Rank revealing factorizations, and low rank approximations

L. Grigori

Inria Paris, Sorbonne University

November 2021

stablished by the European Commission

Low rank approximation based on max-vol

Rank revealing QR factorization

 $\ensuremath{\mathsf{LU_CRTP}}$: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Problem: given $A \in \mathbb{R}^{m \times n}$, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.

- Problem with diverse applications
 - $\hfill\square$ from scientific computing: fast solvers for integral equations, H-matrices
 - to data analytics: principal component analysis, image processing, ...

$$Ax
ightarrow ZW^T x$$

Flops $2mn
ightarrow 2(m+n)k$

For any given $A \in \mathbb{R}^{m \times n}$, $m \ge n$ its singular value decomposition is

$$A = U\Sigma V^{T} = \begin{pmatrix} U_{1} & U_{2} & U_{3} \end{pmatrix} \cdot \begin{pmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} V_{1} & V_{2} \end{pmatrix}^{T}$$

where

- $U \in \mathbb{R}^{m \times m}$ is orthogonal matrix, the left singular vectors of A, U_1 is $m \times k$, U_2 is $m \times n - k$, U_3 is $m \times m - n$
- $\Sigma \in \mathbb{R}^{m \times n}$, its diagonal is formed by $\sigma_1(A) \ge \ldots \ge \sigma_n(A) \ge 0$ Σ_1 is $k \times k$, Σ_2 is $n - k \times n - k$
- $V \in \mathbb{R}^{n \times n}$ is orthogonal matrix, the right singular vectors of A, V_1 is $n \times k$, V_2 is $n \times n k$

Properties of SVD

Given $A = U \Sigma V^T$, we have

• $A^T A = V \Sigma^T \Sigma V^T$,

the right singular vectors of A are a set of orthonormal eigenvectors of $A^{T}A$.

•
$$AA^T = U\Sigma^T \Sigma U^T$$
,

the left singular vectors of A are a set of orthonormal eigenvectors of AA^{T} .

The non-negative singular values of A are the square roots of the non-negative eigenvalues of A^TA and AA^T.

If
$$\sigma_k \neq 0$$
 and $\sigma_{k+1}, \ldots, \sigma_n = 0$, then
 $Range(A) = span(U_1)$, $Null(A) = span(V_2)$,
 $Range(A^T) = span(V_1)$, $Null(A) = span(U_2 U_3)$.

Norms

$$||A||_{p} = \max_{||x||_{p=1}} ||Ax||_{p}$$

$$||A||_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}} = \sqrt{\sigma_{1}^{2}(A) + \dots \sigma_{n}^{2}(A)}$$

$$||A||_{2} = \sigma_{max}(A) = \sigma_{1}(A)$$

Some properties:

$$\max_{i,j} |A(i,j)| \leq ||A||_2 \leq \sqrt{mn} \max_{i,j} |A(i,j)|$$
$$||A||_2 \leq ||A||_F \leq \sqrt{min(m,n)} ||A||_2$$

Orthogonal Invariance: If $Q \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ are orthogonal, then

$$||QAZ||_F = ||A||_F$$

 $||QAZ||_2 = ||A||_2$

Best rank-k approximation $A_k = U_k \Sigma_k V_k$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$\min_{ank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_2 = ||A - A_k||_2 = \sigma_{k+1}(A)$$
(1)

$$\min_{rank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_F = ||A - A_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$
(2)

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Matrix A might not exist entirely at a given time, rows or columns are added progressively.

- Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
- Weakly streaming algorithm: can solve a problem with O(1) passes over the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\# \text{ messages} = \Omega \left(\log_2 P \right).$

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\# \text{ messages} = \Omega(\log_2 P)$.

10 of 64

Idea underlying many algorithms

Compute $\tilde{A}_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{so}$ is obtained as:

1. Construct a low dimensional subspace $X = range(A\Omega_1)$, $\Omega_1 \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$\|A - \mathcal{P}^{o}A\|_{2} \leq \gamma \sigma_{k+1}(A), \text{ for some } \gamma \geq 1,$$

where Q_1 is orth. basis of $(A\Omega_1)$

 $\mathcal{P}^{o} = A\Omega_{1}(A\Omega_{1})^{+} = Q_{1}Q_{1}^{T}, \text{ or equiv } \mathcal{P}^{o}a_{j} := \arg\min_{x \in X} \|x - a_{j}\|_{2}$

2. Select a semi-inner product $\langle \Theta_1 \cdot, \Theta_1 \cdot \rangle_2$, $\Theta_1 \in \mathbb{R}^{l' \times m}$ $l' \ge l$, define

 $\mathcal{P}^{so} = A\Omega_1(\Theta_1 A\Omega_1)^+ \Theta_1, \text{ or equiv } \mathcal{P}^{so}a_j := \arg\min_{x \in X} \|\Theta_1(x - a_j)\|_2$

Idea underlying many algorithms

Compute $\tilde{A}_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{so}$ is obtained as:

1. Construct a low dimensional subspace $X = range(A\Omega_1)$, $\Omega_1 \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$\|A - \mathcal{P}^{o}A\|_{2} \leq \gamma \sigma_{k+1}(A)$$
, for some $\gamma \geq 1$,

where Q_1 is orth. basis of $(A\Omega_1)$

 $\mathcal{P}^{o} = A\Omega_{1}(A\Omega_{1})^{+} = Q_{1}Q_{1}^{T}, \text{ or equiv } \mathcal{P}^{o}a_{j} := \arg\min_{x \in X} \|x - a_{j}\|_{2}$

2. Select a semi-inner product $\langle \Theta_1 \cdot, \Theta_1 \cdot \rangle_2$, $\Theta_1 \in \mathbb{R}^{l' \times m}$ $l' \ge l$, define $\mathcal{P}^{so} = A\Omega_1(\Theta_1 A\Omega_1)^+ \Theta_1$, or equiv $\mathcal{P}^{so}a_j := \arg\min_{x \in X} \|\Theta_1(x - a_j)\|_2$

Properties of the approximations

Definitions and some of the results taken from [?].

Definition

[low-rank approximation] A matrix A_k satisfying $||A - A_k||_2 \le \gamma \sigma_{k+1}(A)$ for some $\gamma \ge 1$ will be said to be a (k, γ) low-rank approximation of A.

Definition

[spectrum preserving] If A_k satisfies

$$\sigma_j(A) \geq \sigma_j(A_k) \geq \gamma^{-1}\sigma_j(A)$$

for $j \leq k$ and some $\gamma \geq 1$, it is a (k, γ) spectrum preserving.

Definition

[kernel approximation] If A_k satisfies

$$\sigma_{k+j}(A) \leq \sigma_j(A - A_k) \leq \gamma \sigma_{k+j}(A)$$

for $1 \le j \le n-k$ and some $\gamma \ge 1$, it is a (k, γ) kernel approximation of A.

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Theorem ([Goreinov and Tyrtshnikov, 2001, Thm. 2.1]) Given the matrix

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
(3)

where $A_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of A, then we have

$$\|S(A_{11})\|_{\max} \le (k+1)\sigma_{k+1},$$
(4)

where $S(A_{11}) = A_{22} - A_{21}A_{11}^{-1}A_{12}$.

But finding a submatrix with maximum volume is NP-hard [Civril and Magdon-Ismail, 2013].

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Given A of size $m \times n$, consider the decomposition

$$AP_c = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix},$$
(5)

where R_{11} is $k \times k$, P_c and k are chosen such that $||R_{22}||_2$ is small and R_{11} is well-conditioned.

 By the interlacing property of singular values [Golub, Van Loan, 4th edition, page 487],

$$\sigma_i(R_{11}) \leq \sigma_i(A)$$
 and $\sigma_j(R_{22}) \geq \sigma_{k+j}(A)$

for $1 \le i \le k$ and $1 \le j \le n - k$. $\sigma_{k+1}(A) \le \sigma_{max}(R_{22}) = ||R_{22}||$ Given A of size $m \times n$, consider the decomposition

$$AP_c = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix}.$$
 (6)

If $||R_{22}||_2$ is small,

• Q(:, 1:k) forms an approximate orthogonal basis for the range of A,

$$A(:,j) = \sum_{i=1}^{\min(j,k)} R(i,j)Q(:,i) \in span\{Q(:,1), \dots, Q(:,k)\}$$

$$Range(A) \in span\{Q(:,1), \dots, Q(:,k)\}$$

$$P_c \begin{bmatrix} -R_{11}^{-1}R_{12} \\ I \end{bmatrix} \text{ is an approximate right null space of } A.$$

Rank revealing QR factorization

The factorization from equation (7) is rank revealing if

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \gamma_1(n, k),$$

for $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$, where

$$\sigma_{max}(A) = \sigma_1(A) \ge \ldots \ge \sigma_{min}(A) = \sigma_n(A)$$

It is **strong** rank revealing [Gu and Eisenstat, 1996] if in addition $||R_{11}^{-1}R_{12}||_{max} < \gamma_2(n,k)$

Low rank approximation with strong RRQR

Given $A \in \mathbb{R}^{m \times n}$ and $R_{11} \in \mathbb{R}^{k \times k}$,

$$\begin{aligned} AP_c &= QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}, \\ \tilde{A}_{qr} &= Q_1 \begin{pmatrix} R_{11} & R_{12} \end{pmatrix} P_c^T = Q_1 Q_1^T A = \mathcal{P}^o A \end{aligned}$$

It can be shown that

$$\sigma_j(R_{22}) = \sigma_j(A - \tilde{A}_{qr})$$

• [Gu and Eisenstat, 1996] show that given k and f, there exists permutation $V \in \mathbb{R}^{n \times n}$ such that the factorization satisfies,

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \gamma(n,k), \quad \gamma(n,k) = \sqrt{1 + f^2 k(n-k)}$$
$$||R_{11}^{-1}R_{12}||_{max} \leq f$$

for $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$.

• Cost: 4mnk (QRCP) plus O(mnk) flops and $O(k \log_2 P)$ messages.

 $ightarrow ilde{A}_{qr}$ with strong RRQR is $(k, \gamma(n, k))$ spectrum preserving and kernel approximation of A

19 of 64

Given $A \in \mathbb{R}^{m \times n}$ and $R_{11} \in \mathbb{R}^{k \times k}$,

$$\begin{aligned} AP_c &= QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}, \\ \tilde{A}_{qr} &= Q_1 \begin{pmatrix} R_{11} & R_{12} \end{pmatrix} P_c^T = Q_1 Q_1^T A = \mathcal{P}^o A \end{aligned}$$

We show that

$$\sigma_j(R_{22}) = \sigma_j(A - \tilde{A}_{qr})$$

 $\sigma_j(A - \tilde{A}_{qr}) = \sigma_j(A - Q_1 Q_1^T A) = \sigma_j(Q_2 Q_2^T A) = \sigma_j(Q_2(0 R_{22}) P_c^{-1}) = \sigma_j(R_{22})$

QR with column pivoting [Businger and Golub, 1965]

Idea:

- At first iteration, trailing columns decomposed into parallel part to first column (or e₁) and orthogonal part (in rows 2 : m).
- The column of maximum norm is the column with largest component orthogonal to the first column.

Implementation:

- Find at each step of the QR factorization the column of maximum norm.
- Permute it into leading position.
- If rank(A) = k, at step k + 1 the maximum norm is 0.
- No need to compute the column norms at each step, but just update them since

$$Q^T v = w = \begin{bmatrix} w_1 \\ w(2:n) \end{bmatrix}, ||w(2:n)||_2^2 = ||v||_2^2 - w_1^2$$

QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm

column norm vector: $colnrm(j) = ||A(:,j)||_2, j = 1 : n.$ for j = 1 : n do

Find column p of largest norm

- if $colnrm[p] > \epsilon$ then
 - 1. Pivot: swap columns j and p in A and modify colnrm.
 - 2. Compute Householder matrix H_j s.t. $H_jA(j : m, j) = \pm ||A(j : m, j)||_2 e_1$.
 - 3. Update $A(j:m, j+1:n) = H_j A(j:m, j+1:n)$.

4. Norm downdate $colnrm(j+1:n)^2 - = A(j, j+1:n)^2$. else Break

end if

end for

If algorithm stops after k steps

$$\sigma_{max}(R_{22}) \leq \sqrt{n-k} \max_{1 \leq j \leq n-k} ||R_{22}(:,j)||_2 \leq \sqrt{n-k}\epsilon$$

Strong RRQR [Gu and Eisenstat, 1996]

Since

$$det(R_{11}) = \prod_{i=1}^{k} \sigma_i(R_{11}) = \sqrt{det(A^T A)} / \prod_{i=1}^{n-k} \sigma_i(R_{22})$$

a strong RRQR is related to a large $det(R_{11})$. The following algorithm interchanges columns that increase $det(R_{11})$, given f and k.

```
Compute a strong RRQR factorization, given k:

Compute A\Pi = QR by using QRCP

while there exist i and j such that det(\tilde{R}_{11})/det(R_{11}) > f, where

R_{11} = R(1:k, 1:k), \Pi_{i,j+k} permutes columns i and j + k,

R\Pi_{i,j+k} = \tilde{Q}\tilde{R}, \tilde{R}_{11} = \tilde{R}(1:k, 1:k) do

Find i and j

Compute R\Pi_{i,j+k} = \tilde{Q}\tilde{R} and \Pi = \Pi\Pi_{i,j+k}

end while
```

Strong RRQR (contd)

It can be shown that

$$\frac{\det(\tilde{R}_{11})}{\det(R_{11})} = \sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^2 + \rho_i^2\left(R_{11}\right)\chi_j^2\left(R_{22}\right)}$$
(7)

for any $1 \le i \le k$ and $1 \le j \le n-k$ (the 2-norm of the *j*-th column of *A* is $\chi_j(A)$, and the 2-norm of the *j*-th row of A^{-1} is $\rho_j(A)$).

Compute a strong RRQR factorization, given k: Compute $A\Pi = QR$ by using QRCP while $\max_{1 \le i \le k, 1 \le j \le n-k} \sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^2 + \rho_i^2\left(R_{11}\right)\chi_j^2\left(R_{22}\right)} > f$ do Find i and j such that $\sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^2 + \rho_i^2\left(R_{11}\right)\chi_j^2\left(R_{22}\right)} > f$ Compute $R\Pi_{i,j+k} = \tilde{Q}\tilde{R}$ and $\Pi = \Pi\Pi_{i,j+k}$ end while det(R₁₁) strictly increases with every permutation, no permutation repeats, hence there is a finite number of permutations to be performed.

Theorem

[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in equation (7) satisfies inequality

$$\sqrt{\left(R_{11}^{-1}R_{12}\right)_{i,j}^{2} + \rho_{i}^{2}\left(R_{11}\right)\chi_{j}^{2}\left(R_{22}\right) < f}$$

for any $1 \leq i \leq k$ and $1 \leq j \leq n-k$, then

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1+f^2k(n-k)},$$

for any $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$.

Sketch of the proof ([Gu and Eisenstat, 1996])

Assume A is full column rank. Let $\alpha = \sigma_{max}(R_{22})/\sigma_{min}(R_{11})$, and let

$$R = \begin{bmatrix} R_{11} & \\ & R_{22}/\alpha \end{bmatrix} \begin{bmatrix} I_k & R_{11}^{-1}R_{12} \\ & \alpha I_{n-k} \end{bmatrix} = \tilde{R}_1 W_1.$$

We have

$$\sigma_{i}(R) \leq \sigma_{i}(R_{1})||W_{1}||_{2}, 1 \leq i \leq n.$$

Since $\sigma_{min}(R_{11}) = \sigma_{max}(R_{22}/\alpha)$, then $\sigma_{i}(\tilde{R}_{1}) = \sigma_{i}(R_{11})$, for $1 \leq i \leq k.$
 $||W_{1}||_{2}^{2} \leq 1 + ||R_{11}^{-1}R_{12}||_{2}^{2} + \alpha^{2} = 1 + ||R_{11}^{-1}R_{12}||_{2}^{2} + ||R_{22}||_{2}^{2}||R_{11}^{-1}||_{2}^{2}$
 $\leq 1 + ||R_{11}^{-1}R_{12}||_{F}^{2} + ||R_{22}||_{F}^{2}||R_{11}^{-1}||_{F}^{2}$
 $= 1 + \sum_{i=1}^{k} \sum_{j=1}^{n-k} \left((R_{11}^{-1}R_{12})_{i,j}^{2} + \rho_{i}^{2}(R_{11}) \chi_{j}^{2}(R_{22}) \right) \leq 1 + f^{2}k(n-k)$

We obtain,

$$\frac{\sigma_i(A)}{\sigma_i(R_{11})} \leq \sqrt{1 + f^2 k(n-k)}$$

27 of 64

1D tournament pivoting (1Dc-TP)

ID column block partition of A, select k cols from each block with strong RRQR

Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \parallel & \parallel \\ (Q_{01}R_{01}P_{c01}^{T} & Q_{11}R_{11}P_{c11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

 $A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}P_{c02}^{T} \to I_{02}$

Return selected columns A(:, I02)

1D tournament pivoting (1Dc-TP)

ID column block partition of A, select k cols from each block with strong RRQR

Reduction tree to select k cols from sets of 2k cols,

$$\begin{pmatrix} A(:, l_{00} \cup l_{10}) & A(:, l_{20} \cup l_{30}); \\ \| & \| \\ (Q_{01}R_{01}P_{c_{01}}^{T} & Q_{11}R_{11}P_{c_{11}}^{T}) \\ \downarrow & \downarrow \\ l_{01} & l_{11} \end{pmatrix}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02} R_{02} P_{c_{02}}^{T} \to I_{02}$$

• Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

- 1D column block partition of *A*, select *k* cols from each block with strong RRQR $(A_{11} A_{12} A_{13} A_{14})$ $\| \| \| \| \| \| \|$ $(Q_{00}R_{00}P_{c_{00}}^{T} Q_{10}R_{10}P_{c_{10}}^{T} Q_{20}R_{20}P_{c_{20}}^{T} Q_{30}R_{30}P_{c_{30}}^{T})$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $I_{00} I_{10} I_{20} I_{30}$
- Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \parallel & \parallel \\ (Q_{01}R_{01}P_{c01}^{T} & Q_{11}R_{11}P_{c11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}P_{c_{02}}^{T} \to I_{02}$$

• Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

- 1D column block partition of *A*, select *k* cols from each block with strong RRQR $\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ \| & \| & \| & \| \\ (Q_{00}R_{00}P_{c_{00}}^{-T} & Q_{10}R_{10}P_{c_{10}}^{-T} & Q_{20}R_{20}P_{c_{20}}^{-T} & Q_{30}R_{30}P_{c_{30}}^{-T} \end{pmatrix} \begin{pmatrix} A_{10} & A_{10} \\ B_{10} & B_{10} & B_{10} \\ A_{10} & A_{10} & B_{10} \\ A_{10} & A_{10} & A_{10} \\ A_{10} & A_{10} \\ A_{10} & A_{10} &$
- Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30});) \\ \parallel & \parallel \\ (Q_{01}R_{01}P_{c_{01}}^{T} & Q_{11}R_{11}P_{c_{11}}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}P_{c02}^{T} \to I_{02}$$

Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30});) \\ \parallel & \parallel \\ (Q_{01}R_{01}P_{c_{01}}^{T} & Q_{11}R_{11}P_{c_{11}}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}P_{c02}^{T} \to I_{02}$$

• Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

■ 1D column block partition of A, select k cols from each block with strong RRQR $\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ \| & \| & \| & \| \\ (Q_{00}R_{00}P_{c00}^{-T} & Q_{10}R_{10}P_{c10}^{-T} & Q_{20}R_{20}P_{c20}^{-T} & Q_{30}R_{30}P_{c3}^{-T} \\ \downarrow & \downarrow & \downarrow \\ l_{00} & l_{10} & l_{20} & l_{30} \end{pmatrix}$

Reduction tree to select k cols from sets of 2k cols,

$$\begin{pmatrix} A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \| & \| \\ (Q_{01}R_{01}P_{c_{01}}^{T} & Q_{11}R_{11}P_{c_{11}}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{pmatrix}$$

 $A(:, I_{01} \cup I_{11}) = Q_{02} R_{02} P_{c02}^{T} \rightarrow I_{02}$

Return selected columns A(:, I₀₂)

Given W of size $m \times 2k$, m >> k, k columns are selected as:

 $W = QR_{02}$ using TSQR $R_{02}P_c = Q_2R_2$ using QRCP Return $WP_c(:, 1:k)$

Parallel:
$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} \xrightarrow{\rightarrow} \begin{array}{c} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{array} \xrightarrow{\rightarrow} \begin{array}{c} R_{01} \\ R_{01} \\ R_{02} \\ R_{11} \end{array}$$

Reduction trees

Any shape of reduction tree can be used during CA_RRQR, depending on the underlying architecture.

Notation: at each node of the reduction tree, $f(A_{ij})$ returns the first *b* columns obtained after performing (strong) RRQR of A_{ij} .

30 of 64

It is shown in [Demmel et al., 2015] that the column permutation computed by CA-RRQR satisfies

$$\chi_{j}^{2}\left(R_{11}^{-1}R_{12}\right) + \left(\chi_{j}\left(R_{22}\right)/\sigma_{\min}(R_{11})\right)^{2} \le F_{TP}^{2}, \text{ for } j = 1, \dots, n-k.$$
 (8)

where F_{TP} depends on k, f, n, the shape of reduction tree used during tournament pivoting, and the number of iterations of CARRQR.

CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with the following bounds:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)},$$
$$||R_{11}^{-1}R_{12}||_{max} \leq F_{TP}$$

Binary tree of depth log₂(n/k),

$$F_{TP} \leq \frac{1}{\sqrt{2k}} \left(n/k \right)^{\log_2\left(\sqrt{2}fk\right)}.$$
(9)

The upper bound is a decreasing function of k when $k > \sqrt{n/(\sqrt{2}f)}$. Flat tree of depth n/k,

$$F_{TP} \leq \frac{1}{\sqrt{2k}} \left(\sqrt{2} f k \right)^{n/k}.$$
 (10)

Row block partition A as e.g.

$$A = \begin{pmatrix} A_{11} \\ A_{21} \\ A_{31} \\ A_{41} \end{pmatrix} = \begin{pmatrix} Q_{00}R_{00}P_{c_{10}}^{-1} \\ Q_{10}R_{10}P_{c_{10}}^{-1} \\ Q_{20}R_{20}P_{c_{20}}^{-1} \\ Q_{30}R_{30}P_{c_{30}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow \text{ select } k \text{ cols } I_{10}} A \text{ select } k \text{ cols } I_{20} \\ \xrightarrow{\rightarrow \text{ select } k \text{ cols } I_{20}} A \text{ select } k \text{ cols } I_{30} \end{pmatrix}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix} = \begin{pmatrix} Q_{01}R_{01}P_{c_{01}}^{-1} \\ Q_{11}R_{11}P_{c_{11}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01} \\ \rightarrow I_{11} \end{pmatrix}$$

$$A(:, l_{01} \cup l_{11}) = (Q_{02}R_{02}P_{c_{02}}^{-1}) \rightarrow l_{02}$$

Return columns $A(:, l_{02})$

Row block partition A as e.g.

$$A = \begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix} = \begin{pmatrix} Q_{00}R_{00}P_{c00}^{-1} \\ Q_{10}R_{10}P_{c10}^{-1} \\ Q_{20}R_{20}P_{c20}^{-1} \\ Q_{30}R_{30}P_{c30}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} \text{select } k \text{ cols } I_{00} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{20} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} 1 \\ \xrightarrow{\rightarrow} 1 \\ \xrightarrow{\rightarrow}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}P_{c_{01}}^{-1} \\ Q_{11}R_{11}P_{c_{11}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}P_{c_{02}}^{-1}) \rightarrow I_{02}$$

Row block partition A as e.g.

$$A = \underbrace{\begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix}}_{Q_0 R_{10} R_{10} P_{c_{10}}^{-1}} \begin{vmatrix} \Rightarrow \text{ select } k \text{ cols } I_{00} \\ \Rightarrow \text{ select } k \text{ cols } I_{10} \\ \Rightarrow \text{ select } k \text{ cols } I_{10} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{30} \end{vmatrix}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}P_{c_{01}}^{-1} \\ Q_{11}R_{11}P_{c_{11}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}P_{c_{02}}^{-1}) \rightarrow I_{02}$$

Row block partition A as e.g.

$$A = \underbrace{\begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix}}_{Q_0 R_{20} R_{20} P_{c_{20}}^{-1}} \begin{vmatrix} \Rightarrow \text{ select } k \text{ cols } I_{00} \\ \Rightarrow \text{ select } k \text{ cols } I_{10} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K \text{ select } k \text{ cols } I_{20} \\ \Rightarrow K$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10})}{\begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}P_{c_{01}}^{-1} \\ Q_{11}R_{11}P_{c_{11}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{11}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}P_{c_{02}}^{-1}) \rightarrow I_{02}$$

Row block partition A as e.g.

$$A = \underbrace{\begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix}}_{Q_0 R_{10} R_{10} P_{c_{10}}^{-1}} \begin{vmatrix} \Rightarrow \text{ select } k \text{ cols } I_{00} \\ \Rightarrow \text{ select } k \text{ cols } I_{10} \\ \Rightarrow \text{ select } k \text{ cols } I_{10} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{20} \\ \Rightarrow \text{ select } k \text{ cols } I_{30} \end{vmatrix}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}P_{c_{01}}^{-1} \\ Q_{11}R_{11}P_{c_{11}}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{11}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}P_{c_{02}}^{-1}) \rightarrow I_{02}$$

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow & \downarrow & \downarrow \\ I_{00} & I_{10} & I_{20} & I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

 $A(:, I_{00})$ $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

Return columns selected by 1Dc-TP A(:, I₀₂)

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \quad \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \quad \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \quad \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ I_{00} \qquad I_{10} \qquad I_{20} \qquad I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

 $A(:, I_{00})$ $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

Return columns selected by 1Dc-TP $A(:, I_{02})$

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \quad \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \quad \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \quad \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ I_{00} \qquad I_{10} \qquad I_{20} \qquad I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

$$A(:, I_{00})$$
 $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

Return columns selected by 1Dc-TP A(:, I₀₂)

- Stability close to QRCP for many tested matrices.
- Absolute value of diagonals of R referred to as R-values.
- Methods compared
 - RRQR: QR with column pivoting
 - □ CA-RRQR-B with tournament pivoting 1Dc-TP based on binary tree
 - □ CA-RRQR-F with tournament pivoting 1Dc-TP based on flat tree

SVD

Numerical results (contd)

Left: exponent - exponential Distribution, $\sigma_1 = 1$, $\sigma_i = \alpha^{i-1}$ (i = 2, ..., n), $\alpha = 10^{-1/11}$ [Bischof, 1991]

Right: shaw - 1D image restoration model [Hansen, 2007]

$$=\min\{||(A\Pi_0)(:,i)||_2, ||(A\Pi_1)(:,i)||_2, ||(A\Pi_2)(:,i)||_2\}$$
(11)

$$\epsilon \max\{||(A\Pi_0)(:,i)||_2, ||(A\Pi_1)(:,i)||_2, ||(A\Pi_2)(:,i)||_2\}$$
(12)

where $\Pi_j (j = 0, 1, 2)$ are the permutation matrices obtained by QRCP, CARRQR-B, and CARRQR-F, and ϵ is the machine precision.

36 of 64

Numerical experiments

Original image, size 1190×1920

Rank-10 approx, 2D TP 8 \times 8 procs

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Singular values and ratios

Rank-50 approx, 2D TP 8 \times 8 procs

Numerical results - a set of 18 matrices

- Ratios $|R(i, i)|/\sigma_i(R)$, for QRCP (top plot), CARRQR-B (second plot), and CARRQR-F (third plot).
- The number along x-axis represents the index of test matrices.

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

 $\ensuremath{\mathsf{LU}_\mathsf{CRTP}}$: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

LU versus QR - filled graph $G^+(A)$

• Consider A is SPD and $A = II^{T}$ Given G(A) = (V, E), $G^+(A) = (V, E^+)$ is defined as: there is an edge $(i,j) \in G^+(A)$ iff there is a path from i to j in G(A)going through lower numbered vertices.

- $G(L + L^T) = G^+(A)$, ignoring cancellations.
- Definition holds also for directed graphs (LU factorization).

Filled column intersection graph $G^+_{\cap}(A)$

- Graph of the Cholesky factor of $A^T A$
- $G(R) \subseteq G_{\cap}^+(A)$
- $A^T A$ can have many more nonzeros than A

Numerical stability

• Let \hat{L} and \hat{U} be the computed factors of the block LU factorization. Then

$$\hat{L}\hat{U} = A + E, \quad \|E\|_{\max} \le c(n)\epsilon \left(\|A\|_{\max} + \|\hat{L}\|_{\max}\|\hat{U}\|_{\max}\right).$$
(13)

• For partial pivoting, $||L||_{max} \le 1$, $||U||_{max} \le 2^n ||A||_{max}$ In practice, $||U||_{max} \le \sqrt{n} ||A||_{max}$

Low rank approximation based on LU factorization

Given desired rank k, the factorization has the form

$$P_{r}AP_{c} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix}, \quad (14)$$

where $A \in \mathbb{R}^{m \times n}$, $\bar{A}_{11} \in \mathbb{R}^{k,k}$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12}$.

• The rank-k approximation matrix \tilde{A}_k is

$$\tilde{A}_{k} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} = \begin{pmatrix} \bar{A}_{11} \\ \bar{A}_{21} \end{pmatrix} \bar{A}_{11}^{-1} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix}.$$
(15)

• \bar{A}_{11}^{-1} is never formed, its factorization is used when \tilde{A}_k is applied to a vector.

Non-exhaustive list for selecting k columns and rows:

- 1. Select k linearly independent columns of A (call result B), by using
 - 1.1 (strong) QRCP/tournament pivoting using QR,
 - 1.2 LU / tournament pivoting based on LU, with some form of pivoting (column, complete, rook),
 - 1.3 randomization: premultiply X = ZA where random matrix Z is short and fat, then pick k rows from X^{T} , by some method from 2) below,
 - 1.4 tournament pivoting based on randomized algorithms to select columns at each step.
- 2. Select k linearly independent rows of B, by using
 - 2.1 (strong) QRCP / tournament pivoting based on QR on B^{T} , or on Q^{T} , the rows of the thin Q factor of B,
 - 2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook) on B,
 - 2.3 tournament pivoting based on randomized algorithms to select rows.

- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

- Partition A = (A₁, A₂, A₃, A₄).
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - □ At each node *j* do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}

LU_CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting on matrix A of size $m \times n$:

1. Select k columns by using tournament pivoting, permute them in front, bounds for s.v. governed by $q_1(n, k)$

$$AP_{c} = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$$

2. Select k rows from $(Q_{11}; Q_{21})^T$ of size $m \times k$ by using tournament pivoting,

$$P_r Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix}$$

such that $||\bar{Q}_{21}\bar{Q}_{11}^{-1}||_{max} \leq F_{TP}$ and bounds for s.v. governed by $q_2(m,k)$.

Orthogonal matrices

Given orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and its partitioning

$$Q = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix}, \tag{16}$$

the selection of k cols by tournament pivoting from $(Q_{11}; Q_{21})^T$ leads to the factorization

$$P_{r}Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ S(\bar{Q}_{11}) \end{pmatrix}$$
(17)
where $S(\bar{Q}_{11}) = \bar{Q}_{22} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{Q}_{12} = \bar{Q}_{22}^{-T}$ since
 $S(\bar{Q}_{11})\bar{Q}_{22}^{T} = \bar{Q}_{22}\bar{Q}_{22}^{T} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{Q}_{12}\bar{Q}_{22}^{T} = I - \bar{Q}_{21}\bar{Q}_{21}^{T} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{Q}_{12}\bar{Q}_{22}^{T}$
$$= I - \bar{Q}_{21}(\bar{Q}_{21}^{T} - \bar{Q}_{11}^{-1}\bar{Q}_{11}\bar{Q}_{21}) = I$$

w

Orthogonal matrices (contd)

The factorization

$$P_{r}Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ & S(\bar{Q}_{11}) \end{pmatrix}$$
(18)

satisfies:

$$\rho_j(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP},$$
(19)

$$\frac{1}{q_2(m,k)} \leq \sigma_i(\bar{Q}_{11}) \leq 1, \tag{20}$$

$$\sigma_{\min}(\bar{Q}_{11}) = \sigma_{\min}(\bar{Q}_{22}) \tag{21}$$

for all $1 \le i \le k$, $1 \le j \le m - k$, where $\rho_j(A)$ is the 2-norm of the j-th row of A, $q_2(m, k) = \sqrt{1 + F_{TP}^2(m - k)}$. Exercice: show that $\sigma_{min}(\bar{Q}_{11}) = \sigma_{min}(\bar{Q}_{22})$ by considering unit vectors $x \in \mathbb{R}^k, y \in \mathbb{R}^{m-k}$

$$1 = ||\bar{Q}_{11}x||^2 + ||\bar{Q}_{21}x||^2, \ 1 = ||\bar{Q}_{22}^Ty||^2 + ||\bar{Q}_{21}^Ty||^2$$

and showing $\min_{||x||=1} ||\bar{Q}_{11}x||^2 = \min_{||y||=1} ||\bar{Q}_{22}^T y||^2$

(

49 of 64

Sketch of the proof

$$P_{r}AP_{c} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ S(\bar{A}_{11}) \end{pmatrix}$$
$$= \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ S(\bar{Q}_{11}) \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}$$
(22)

where

$$\begin{aligned} \bar{Q}_{21}\bar{Q}_{11}^{-1} &= \bar{A}_{21}\bar{A}_{11}^{-1}, \\ S(\bar{A}_{11}) &= S(\bar{Q}_{11})R_{22} = \bar{Q}_{22}^{-T}R_{22}. \end{aligned}$$

Sketch of the proof (contd)

$$\bar{A}_{11} = \bar{Q}_{11}R_{11},$$
(23)
$$S(\bar{A}_{11}) = S(\bar{Q}_{11})R_{22} = \bar{Q}_{22}^{-T}R_{22}.$$
(24)

We obtain

$$\sigma_i(A) \geq \sigma_i(\bar{A}_{11}) \geq \sigma_{min}(\bar{Q}_{11})\sigma_i(R_{11}) \geq \frac{1}{q_1(n,k)q_2(m,k)}\sigma_i(A),$$

We also have that

$$egin{array}{rl} \sigma_{k+j}(A) \leq \sigma_j(S(ar{A}_{11})) &=& \sigma_j(S(ar{Q}_{11})R_{22}) \leq ||S(ar{Q}_{11})||_2\sigma_j(R_{22}) \ &\leq& q_1(n,k)q_2(m,k)\sigma_{k+j}(A), \end{array}$$

where $q_1(n,k) = \sqrt{1 + F_{TP}^2(n-k)}, \ q_2(m,k) = \sqrt{1 + F_{TP}^2(m-k)}.$

LU_CRTP factorization - bounds if rank = k

Given A of size $m \times n$, one step of LU_CRTP computes the decomposition

$$\bar{A} = P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{Q}_{21} \bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix}$$
(25)

where \bar{A}_{11} is of size $k \times k$ and

$$S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12} = \bar{A}_{22} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{A}_{12}.$$
 (26)

It satisfies the following properties:

$$\rho_{l}(\bar{A}_{21}\bar{A}_{11}^{-1}) = \rho_{l}(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP},$$

$$||S(\bar{A}_{11})||_{max} \leq \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^{2}(m-k)}\sigma_{k}(A))$$
(27)

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(\bar{A}_{11}))}{\sigma_{k+j}(A)} \leq q(m, n, k),$$

$$(28)$$

for any $1 \le l \le m-k$, $1 \le i \le k$, and $1 \le j \le \min(m, n) - k$, $q(m, n, k) = q_1(n, k)q_2(m, k) = \sqrt{(1 + F_{TP}^2(n-k))(1 + F_{TP}^2(m-k))}.$

52 of 64

Details on the pivot growth

First bound: $\rho_l(\bar{A}_{21}\bar{A}_{11}^{-1}) = \rho_l(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP}$, for each row l of $\bar{A}_{21}\bar{A}_{11}^{-1}$. Element growth in $S(\bar{A}_{11})$ is bounded as follows.

$$\begin{aligned} |S(\bar{A}_{11})(i,j)| &= |\bar{A}_{22}(i,j) - (\bar{A}_{21}\bar{A}_{11}^{-1})(i,:)\bar{A}_{12}(:,j)| \\ &\leq ||A||_{max} + ||(\bar{A}_{21}\bar{A}_{11}^{-1})(i,:)||_2 ||\bar{A}_{12}(:,j)||_2 \\ &\leq ||A||_{max} + \rho_i(\bar{A}_{21}\bar{A}_{11}^{-1})\sqrt{k}||A||_{max} \\ &\leq (1 + F_{TP}\sqrt{k})||A||_{max} \end{aligned}$$

Second bound: $\chi_j(R_{22}) = ||R_{22}(:,j)||_2 \leq F_{TP}\sigma_{min}(R_{11}) \leq F_{TP}\sigma_k(A)$. The absolute value of an element of $S(\bar{A}_{11})$ can be bounded as follows,

$$\begin{array}{lll} S(\bar{A}_{11})(i,j)| &= & |\bar{Q}_{22}^{-T}(i,:)R_{22}(:,j)| \leq ||\bar{Q}_{22}^{-1}(:,i)||_2 ||R_{22}(:,j)||_2 \\ &\leq & ||\bar{Q}_{22}^{-1}||_2 ||R_{22}(:,j)||_2 = ||R_{22}(:,j)||_2 / \sigma_{\min}(\bar{Q}_{22}) \\ &\leq & q_2(m,k)F_{TP}\sigma_k(A). \end{array}$$

Hence:

$$||S(\bar{A}_{11})||_{max} \leq \min((1 + F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1 + F_{TP}^2(m-k)\sigma_k(A)})$$

53 of 64

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Numerical results

Left: exponent - exponential Distribution, $\sigma_1 = 1$, $\sigma_i = \alpha^{i-1}$ (i = 2, ..., n), $\alpha = 10^{-1/11}$ [Bischof, 1991]

Right: foxgood - Severely ill-posed test problem of the 1st kind Fredholm integral equation used by Fox and Goodwin

Numerical results

- Here k = 16 and the factorization is truncated at K = 128 (bars) or K = 240 (red lines).
- LU_CTP: Column tournament pivoting + partial pivoting
- All singular values smaller than machine precision, ϵ , are replaced by ϵ .
- The number along x-axis represents the index of test matrices.

56 of 64

Results for image of size 919×707

Original image

Rank-38 approx, LUPP

Rank-38 approx, SVD

Singular value distribution

Rank-75 approx, LU_CRTP

Rank-38 approx, LU_CRTP

Results for image of size 691×505

Rank-105 approx, SVD

Singular value distribution

Rank-105 approx, LUPP

Rank-105 approx, LU_CRTP

Rank-209 approx, LU_CRTP

Comparing nnz in the factors L, U versus Q, R

Name/size	Nnz	Rank K	Nnz QRCP/	Nnz LU_CRTP/		
	A(:, 1:K)		Nnz LU_CRTP	Nnz LUPP		
gemat11	1232	128	2.1	2.2		
4929	4895	512	3.3	2.6		
	9583	1024	11.5	3.2		
wang3	896	128	3.0	2.1		
26064	3536	512	2.9	2.1		
	7120	1024	2.9	1.2		
Rfdevice	633	128	10.0	1.1		
74104	2255	512	82.6	0.9		
	4681	1024	207.2	0.0		
Parab_fem	896	128	_	0.5		
525825	3584	512	—	0.3		
	7168	1024	—	0.2		
Mac_econ	384	128	—	0.3		
206500	1535	512	-	0.3		
	5970	1024	_	0.2		

Selection of 256 columns by tournament pivoting

- Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices:

dimension at leaves on 32 procs

■ Parab_fem: 528825 × 528825

■ Mac_econ: 206500 × 206500

 528825×16432

 206500×6453

	Time Time leaves		Number of MPI processes						
	2k cols	32procs	16	32	64	128	256	512	1024
		SPQR + dGEQP3							
Parab_fem	0.26	0.26 + 1129	46.7	24.5	13.7	8.4	5.9	4.8	4.4
Mac_econ	0.46	25.4 + 510	132.7	86.3	111.4	59.6	27.2	_	-

- [Demmel et al., 2015] Communication avoiding rank revealing QR factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J. Matrix Analysis and Applications, 2015.
- Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, with S. Cayrols and J. Demmel, Inria TR 8910.

References (1)

Bischof, C. H. (1991).

A parallel QR factorization algorithm with controlled local pivoting. SIAM J. Sci. Stat. Comput., 12:36–57.

Businger, P. A. and Golub, G. H. (1965).

Linear least squares solutions by Householder transformations. Numer. Math., 7:269–276.

Civril, A. and Magdon-Ismail, M. (2013).

Exponential inapproximability of selecting a maximum volume sub-matrix. *Algorithmica*, 65(1):159–176.

Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).

Communication-avoiding rank-revealing qr decomposition. SIAM Journal on Matrix Analysis and its Applications, 36(1):55–89.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

Eisenstat, S. C. and Ipsen, I. C. F. (1995).

Relative perturbation techniques for singular value problems. SIAM J. Numer. Anal., 32(6):1972–1988.

The maximal-volume concept in approximation by low-rank matrices. Contemporary Mathematics, 280:47–52.

References (2)

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869.

Hansen, P. C. (2007).

Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms, (46):189–194.

Results used in the proofs

Interlacing property of singular values [Golub, Van Loan, 4th edition, page 487] Let $A = [a_1| \dots |a_n]$ be a column partitioning of an $m \times n$ matrix with $m \ge n$. If $A_r = [a_1| \dots |a_r]$, then for r = 1 : n - 1

 $\sigma_1(A_{r+1}) \geq \sigma_1(A_r) \geq \sigma_2(A_{r+1}) \geq \ldots \geq \sigma_r(A_{r+1}) \geq \sigma_r(A_r) \geq \sigma_{r+1}(A_{r+1}).$

Given $n \times n$ matrix B and $n \times k$ matrix C, then ([Eisenstat and Ipsen, 1995], p. 1977)

 $\sigma_{\min}(B)\sigma_j(C) \leq \sigma_j(BC) \leq \sigma_{\max}(B)\sigma_j(C), j = 1, \ldots, k.$