≤ 5‖A‖2
2 +

log(ρ/δ)

l
(‖A‖F +

√
8 log(n/δ)‖A‖2)2

Oblivious embeddings: Let Ω1 ∈ Rl×n be drawn from SRHT ensembles.
With l = 4ε−1k(1 + 2

√
ln(3/δ))2(1 +

√
8 ln(3n/δ))2, Ω1 is a (k,

√
ε, 3δ)

OSE (Lemma 4.1 from [Boutsidis and Gittens, 2013]). It satisfies the
multiplication property with (ε/k , δ, n) (Lemma 4.11
from [Boutsidis and Gittens, 2013]).
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Subspace embeddings

Lemma 5.4 from [Demmel et al., 2019], an extension of Lemma 4.1 of
[Boutsidis and Gittens, 2013].

Lemma 8
Let Ω1 be an l × n matrix that is a (k , ε, δ) OSE from Rn to Rl , and Q be
an (n × k) orthogonal matrix. Provided ε < 1/6, then with probability 1− δ
both of the following hold,

‖(Ω1Q)+ − (Ω1Q)T‖2
2 ≤ 3ε (13)

‖Ω1‖2
2 = O

(n
k

)
, (14)

where in the second of these we require the additional assumption
δ > 2e−k/5.
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Randomized SVD with SRHT ensembles

Corollary 9 (Corollary 5.16 in [Demmel et al., 2019])
Let Ω1 ∈ Rn×l be drawn from an SHRT ensemble,
l ≥ 4ε−1k(1 + 2

√
ln(3/δ))2(1 +

√
8 ln(3n/δ))2, Ω1, and for simplicity

assume l ≥ log(n/δ) log(ρ/δ). Then with probability 1− 2δ

σ2
j (R22) ≤ O(1)σ2

k+j(A) + O(
log(ρ/δ)

l
)(σ2

k+j(A) + . . . σ2
n(A)) , (15)

for 1 ≤ j ≤ min(m, n)− k with probability 1− 3δ for a particular j . We also
have upper and lower bounds on the largest singular values, as for 1 ≤ j ≤ k,

σj(A) ≥ σj(Q1Q
T
1 A) = Ω(

√
k

n
)σj(A) (16)

holds with probability 1− 2 max(δ, e−k/5).
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Details of proof of eq (15)

Begin by using Proposition 4 and Lemma 8,

σ2
j (R22) ≤ ‖Σj,2‖2

2 +‖Σj,2(Ṽ TΩ)21(Ṽ TΩ)+
11‖

2
2 ≤ ‖Σj,2‖2

2 +2‖Σj,2(Ṽ TΩ)21‖2
2,

with probability 1− δ. Next apply Lemma 7 to the second term to get

σ2
j (R22) = O

(
1 +

log(ρ/δ) log(n/δ)

l

)
‖Σj,2‖2

2 + O

(
log(ρ/δ)

l

)
‖Σj,2‖2

F

= O(1)‖Σj,2‖2
2 + O

(
log(ρ/δ)

l

)
‖Σj,2‖2

F ) (17)

= O(1)σ2
k+j(A) + O(

log(ρ/δ)

l
)(σ2

k+j(A) + . . . σ2
n(A)), (18)

where ρ is the rank of A, with probability 1− 2δ.

39 of 42



Probabilistic guarantees for randomized GLU

� Consider Θ1 ∈ Rl′×m,Ω1 ∈ Rn×l are Subsampled Randomized Hadamard
Transforms (SRHT), l ′ > l .

� Compute Ak through generalized LU as in equation (7) costs
O(mn log2 l

′ + mll ′) flops,

Ak = [Θ+
1 (I − (Θ1AΩ1)(Θ1AΩ1)+) + (AΩ1)(Θ1AΩ1)+][Θ1A].

Theorem 10 (Theorem 5.9 from [Demmel et al., 2019])
Let Θ1 ∈ Rl′×m and Ω1 ∈ Rn×l be drawn from SRHT ensembles,
l = 4ε−1k(1 + 2

√
ln(3/δ))2(1 +

√
8 ln(3n/δ))2,

l ′ = 4ε−1l(1 + 2
√

ln(3/δ))2(1 +
√

8 ln(3m/δ))2.
With probability 1− 5δ, the randomized GLU approximation Ak satisfies

‖A− Ak‖2
2 = O(1)σ2

k+1(A) + O(
log(n/δ)

l
+

log(m/δ)

l ′
)(σ2

k+1(A) + . . . σ2
n(A))

σ2
j (A− Ak) ≤ O(1)σ2

k+j + O(
log(ρ/δ)

l
+

log(ρ/δ)

l ′
)(σ2

k+j(A) + . . . σ2
n(A)).
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Results used in the proofs

� Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A = [a1| . . . |an] be a column partitioning of an m × n matrix with
m ≥ n. If Ar = [a1| . . . |ar ], then for r = 1 : n − 1

σ1(Ar+1) ≥ σ1(Ar ) ≥ σ2(Ar+1) ≥ . . . ≥ σr (Ar+1) ≥ σr (Ar ) ≥ σr+1(Ar+1).

� Given n × n matrix B and n × k matrix C , then
([Eisenstat and Ipsen, 1995], p. 1977)

σmin(B)σj(C ) ≤ σj(BC ) ≤ σmax(B)σj(C ), j = 1, . . . , k .
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