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Plan

Randomization for least-squares problem
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Johnson-Lindenstrauss transform

Definition 3 from [Woodruff, 2014].

A random matrix Q; € R¥*™ is a Johnson-Lindenstrauss transform with
parameters €, 9, n, or JLT(n, €, ¢), if with probability at least 1 — ¢ for any
n-element subset V C R™, for all x;,x; € V, we have

(R0, Q) = (xi, x3)| < ellxil2llx]l2 (1)

= If x; = x; we obtain | Q1x:]]3 = (1 £ ¢€)||x]/3.
B |t can also be expressed as: given all vectors x;, x; € V are rescaled to be
unit vectors, then for all x;,x; € V we require to hold:

Qx5 = (1 %e)lxl3 (2)
100 +x)3 = (1£6)llx + 13 3)
Proof that we obtain relation (4):
(Quxi, nx) = (06 + )12 = 10615 = [Q1x]13) /2

= (A£9lx+xl3 - 1 £)xl3 — L+ e)lx3) /2
= {xi,x) £ O(e)
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Johnson-Lindenstrauss transform (contd)

Let Q; € R¥*™ be a matrix whose entries are independent standard normal
random variables, multiplied by 1/v/k. If k = O(¢~2log (n/8)), then Q; is a
JLT(n,€,0).

Source: Theorem 4 in [Woodruff, 2014], see also Theorem 2.1 and proof in S. Dasgupta,
A. Gupta, 2003, An Elementary Proof of a Theorem of Johnson and Lindenstrauss
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Oblivious subspace embedding

Let Q; € R¥*™ be a matrix whose entries are independent standard normal
random variables, multiplied by 1/vk. If k = O(e~2(n + log (1/5))), then
Q; is an oblivious subspace embedding (OSE) with parameters (n, €, ).
That is, with probability at least 1 — ¢ for any n-dimensional subspace

V C R, for all x;,x; € V, we have

[(Quxi, Quxj) — (6, x5)| < ellxillz[1x]]2 (4)

Source: Theorem 6 in [Woodruff, 2014]
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Least squares problems

Given A € R™" and b € R", with m < n, solve

= in [[Ax — b
y := arg min [|Ax — b||2

1. Solve by computing QR factorization of A or using normal equations,
ATAx = ATb.
2. Solve by using randomization, with Q; € R¥k*m

y* = arg min [[Q1(Ax — b)l2
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Least squares problems with randomization

Solve by using randomization, with Q; € R**™ k = O(e=2(n + log (1/6)),
being OSE with parameters (n, ¢, d) for V = range(A) + span(b)

y* = arg min €21 (Ax — b)||2

We obtain with probability 1 — ¢:

IAy* = bll3 < (1 + O(e)) Ay — blI3
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Low rank matrix approximation

= Problem: given A € R™*" compute rank-k approximation ZW T, where
Zismx kand WT is k x n.

= Problem with diverse applications

0 from scientific computing: fast solvers for integral equations, H-matrices
U to data analytics: principal component analysis, image processing, ...

Ax — ZW T x
Flops 2mn — 2(m + n)k
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Singular value decomposition

For any given A € R™*", m > n its singular value decomposition is

00
A=USVT=(U U, Us)- |0 S|-(Vi W)'
0 0

where

= U € R™*™ js orthogonal matrix, the left singular vectors of A,
Ulismxk U ismxn—k, Usismxm—n

B Y € R™*" its diagonal is formed by o1(A) > ... > 0,(A) >0
Yi1iskxk Yoisn—kxn—k

= V € R™" is orthogonal matrix, the right singular vectors of A,
Viisnx k, Vbisnxn—k
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Properties of SVD

Given A= UXZ VT, we have

" ATA=VETyv’T,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

= AAT =USTZUT,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

= The non-negative singular values of A are the square roots of the
non-negative eigenvalues of AT A and AAT.

m If oy 750 and Ok41y-++,0n =0, then
Range(A) = span(Uy), Null(A) = span(V2),
Range(AT) = span(V;), Null(A) = span(U, Us).
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Norms

Al = max [|Ax||,
[Ix]lp=1
AlE = D03 JagP = /o2(A) +...02(A)
i=1 j=1
1Al = omax(A) = 01(A)
Some properties:
<

max|AJ)| <[4l < Vmnmax|AG))

Az < [lAllF < v/ min(m, n)[|All2
Orthogonal Invariance: If @ € R™*™ and Z € R"™ " are orthogonal, then
IQAZ|[F = [|AllF
IQAZ]|2 = [|A]l2
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Low rank matrix approximation

® Best rank-k approximation Agpe x = UkX i Vi is rank-k truncated SVD of
A [Eckart and Young, 1936]

. A—A = A—A _ A 5
iy < 14~ Aulle 1A= Agpt,ill2 = ok1(A) (5)

i A—A = A—A = E 2(A 6
iy 1A~ e = A= Aalle = 2 o7 (4) (6)

Image, size 1190 x 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

B Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

= Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

® Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.
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Low rank matrix approximation: trade-offs

Flois Accuracy
Truncated CA-SVD Truncated SVD

Lanczos Algorithm

CArank revealing QR (strong) QRCP

LU with column/row
tournament pivoting
(for sparse matrices)

LU with column,
rook pivoting

Comrfiunication

Communication optimal if computing a rank-k approximation on P processors requires
# messages = Q (log, P) .
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Low rank matrix approximation: trade-offs

FIDT Accuracy
Truncated CA-SVD Truncated SVD

Lanczos Algorithm
Randomized SVD

Randomized SVD
via row extraction

—
Comfiunication

Communication optimal if computing a rank-k approximation on P processors requires
# messages = Q (log, P).
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Idea underlying many algorithms

Compute Ak = PA, where P = P° or P = P is obtained as:

1. Construct a low dimensional subspace X = range(AQ;), Q1 € R™*/ that
approximates well the range o f A, e.g.

|A—=PC°A|2 < vokt1(A), for some v > 1,
where Qq is orth. basis of (AQ;)

P° = AQ1(AQ1)" = Q1Q/, or equiv P°a; := arg mi)rg Ix — ajll2
X€
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Idea underlying many algorithms

Compute Ak = PA, where P = P° or P = P is obtained as:

1. Construct a low dimensional subspace X = range(AQ;), Q1 € R™*/ that
approximates well the range o f A, e.g.

|A—=PC°A|2 < vokt1(A), for some v > 1,
where Qq is orth. basis of (AQ;)

P° = AQ1(AQ1)" = Q1Q/, or equiv P°a; := arg mi)rg Ix — ajll2
X€

2. Select a semi-inner product (©1-,01-)2, ©1 € R/ *m ' > | define

P = AQ1(01AQ1)TO1, or equiv P*a; := arg mel)rg 1©1(x — aj) |2
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Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2019].

Definition 1
[low-rank approximation] A matrix Ay satisfying ||A — Akll2 < vokt1(A) for
some v > 1 will be said to be a (k,~) low-rank approximation of A.

Definition 2
[spectrum preserving] If Ay satisfies

0;(A) = 0j(A) = v a;(A)
for j < k and some v > 1, it is a (k,~y) spectrum preserving.

Definition 3
[kernel approximation] If Ay satisfies

oij(A) < 0j(A = Ai) < 7044i(A)
for 1 <j<n-—kandsome~>1,itisa (k,7v) kernel approximation of A.
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Deterministic rank-k matrix approximation

mxn
Given Ae R ,9_(62

invertible, ©; ¢ R"*m Q, e R™! k<< /.

i (Aun Ap
OAQ A= "~ -
<A21 A22>

_ B /_ An Ay . Ri1 Ri
B <A21AT1 ’) < 5(A11)> =0(@ @) < R22> 7

where /2\11 S RI,’/, /Z\-li_l’all =1, S(All) = A22 — A21AEA12.
® Generalized LU computes the approximation

_ / = = _
Ac=071 (/2\21;{3) (An Ap) Q!

) ER™M Q= (2 Q) €R™", 0,0

= QR computes the approximation

A= @1 (R11 R12) v-l= QlQlTA7 where @y is orth basis for (AQ;)
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Unified perspective: generalized LU factorization

Given ©1,A,Q;, @ orth. basis of (AQ), k = /=1, rank-k approximation,

A = AQ1(9:A0;) 710, A

Deterministic algorithms
€, column permutation and ...

Randomized algorithms*
Q; random matrix and ...

QR with column selection
(a.k.a. strong rank revealing QR)
0:1=Q/, Av=Q:Q/ A
[|R;7* Ri2||max is bounded

Randomized QR
(a.k.a. randomized SVD)
01=Q/, Ac=Q:QA

LU with column/row selection
(a.k.a. rank revealing LU)

©;1 row permutation s.t. ©1@Q1 = (gn

b1

[| Qo1 @7 || max is bounded

)

Randomized LU with row selection
(a.k.a. randomized SVD via Row extraction)

©1 row permutation s.t. ©;Q1 = (Qu)
o Q@1
||Q21 Qil||max bounded

Randomized LU approximation
©; random matrix

Deterministic algorithms will be discussed in a future lecture.
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Generalized LU factorization k </ < /" (contd)

Given ©1,A,Q;, @ orth. basis of (AQ), k </ < V', rank-k approximation,
Ax = [07 (1 = (©1A)(01A01)T) + (AQ1)(©:1A)][0:4],  (7)

where ©1 and (©1AQ;) are of dimensions I’ x m and I’ x [ respectively.

Remark Given that only ©; and € are required for computing Ay, © and Q
are used only for the analysis, ©, and €2, are chosen to be the orthogonal of
©; and £y respectively.
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Properties of projection based approximations

Proposition 4 (Proposition 4.3 from [Demmel et al., 2019])

Let A € R™" matrix with SVD A= ULVT. Set [Q, R] = QR(AQ), where
Q € R™" matrix, Q = (21,), Q1 is full column rank and Q; is the
orthogonal of €1. Then the singular values of @, QlT A — A are identical to
those of matrix Ryy € R(m=Dx(n=1)  Moreover,

IRl < [IZ12l1F + 1Z12(V Q1 (VTQ)T 17

0j(A) > 0(Q1Q A) > (A )omin(Q7]), forj < k (8)

as well as for any given j < min(m, n) — k, there is an orthogonal n x (n — j)
matrix V independent of Q such that

07(Rn) < 07 (A) + 112V Q) (VT3 (9)

with (VT Q)11 € R*, and ¥ 5 := diag(ck1j(A), . ..,04(A),0,...,0), and
Y, € Rm=K)x(n=k) " ywhere diag denotes the diagonal matrix.
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Randomized algorithms - main idea

= Construct a low dimensional subspace that captures the action of A.

= Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:

1. Compute an approximate basis for the range of A (m x n)
find @, (m x k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q1:

Ax Q QA

2. Use @ to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

1. Compute an approximate basis for the range of A € R™*”"
Sample ©Q; € R = p + k, with independent mean-zero, unit-variance
Gaussian entries.
Compute Y = AQ;, Y € R™*! expected to span column space of A.

0 Cost of multiplying AQi: 2mnl flops
2. With Q; being orthonormal basis of Y, approximate A as:

Av=Q1Q] A="P°A
O Cost of multiplying Q" A: 2mnl flops

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

Algorithm
Input: matrix A € R™*", desired rank k, | = p + k.
1. Sample an nx [ test matrix £2; with independent mean-zero, unit-variance

Gaussian entries.

2. Compute Y = (AAT)9AQ; /* Y is expected to span the column space
of A*/

3. Construct @; € R™*! with columns forming an orthonormal basis for
the range of Y.

4. Compute B = Q A, B e R/*n

5. Compute the rank-k truncated SVD of B as UV, U € R'*k, VT ¢
kan

Return the approximation A, = QU- - vT
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Randomized SVD (g = 0)

The best approximation is when @y equals the first k + p left singular
vectors of A. Given A= UZ VT,

QA = UL :m1:k+p)X(1:k+pl:k+p)(V(L:nl:k+p
1A= @QiQI Al = okipn

Theorem 1.1 from Halko et al. If Q is chosen to be i.i.d. N(0,1), k,p > 2,
g = 1, then the expectation with respect to the random matrix € is

(1A - QAR < (1+ L i) ) i (4)

and the probability that the error satisfies

1A= Q@I All2 < (1+11v/k+ p- /min(m, )) 7ks1(A)

is at least 1 — 6/p”.
For p = 6, the probability becomes .99.
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Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A - QlQlTA||2) < (1 + \/Z> or+1(A) + @ Zn: sz(A)

p j=k+1

1/2

= Fast decay of singular values:
1/2
If (Zj>k af(A)) ~ o)1 then the approximation should be accurate.

= Slow decay of singular values:

12
If (Zj>k O'JZ(A)) ~ v/n — koyy1 and n large, then the approximation
might not be accurate.

Source: G. Martinsson's talk
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Power iteration g > 1

The matrix (AAT)9A has a faster decay in its singular values:
® has the same left singular vectors as A

® its singular values are:

a;((AAT)IA) = (a;(A))*7+!
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Cost of randomized truncated SVD

® Randomized SVD requires 2q + 1 passes over the matrix.
® The last 4 steps of the algorithm cost:
(2) Compute Y = (AAT)9AQ;: 2(29 + 1) - nnz(A) - (k + p)
(3) Compute QR of Y: 2m(k + p)?
(4) Compute B = Q] A: 2nnz(A) - (k + p)
(5) Compute SVD of B: O(n(k + p)?)
u If nnz(A)/m > k+ p and g = 1, then (2) and (4) dominate (3).
® To be faster than deterministic approaches, the cost of (2) and (4) need
to be reduced.



Fast Johnson-Lindenstrauss transform

Find sparse or structured Q; such that computing AQ; is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given n = 2P | < n, the SRHT ensemble embedding R” into R/ is defined as

le\/7-P-H~D7 where (10)

®m D € R™" is diagonal matrix of uniformly random signs, random variables
uniformly distributed on +1

m H € R™" is the normalized Walsh-Hadamard transform

= P c R'*" formed by subset of / rows of the identity, chosen uniformly at
random (draws / rows at random from HD).

References: Sarlos’06, Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and
Woolfe'06.
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Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh—Hadamard Matrix
For given n = 2P, H, € R"*" is the non-normalized Walsh-Hadamard
transform defined recursively as,

(1 1 _ (Hnp2z Hap
H2_<1 —1)’ H"_<Hn/2 - n/z)' (1)

The normalized Walsh-Hadamard transform is H = n=/2H,,.

Cost of matrix vector multiplication (Theorem 2.1
in [Ailon and Liberty, 2008]):
For x € R" and Q; € R'*", computing Q;x costs 2nlog,(/ + 1) flops.
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Results from image processing (from Halko et al)

= A matrix A of size 9025 x 9025 arising from a diffusion geometry
approach.

® Ais a graph Lapacian on the manifold of 3 x 3 patches.

95 x 95 pixel grayscale image, intensity of each pixel is an integer < 4095.

Vector x() € R gives the intensities of the pixels in a 3 x 3

neighborhood of pixel /.

W reflects similarities between patches, o = 50 reflects the level of

sensitivity,

wi = exp{—||x") = xU|12/5%},
Sparsify W, compute dominant eigenvectors of A = D~Y/2WD~1/2,
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Experimental results (from Halko et al)

= Approximation error : ||[A— Q1 Q[ Al
® Estimated eigenvalues for k = 100

Approximation error ey Estimated Eigenvalues \;
1
x“Exact” eigenvalue:
) o Ajforg=3
0.9 ) \j for g =2 il
! o Xjforg=1
| + Xj for g=0
08l |
B
07} § 1
° o6f 1
% \
g 05} K 1
B0 *
=t XK
= 04F % 1
"*&
03f **&& 1
%,
02t *x B
\»X**
01f q 01F %;g
0 . . 0 . .
0 20 40 60 80 100 0 20 40 60 80 100
k J
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Oblivious subspace embedding

Definition 5
A (k,e,6) oblivious subspace embedding (OSE) from R” to R/ is a
distribution €3 ~ D over / x n matrices. It satisfies with probability 1 — §

1—e<omin(Q) <07 (1Q) <1+4e

max

for any given orthogonal n x k matrix Q. We will assume / > k and € < 1/6.

Definition 6
Q1 € R™" is (e, 8, n) multiplication approximating, if for any A, B having n
rows, it satisfies with probability 1 — §,

IATQ] Q1B — ATB||r < | All¢||B]|F- (12)



Properties of SRHT ensembles

Additional property of the SRHT ensemble from Lemma 4.8 of
[Boutsidis and Gittens, 2013].

Lemma 7
Let Q1 be drawn from an SRHT of dimension | x n. Then for m X n matrix
A with rank p, with probability 1 — 26,

log p 0)
1497 | < s)A13 + 2B (4| - + /5 Tog(n]0) | AlL)?

Oblivious embeddings: Let Q; € R’*" be drawn from SRHT ensembles.

With | = 4e71k(1 + 24/In(3/8))?(1 + /81n(3n/6))?, Q1 is a (k,/€,30)
OSE (Lemma 4.1 from [Boutsidis and Gittens, 2013]) It satlsfles the
multiplication property with (e/k,d, n) (Lemma 4.11

from [Boutsidis and Gittens, 2013]).



Subspace embeddings

Lemma 5.4 from [Demmel et al., 2019], an extension of Lemma 4.1 of
[Boutsidis and Gittens, 2013].

Lemma 8

Let Qy be an | x n matrix that is a (k,€,5) OSE from R" to R/, and Q be
an (n x k) orthogonal matrix. Provided ¢ < 1/6, then with probability 1 — §
both of the following hold,

I(@2Q)" ~ Q)75 <3¢ (13)
Il =0 (7)) (14)

where in the second of these we require the additional assumption
§ > 2e k5.
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Randomized SVD with SRHT ensembles

Corollary 9 (Corollary 5.16 in [Demmel et al., 2019])
Let Q; € R"™! be drawn from an SHRT ensemble,

I > 4e k(14 24/In(3/9))?(1 + +/81n(3n/6))?, Q1, and for simplicity

assume | > log(n/d) log(p/d). Then with probability 1 — 2§

|Og(/p/5) (o2 (A) +...0%(A),  (15)

77 (Re2) < O(1)aicy;(A) + O(

for 1 < j < min(m, n) — k with probability 1 — 36 for a particular j. We also
have upper and lower bounds on the largest singular values, as for1 < j < k,

aj(A) > o;(@x QlTA \/7)01 (16)

holds with probability 1 — 2 max(J, e~ /%).



Details of proof of eq (15)

Begin by using Proposition 4 and Lemma 8,
7 (R2) < | Zj2 3+ 152V T (VT QL3 < [155205+211%52( VT Q) 3,
with probability 1 — 4. Next apply Lemma 7 to the second term to get

log(p/9) '0€(n/5)) %22+ 0 (M) 15 217

/
owzal3 + 0 (B ) z;al) (17)

log(p/d)
/

O‘JZ(Rzz) = 0 (1+

O(1)aic+j(A) + O(

)% 1(A) + - - o2(A)), (18)

where p is the rank of A, with probability 1 — 26.



Probabilistic guarantees for randomized GLU

m Consider ©; € R’/Xm,Ql € R"™! are Subsampled Randomized Hadamard
Transforms (SRHT), /" > I.

m Compute Ay through generalized LU as in equation (7) costs
O(mnlog, I' + mll") flops,

A = [07(1 — (O1A2)(01AQ)T) + (A1) (01AQ;)][0:1A].

Theorem 10 (Theorem 5.9 from [Demmel et al., 2019))
Let ©; € R"*™M and Q; € R"™! be drawn from SRHT ensembles,

I = 4e k(1 + 21/In(3/3))2(1 + /81n(3n/3))?,
/' = 4¢71(1 + 24/In(3/3))2(1 + \/8In(3m/0))>2.

With probability 1 — 59, the randomized GLU approximation Ay satisfies

IA-Ad3 = O()ad,a(a) + o( B 8Dy o gy 1 o2(a)

P(A-A) < O@)od, + 0('°g(f/5) T '°g(ﬁ/5))(a§+j(/\) b o2(A)).
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Results used in the proofs

m Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A=[ai|...|an] be a column partitioning of an m x n matrix with
m>n. If A, =Ja]...]a/] thenforr=1:n-1
Ul(Ar+1) > Ul(Ar) > 02(Ar+1) >z Ur(Ar+1) > Ur(Ar) > 0'r+1(Ar+1)~

® Given n X n matrix B and n x k matrix C, then
([Eisenstat and Ipsen, 1995], p. 1977)

Imin(B)oj(C) < 0j(BC) < omax(B)oj(C),j =1,... k.
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