Krylov subspace methods and preconditioners

L. Grigori
ALPINES
INRIA and LJLL, Sorbonne Université

November 2021

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods
Conjugate gradient method

Enlarged Krylov methods
Definition and properties
Numerical and parallel performance results

Preconditioned Krylov subspace methods
One level Additive Schwarz methods
Two level preconditioners

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods
Enlarged Krylov methods

Preconditioned Krylov subspace methods

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- A 1M-by-1M submatrix of the web connectivity graph, constructed from an archive at the Stanford WebBase.

Figure: Nonzero structure of the matrix

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- GHS class: Car surface mesh, $n=100196, n n z(A)=544688$

Figure: Nonzero structure of the matrix

Figure: Its undirected graph

Examples from Tim Davis's Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

- Semiconductor simulation matrix from Steve Hamm, Motorola, Inc. circuit with no parasitics, $n=105676, n n z(A)=513072$

Figure: Nonzero structure of the matrix

Examples from Tim Davis's Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

Sparse linear solvers

Direct methods of factorization

- For solving $A x=b$, least squares problems
\square Cholesky, LU, QR, $L D L^{\top}$ factorizations
- Limited by fill-in/memory consumption and scalability

Iterative solvers

- For solving $A x=b$, least squares, $A x=\lambda x$, SVD
- When only multiplying A by a vector is possible
- Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods

Plan

Sparse linear solvers

Krylov subspace methods
Conjugate gradient method

Enlarged Krylov methods

Preconditioned Krylov subspace methods

Krylov subspace methods

Solve $A x=b$ by finding a sequence $x_{1}, x_{2}, \ldots, x_{k}$ that minimizes some measure of error over the corresponding spaces

$$
x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right), \quad i=1, \ldots, k
$$

They are defined by two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)$
2. Petrov-Galerkin condition: $r_{k} \perp \mathscr{L}_{k}$

$$
\Longleftrightarrow\left(r_{k}\right)^{t} y=0, \quad \forall y \in \mathscr{L}_{k}
$$

where

- x_{0} is the initial iterate, r_{0} is the initial residual,
- $\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}$ is the Krylov subspace of dimension k,
- \mathscr{L}_{k} is a well-defined subspace of dimension k.

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

- Russian mathematician Alexei Krylov writes first paper, 1931.
- Lanczos - introduced an algorithm to generate an orthogonal basis for such a subspace when the matrix is symmetric.
- Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to matrix computations (Householder), Quicksort, Fast multipole, FFT.

Choosing a Krylov method

All methods (GMRES, CGS,CG...) depend on SpMV (or variations...) See www.netlib.org/templates/Templates.html for details

Source slide: J. Demmel

Conjugate gradient (Hestenes, Stieffel, 52)

- A Krylov projection method for SPD matrices where $\mathscr{L}_{k}=\mathcal{K}_{k}\left(A, r_{0}\right)$.
- Finds $x^{*}=A^{-1} b$ by minimizing the quadratic function

$$
\begin{aligned}
\phi(x) & =\frac{1}{2}(x)^{t} A x-b^{t} x \\
\nabla \phi(x) & =A x-b=0
\end{aligned}
$$

- After j iterations of CG,

$$
\begin{equation*}
\left\|x^{*}-x_{j}\right\|_{A} \leq 2\left\|x-x_{0}\right\|_{A}\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{j}, \tag{1}
\end{equation*}
$$

where x_{0} is starting vector, $\|x\|_{A}=\sqrt{x^{\top} A x}$ and $\kappa(A)=\left|\lambda_{\max }(A)\right| /\left|\lambda_{\min }(A)\right|$.

Conjugate gradient

- Computes A-orthogonal search directions by conjugation of the residuals

$$
\left\{\begin{array}{l}
p_{1}=r_{0}=-\nabla \phi\left(x_{0}\right) \tag{2}\\
p_{k}=r_{k-1}+\beta_{k} p_{k-1}
\end{array}\right.
$$

- At k-th iteration,

$$
\begin{align*}
p_{k} & =r_{k-1}+\beta_{k} p_{k-1} \tag{3}\\
x_{k} & =x_{k-1}+\alpha_{k} p_{k}=\operatorname{argmin}_{x \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)} \phi(x) \tag{4}\\
r_{k} & =r_{k-1}-\alpha_{k} A p_{k} \tag{5}
\end{align*}
$$

where α_{k} is the step along p_{k}.

- CG algorithm obtained by imposing the orthogonality and the conjugacy conditions

$$
\begin{aligned}
r_{k}^{T} r_{i} & =0, \text { for all } i \neq k, \\
p_{k}^{T} A p_{i} & =0, \text { for all } i \neq k .
\end{aligned}
$$

CG derivation

Since we have $x_{k}=x_{k-1}+\alpha_{k} p_{k}$ we obtain

$$
\begin{array}{r}
r_{k}=r_{k-1}-\alpha_{k} A p_{k} \text { and }\left(r_{k}, r_{k-1}\right)=0 \text { hence } \\
r_{k-1}^{T} r_{k-1}-\alpha_{k} r_{k-1}^{T} A p_{k}=0 \Longrightarrow \alpha_{k}=\frac{\left(r_{k-1}, r_{k-1}\right)}{\left(A p_{k}, r_{k-1}\right)}
\end{array}
$$

Since we have $p_{k}=r_{k-1}+\beta_{k} p_{k-1}$,

$$
\left(A p_{k}, r_{k-1}\right)=\left(A p_{k}, p_{k}-\beta_{k} p_{k-1}\right)=\left(A p_{k}, p_{k}\right) \Longrightarrow \alpha_{k}=\frac{\left(r_{k-1}, r_{k-1}\right)}{\left(A p_{k}, p_{k}\right)}
$$

Since $p_{k}=r_{k-1}+\beta_{k} p_{k-1}$ is A -orthogonal to p_{k-1} we obtain
$\beta_{k}=-\frac{\left(r_{k-1}, A p_{k-1}\right)}{\left(p_{k-1}, A p_{k-1}\right)}$ and $A p_{k-1}=\frac{1}{\alpha_{k-1}}\left(r_{k-2}-r_{k-1}\right) \Longrightarrow \beta_{k}=\frac{\left(r_{k-1}, r_{k-1}\right)}{\left(r_{k-2}, r_{k-2}\right)}$

CG algorithm

Algorithm 1 The CG Algorithm

1: $r_{0}=b-A x_{0}, \rho_{0}=\left\|r_{0}\right\|_{2}^{2}, p_{1}=r_{0}, k=1$
2: while ($\sqrt{\rho_{k}}>\epsilon\|b\|_{2}$ and $k<k_{\text {max }}$) do

$$
\text { if }(k \neq 1) \text { then }
$$

4: $\quad \beta_{k}=\left(r_{k-1}, r_{k-1}\right) /\left(r_{k-2}, r_{k-2}\right)$
5: $\quad p_{k}=r_{k-1}+\beta_{k} p_{k-1}$
6: \quad end if
7: $\quad \alpha_{k}=\left(r_{k-1}, r_{k-1}\right) /\left(A p_{k}, p_{k}\right)$
8: $\quad x_{k}=x_{k-1}+\alpha_{k} p_{k}$
9: $\quad r_{k}=r_{k-1}-\alpha_{k} A p_{k}$
10: $\quad \rho_{k}=\left\|r_{k}\right\|_{2}^{2}$
11: $\quad k=k+1$

12: end while

Properties of CG

- The directions $p_{1}, \ldots p_{n}$ are A-conjugate, the following properties are satisfied:

$$
\begin{aligned}
\left(A p_{k}, p_{j}\right) & =0, \text { for all } k, j, k \neq j \\
\left(r_{k}, r_{j}\right) & =0, \text { for all } k, j, k \neq j \\
\left(p_{k}, r_{j}\right) & =0, \text { for all } k, j, k<j
\end{aligned}
$$

- The Krylob subspace is spanned by the residuals and the search directions:

$$
\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}=\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}
$$

Adviced exercice: prove the above relations, e.g. by using recurrence on equations (3), (4), (5).
We do not prove (4) and (1), the proofs are not required for the exam. The proofs can be found in [Saad, 2003]

Challenge in getting efficient and scalable solvers

- A Krylov solver finds x_{k+1} from $x_{0}+\mathcal{K}_{k+1}\left(A, r_{0}\right)$ where

$$
\mathcal{K}_{k+1}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k} r_{0}\right\},
$$

such that the Petrov-Galerkin condition $b-A x_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors [x_{1}, \ldots, x_{k}]
- Finds best solution x_{k+1} as linear combination of $\left[x_{1}, \ldots, x_{k}\right]$

Typically, each iteration requires Sparse matrix vector product \rightarrow point-to-point communication Dot products for orthogonalization \rightarrow global communication

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

Challenge in getting efficient and scalable solvers

- A Krylov solver finds x_{k+1} from $x_{0}+\mathcal{K}_{k+1}\left(A, r_{0}\right)$ where

$$
\mathcal{K}_{k+1}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k} r_{0}\right\},
$$

such that the Petrov-Galerkin condition $b-A x_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors [x_{1}, \ldots, x_{k}]
- Finds best solution x_{k+1} as linear combination of $\left[x_{1}, \ldots, x_{k}\right]$

Typically, each iteration requires

- Sparse matrix vector product \rightarrow point-to-point communication
- Dot products for orthogonalization \rightarrow global communication

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

Ways to improve performance

- Improve the performance of sparse matrix-vector product.
- Improve the performance of collective communication.
- Change numerics - reformulate or introduce Krylov subspace algorithms to:
\square reduce communication,
\square increase arithmetic intensity - compute sparse matrix-set of vectors product.
- Use preconditioners to decrease the number of iterations till convergence.

Plan

Sparse linear solvers

Krylov subspace methods

Enlarged Krylov methods
Definition and properties
Numerical and parallel performance results

Preconditioned Krylov subspace methods

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

- Partition the matrix into N domains
- Split the residual r_{0} into t vectors corresponding to the N domains, obtain R_{0}^{e},

- Generate t new basis vectors, obtain an enlarged Krylov subspace

$$
\mathcal{K}_{t, k}\left(A, r_{0}\right)=\operatorname{span}\left\{R_{0}^{e}, A R_{0}^{e}, A^{2} R_{0}^{e}, \ldots, A^{k-1} R_{0}^{e}\right\}
$$

- Search for the solution of the system $A x=b$ in $\mathcal{K}_{t, k}\left(A, r_{0}\right)$

Properties of enlarged Krylov subspaces

- The Krylov subspace $\mathcal{K}_{k}\left(A, r_{0}\right)$ is a subset of the enlarged one

$$
\mathcal{K}_{k}\left(A, r_{0}\right) \subset \mathcal{K}_{t, k}\left(A, r_{0}\right)
$$

- For all $k<k_{\text {max }}$ the dimensions of $\mathcal{K}_{t, k}$ and $\mathcal{K}_{t, k+1}$ are stricltly increasing by some number i_{k} and i_{k+1} respectively, where

$$
t \geq i_{k} \geq i_{k+1} \geq 1
$$

- The enlarged subspaces are increasing subspaces, yet bounded.
$\mathcal{K}_{t, 1}\left(A, r_{0}\right) \subsetneq \ldots \subsetneq \mathcal{K}_{t, k_{\max }-1}\left(A, r_{0}\right) \subsetneq \mathcal{K}_{t, k_{\max }}\left(A, r_{0}\right)=\mathcal{K}_{t, k_{\max }+q}\left(A, r_{0}\right), \forall q>0$
- The solution of the system $A x=b$ belongs to the subspace $x_{0}+\mathcal{K}_{t, k_{\max }}$.

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t, k}$ and the following two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{t, k}$
2. Orthogonality condition: $r_{k} \perp \mathcal{K}_{t, k}$

- At each iteration, the new approximate solution x_{k} is found by minimizing $\phi(x)=\frac{1}{2}(x)^{t} A x-b^{t} x$ over $x_{0}+\mathcal{K}_{t, k}$:

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathcal{K}_{t, k}\left(A, r_{0}\right)\right\}
$$

> - Can be seen as a particular case of a block Krylov method $A X=S(b)$, such that $S(b) \operatorname{ones}(t, 1)=b ; R_{0}^{e}=A X_{0}-S(b)$ Orthogonality condition involves the block residual $R_{k} \perp \mathcal{K}_{t, k}$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t, k}$ and the following two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{t, k}$
2. Orthogonality condition: $r_{k} \perp \mathcal{K}_{t, k}$

- At each iteration, the new approximate solution x_{k} is found by minimizing $\phi(x)=\frac{1}{2}(x)^{t} A x-b^{t} x$ over $x_{0}+\mathcal{K}_{t, k}$:

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathcal{K}_{t, k}\left(A, r_{0}\right)\right\}
$$

- Can be seen as a particular case of a block Krylov method
$\square A X=S(b)$, such that $S(b)$ ones $(t, 1)=b ; R_{0}^{e}=A X_{0}-S(b)$
\square Orthogonality condition involves the block residual $R_{k} \perp \mathcal{K}_{t, k}$

Related work

- Block Krylov methods [O'Leary, 1980]: solve systems with multiple rhs

$$
A X=B
$$

by searching for an approximate solution $X_{k} \in X_{0}+\mathcal{K}_{k}^{\square}\left(A, R_{0}\right)$,

$$
\mathcal{K}_{k}^{\square}\left(A, R_{0}\right)=\text { block }-\operatorname{span}\left\{R_{0}, A R_{0}, A^{2} R_{0}, \ldots, A^{k-1} R_{0}\right\} .
$$

\square coopCG (Bhaya et al, 2012): solve one system by starting with t different initial guesses
\square BRRHS-CG [Nikishin and Yeremin, 1995]: use a block method with t-1 random right hand sides

- Multiple preconditioners
\square GMRES with multiple preconditioners [Greif, Rees, Szyld, 2011]
\square AMPFETI [Rixen, 97], [Gosselet et al, 2015]
- And to reduce communication: s-step methods, pipelined methods

Convergence analysis

Given

- A is an SPD matrix, x^{*} is the solution of $A x=b$
- $\left\|x^{*}-\bar{x}_{k}\right\|_{A}$ is the $k^{t h}$ error of CG
- $\left\|x^{*}-x_{k}\right\|_{A}$ is the $k^{t h}$ error of ECG

Result

CG

ECG

$$
\begin{array}{l|l}
\left\|x^{*}-\bar{x}_{k}\right\|_{A} \leq 2\left\|x^{*}-x_{0}\right\|_{A}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k} & \left\|x^{*}-x_{k}\right\|_{A} \leq C\left\|x^{*}-x_{0}\right\|_{A}\left(\frac{\sqrt{\kappa_{t}}-1}{\sqrt{\kappa_{t}}+1}\right)^{k} \\
\text { where } \kappa=\frac{\lambda_{\operatorname{mx}}(A)}{\lambda_{\text {min }}(A)} & \begin{array}{l}
\text { where } \kappa_{t}=\frac{\lambda_{\max }(A)}{\lambda_{t}(A)} \\
C \text { is a const indpdt. of } k \text {, dpdt. of } t
\end{array}
\end{array}
$$

From here on, results on ECG obtained with O. Tissot.
Proof of convergence of ECG not required for exam, it can be found in [Grigori and Tissot, 2019].

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 2 Classical CG

$$
\begin{aligned}
& \hline p_{1}=r_{0}\left(r_{0}^{\top} A r_{0}\right)^{-1 / 2} \\
& \text { while }\left\|r_{k-1}\right\|_{2}>\varepsilon\|b\|_{2} \text { do } \\
& \quad \alpha_{k}=p_{k}^{\top} r_{k-1} \\
& x_{k}=x_{k-1}+p_{k} \alpha_{k} \\
& r_{k}=r_{k-1}-A p_{k} \alpha_{k} \\
& \quad z_{k+1}=r_{k}-p_{k}\left(p_{k}^{\top} A r_{k}\right) \\
& p_{k+1}=z_{k+1}\left(z_{k+1}^{\top} A z_{k+1}\right)^{-1 / 2}
\end{aligned}
$$

end while

Cost per iteration

 \# flops $=O\left(\frac{n}{p}\right) \leftarrow$ BLAS $1 \& 2$ $\#$ words $=O(1)$$\#$ messages $=O(1)$ from SpMV + $O(\log P)$ from dot prod + norm

Algorithm 3 ECG

: $P_{1}=R_{0}^{e}\left(R_{0}^{e \top} A R_{0}^{e}\right)^{-1 / 2}$
2: while $\left\|\sum_{i=1}^{\top} R_{k}^{(i)}\right\|_{2}<\varepsilon\|b\|_{2}$ do
3: $\quad \alpha_{k}=P_{k}^{\top} R_{k-1} \quad \triangleright t \times t$ matrix
4: $\quad X_{k}=X_{k-1}+P_{k} \alpha_{k}$
5: $\quad R_{k}=R_{k-1}-A P_{k} \alpha_{k}$
6: \quad Construct Z_{k+1} s.t. $Z_{k+1}^{\top} A P_{i}=0, \forall i \leq k$
7: $\quad P_{k+1}=Z_{k+1}\left(Z_{k+1}^{\top} A Z_{k+1}\right)^{-1 / 2}$
: end while
9: $x=\sum_{i=1}^{\top} X_{k}^{(i)}$

Cost per iteration

\# flops $=O\left(\frac{n t^{2}}{p}\right) \leftarrow$ BLAS 3
$\#$ words $=O\left(t^{2}\right) \leftarrow$ Fit in the buffer
$\#$ messages $=O(1)$ from SpMV +
$O(\log P)$ from A-ortho

Construction of the search directions P_{k+1}

1 Construct Z_{k+1} s.t. $Z_{k+1}^{\top} A P_{i}=0, \forall i \leq k$ by using:
1.a Orthomin as in block CG [O'Leary., 1980] and original CG method [Hestenes and Stiefel., 1952]:

$$
Z_{k+1}=R_{k}-P_{k}\left(P_{k}^{\top} A R_{k}\right)
$$

1.b or Orthodir as in ECG [Grigori et al., 2016], based on Lanczos formula [Ashby et al., 1990]:

$$
Z_{k+1}=A P_{k}-P_{k}\left(P_{k}^{\top} A A P_{k}\right)-P_{k-1}\left(P_{k-1}^{\top} A A P_{k}\right)
$$

2 A-orthonormalize P_{k+1}, using e.g. A Cholesky QR:

$$
P_{k+1}=Z_{k+1}\left(Z_{k+1}^{\top} A Z_{k+1}\right)^{-1 / 2}
$$

Orthomin (Omin)
\rightarrow Cheaper
\rightarrow In practice breakdowns

Orthodir (Odir)
\rightarrow More expensive
\rightarrow In practice no breakdowns

Orthomin (Omin) versus Orthodir (Odir)

Both rely on same projection process

- $\hat{X}_{k}=\tilde{X}_{k}$ and $\hat{R}_{k}=\tilde{R}_{k}$
$!!\hat{P}_{k} \neq \tilde{P}_{k}$ and $\hat{Z}_{k} \neq \tilde{Z}_{k}$
- With a tilde \rightarrow Omin variables
- With a hat \rightarrow Odir variables

Proposition
Assume no breakdown occurred, then there exists orthogonal matrix δ_{k} st:

$$
\begin{aligned}
\tilde{P}_{k} & =\hat{P}_{k} \delta_{k} \\
\tilde{Z}_{k+1} & =-\hat{Z}_{k+1} \delta_{k} \tilde{\alpha}_{k}, \text { where } \tilde{\alpha}_{k}=\tilde{P}_{k}^{T} \tilde{R}_{k-1}
\end{aligned}
$$

Generalization of result in [Ashby et al., 1990]; explicit link between Lanczos and CG

When k is large, $\left|\tilde{a}_{k}\right|_{2}$ becomes small, hence
The conditioning of $\tilde{Z}_{k+1}^{\top} A \tilde{Z}_{k+1}$ can be worse than that of $\hat{Z}_{k+1}^{\top} A \hat{Z}_{k+1}$!

Orthomin (Omin) versus Orthodir (Odir)

Both rely on same projection process

- $\hat{X}_{k}=\tilde{X}_{k}$ and $\hat{R}_{k}=\tilde{R}_{k}$
!! $\hat{P}_{k} \neq \tilde{P}_{k}$ and $\hat{Z}_{k} \neq \tilde{Z}_{k}$
- With a tilde \rightarrow Omin variables
- With a hat \rightarrow Odir variables

Proposition

Assume no breakdown occurred, then there exists orthogonal matrix δ_{k} st:

$$
\begin{aligned}
\tilde{P}_{k} & =\hat{P}_{k} \delta_{k} \\
\tilde{Z}_{k+1} & =-\hat{Z}_{k+1} \delta_{k} \tilde{\alpha}_{k}, \text { where } \tilde{\alpha}_{k}=\tilde{P}_{k}^{T} \tilde{R}_{k-1}
\end{aligned}
$$

- Generalization of result in [Ashby et al., 1990]; explicit link between Lanczos and CG
- When k is large, $\left\|\tilde{\alpha}_{k}\right\|_{2}$ becomes small, hence $\left\|\tilde{Z}_{k+1}\right\|_{2}<\left\|\hat{Z}_{k+1}\right\|_{2}$
\square

Orthomin (Omin) versus Orthodir (Odir)

Both rely on same projection process

- $\hat{X}_{k}=\tilde{X}_{k}$ and $\hat{R}_{k}=\tilde{R}_{k}$
!! $\hat{P}_{k} \neq \tilde{P}_{k}$ and $\hat{Z}_{k} \neq \tilde{Z}_{k}$
- With a tilde \rightarrow Omin variables
- With a hat \rightarrow Odir variables

Proposition

Assume no breakdown occurred, then there exists orthogonal matrix δ_{k} st:

$$
\begin{aligned}
\tilde{P}_{k} & =\hat{P}_{k} \delta_{k} \\
\tilde{Z}_{k+1} & =-\hat{Z}_{k+1} \delta_{k} \tilde{\alpha}_{k}, \text { where } \tilde{\alpha}_{k}=\tilde{P}_{k}^{T} \tilde{R}_{k-1}
\end{aligned}
$$

- Generalization of result in [Ashby et al., 1990]; explicit link between Lanczos and CG
- When k is large, $\left\|\tilde{\alpha}_{k}\right\|_{2}$ becomes small, hence $\left\|\tilde{Z}_{k+1}\right\|_{2}<\left\|\hat{Z}_{k+1}\right\|_{2}$
- The conditioning of $\tilde{Z}_{k+1}^{\top} A \tilde{Z}_{k+1}$ can be worse than that of $\hat{Z}_{k+1}^{\top} A \hat{Z}_{k+1}$!

Test cases: boundary value problem

2D and 3D Skyscraper Problem - SKY2D,3D

$$
\begin{aligned}
-\operatorname{div}(\kappa(x) \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega_{D} \\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega_{N}
\end{aligned}
$$

discretized on a 3D grid, where

$$
\kappa(x)=\left\{\begin{array}{l}
10^{3} *\left(\left[10 * x_{2}\right]+1\right), \text { if }\left[10 * x_{i}\right]=0 \bmod (2), i=1,2,3 \\
1, \quad \text { otherwise }
\end{array}\right.
$$

Test cases (contd)

Linear elasticity 3D problem

$$
\begin{array}{rll}
\operatorname{div}(\sigma(u))+f & =0 & \\
u & =u_{D} & \text { on } \Omega \\
\sigma(u) \cdot n & =g & \\
\text { on } \partial \Omega_{D} \\
\text { on } \partial \Omega_{N}
\end{array}
$$

Figure: The distribution of Young's modulus

- $u \in \mathbb{R}^{d}$ is the unknown displacement field, f is some body force.
- Young's modulus E and Poisson's ratio ν take two values, $\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.25\right)$, and $\left(E_{2}, \nu_{2}\right)=\left(10^{7}, 0.45\right)$.
- Cauchy stress tensor $\sigma(u)$ is given by Hooke's law, defined by E and ν.

Matrices Generated with FreeFem++ (F. Hecht, Sorbonne Université) Linear Elasticity discretized using $\mathbb{P}_{1} \mathrm{FE}, 1600 \times Y \times Y$ grid

Enlarged CG: numerical results

- Block Jacobi preconditioner (1024 blocks)
- Stopping criterion 10^{-6}, initial block size 32
- BRRHS-CG: block method with $t-1$ random rhs

matrix	$n(A)$	$n n z(A)$
SKY2D	10,000	49,600
Ela3D100	36,663	$1,231,497$
Ela2D200	80,802	964,800

		PCG	BRRHS-CG		ECG	
	red. size	iter	iter	$\operatorname{dim}\left(\mathcal{K}_{32, k}\right)$	iter	$\operatorname{dim}\left(\mathcal{K}_{32, k}\right)$
SKY2D	\times	655	61	1952	57	1824
	\checkmark	655	61	1739	59	1546
Ela3D100	\times	955	102	3264	109	3488
	\checkmark	955	102	3093	116	2384
Ela2D200	\times	4551	255	8160	253	8096
	\checkmark	4551	258	7331	266	6553

Enlarged CG: parallel performance

- Stopping criterion 10^{-5}, blocks Jacobi $=$ \#MPI
- Performance study on:
- Kebnekaise (Suede), Intel Xeon (Broadwell), 28 MPI process/node - Cori NERSC, Intel KNL, 68 cores each

	D-Odir(24)		CG	
\# MPI	\# iter	res	\# iter	res
252	513	$1.3 \mathrm{E}-4$	13,626	$1.3 \mathrm{E}-4$
504	531	$1.9 \mathrm{E}-4$	15,819	$1.9 \mathrm{E}-4$
1,008	606	$2.6 \mathrm{E}-4$	17,023	$2.7 \mathrm{E}-4$
2,016	696	$2.6 \mathrm{E}-4$	19,047	$2.7 \mathrm{E}-4$

Plan

Sparse linear solvers

Krylov subspace methods

Enlarged Krylov methods

Preconditioned Krylov subspace methods One level Additive Schwarz methods Two level preconditioners

Preconditioned Krylov subspace methods

- Solve by using iterative methods

$$
A x=b .
$$

- Convergence depends on $\kappa(A)$ and the eigenvalue distribution (for SPD matrices).
- To accelerate convergence, solve

$$
M^{-1} A x=M^{-1} b
$$

where
$\square M$ approximates well the inverse of A and/or
\square improves $\kappa(A)$, the condition number of A.

- Ideally, we would like to bound $\kappa(A)$, independently of the size of the matrix A.

Additive Schwarz: notations

Solve $M^{-1} A x=M^{-1} b$, where $A \in \mathbb{R}^{n \times n}$ is SPD
For $\mathcal{N}=\{1, \ldots, n\}$, let $\mathcal{N}_{i} \subset \mathcal{N}$ for $i=1 \ldots N$ be the subset of DOF of subdomain i, referred to as Ω_{i}, possibly with overlap. We define:

- The restriction operator $R_{i} \in \mathbb{R}^{n_{i} \times n}, R_{i}=I_{n}\left(\mathcal{N}_{i},:\right)$.
- The prolongation operator, $R_{i}^{T} \in \mathbb{R}^{n \times n_{i}}$
- The matrix associated to domain i, $A_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$,

$$
A_{i}=R_{i} A R_{i}^{T}
$$

- The algebraic partition of unity $\left(D_{i}\right)_{1 \leq i \leq N}$,

$$
I_{n}=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}
$$

Additive and Restrictive Additive Schwarz methods

- Original idea from Schwarz algorithm at the continuous level (Schwarz 1870)
- Restricted Additive Schwarz (Cai \& Sarkis 1999) defined as

$$
M_{R A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i} A_{i}^{-1} R_{i}
$$

- Symmetric formulation, Additive Schwarz (1989) defined as

$$
M_{A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

- In practice, RAS more efficient than AS

Two level preconditioners

Given a coarse subspace $V_{0} \in \mathbb{R}^{n \times n_{0}}$ and Z its basis, $V_{0}=\operatorname{span} Z$, let $R_{0}=Z^{T}$, the coarse grid $R_{0} A R_{0}^{T}$.
The two level AS preconditioner is

$$
M_{A S, 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T}\left(A_{i}\right)^{-1} R_{i}
$$

Let k_{c} be minimum number of distinct colors so that $\left(\operatorname{span}\left\{R_{i}^{T}\right\}\right)_{1 \leq i \leq N}$ of the same color are mutually A-orthogonal. The following holds (e.g. Chan and Mathew 1994)

$$
\lambda_{\max }\left(M_{A S, 2}^{-1} A\right) \leq k_{c}+1
$$

Convergence theory

Results from e.g. [Chan and Mathew, 1994, Dolean et al., 2015].

$$
M_{A S, 2}^{-1} A:=\sum_{i=0}^{N} R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A=\sum_{i=0}^{N} P_{i}, \text { where } P_{i}=R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A
$$

P_{i} are orthogonal projection matrices in the A inner product since

$$
\begin{aligned}
P_{i} P_{i} & =R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A=R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A=P_{i} \\
A P_{i} & =A R_{i}^{T}\left(A_{i}\right)^{-1} R_{i} A=P_{i}^{T} A
\end{aligned}
$$

Recall that $a(u, v)=v^{\top} A u$ and $\left\|P_{i}\right\| \leq 1$.

$$
\begin{aligned}
\lambda_{\max }\left(M_{A S, 2}^{-1} A\right) & =\sup _{u \in \mathbb{R}^{n}} \frac{a\left(M_{A S, 2}^{-1} A u, u\right)}{a(u, u)} \\
& =\sup _{u \in \mathbb{R}^{n}} \sum_{i=0}^{N} \frac{a\left(P_{i} u, u\right)}{\|u\|_{a}^{2}}=\sup _{u \in \mathbb{R}^{n}} \sum_{i=0}^{N} \frac{a\left(P_{i} u, P_{i} u\right)}{\|u\|_{a}^{2}} \\
& \leq \sum_{i=0}^{N} \sup _{u \in \mathbb{R}^{n}} \frac{a\left(P_{i} u, P_{i} u\right)}{\|u\|_{a}^{2}} \leq N+1
\end{aligned}
$$

Convergence theory (contd)

If we define a-orthogonal projectors

$$
\tilde{P}_{i}=\sum_{j \in \Theta_{i}} P_{j}, \text { for } i=1, \ldots k_{c}
$$

where Θ_{i} is a set of indices with the same color (that is the indices denoting disjoint subdomains). We can apply the same reasoning and obtain

$$
\lambda_{\max }\left(M_{A S, 2}^{-1} A\right) \leq k_{c}+1
$$

How to compute the coarse subspace $V_{0}=\operatorname{span} Z$

- Nicolaides 87 (CG): kernel of the operator (constant vectors) for a Poisson like problem works well

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} 1\right)_{i=1: N}
$$

Z defined as in (Nicolaides 1987):

$$
Z=\left(\begin{array}{llll}
1_{\Omega_{1}} & & & \\
& 1_{\Omega_{2}} & & \\
& & \ddots & \\
& & & 1_{\Omega_{N}}
\end{array}\right)
$$

How to compute the coarse subspace $V_{0}=\operatorname{span} Z$

- Nicolaides 87 (CG): kernel of the operator (constant vectors)

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} 1\right)_{i=1: N}
$$

- Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92], [Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]
- Estimations of eigenvectors corresponding to smallest eigenvalues / knowledge from the physics
- Geneo [Nataf, Spillane et al]: through solving local Gen EVPs, bounds smallest eigenvalue for standard FE and bilinear forms, SPD input matrix

subd	dofs	AS	AS-ZEM $\left(V_{0}\right)$	GenEO $\left(V_{0}\right)$
4	1452	79	$54(24)$	$16(46)$
8	29040	177	$87(48)$	$16(102)$
16	58080	378	$145(96)$	$16(214)$

[^0]
How to compute the coarse subspace $V_{0}=\operatorname{span} Z$

- Nicolaides 87 (CG): kernel of the operator (constant vectors)

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} 1\right)_{i=1: N}
$$

- Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92], [Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]
- Estimations of eigenvectors corresponding to smallest eigenvalues / knowledge from the physics
- Geneo [Nataf, Spillane et al]: through solving local Gen EVPs, bounds smallest eigenvalue for standard FE and bilinear forms, SPD input matrix

subd	dofs	AS	AS-ZEM $\left(V_{0}\right)$	GenEO $\left(V_{0}\right)$
4	1452	79	$54(24)$	$16(46)$
8	29040	177	$87(48)$	$16(102)$
16	58080	378	$145(96)$	$16(214)$

[^1]
The need for two level preconditioners

- When solving complex linear systems arising, e.g. from large discretized systems of PDEs with strongly heterogeneous coefficients (high contrast, multiscale).
\square Flow in porous media
\square Elasticity problems
\square CMB data analysys (no PDE)

- Most of the existing preconditioners lack robustness
\square wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one level DDM methods (block Jacobi, RAS), incomplete LU
\square A few small eigenvalues hinder the convergence of iterative methods

Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

$$
P:=I-A Z E^{-1} Z^{T}, \quad E:=Z^{T} A Z
$$

where

- Z is the deflation subspace matrix of full rank
- E is the coarse grid correction, a small dense invertible matrix
- P is the deflation matrix, $P A Z=0$

Usage in different classes of preconditioners

- DDM - Z and Z^{T} are the restriction and prolongation operators based on
subdomains, E is a coarse grid, P is a subspace correction
Deflation - Z contains the vectors to be deflated
Multigrid - interpretation possible

Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

$$
P:=I-A Z E^{-1} Z^{\top}, \quad E:=Z^{\top} A Z
$$

where

- Z is the deflation subspace matrix of full rank
- E is the coarse grid correction, a small dense invertible matrix
- P is the deflation matrix, $P A Z=0$

Usage in different classes of preconditioners

- DDM - Z and Z^{T} are the restriction and prolongation operators based on subdomains, E is a coarse grid, P is a subspace correction
- Deflation - Z contains the vectors to be deflated
- Multigrid - interpretation possible

Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

$$
P:=I-A Z E^{-1} Z^{\top}, \quad E:=Z^{\top} A Z
$$

where

- Z is the deflation subspace matrix of full rank
- E is the coarse grid correction, a small dense invertible matrix
- P is the deflation matrix, $P A Z=0$

Example of preconditioner

where M is the first level preconditioner (eg based on block Jacobi)

- $P_{2 / M}^{-1} A Z=Z$
- The small eigenvalues are shifted to 1 .
- $P_{2 / v /}$ is not SPD, even when A is, better choices available, but more expensive.

Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

$$
P:=I-A Z E^{-1} Z^{\top}, \quad E:=Z^{\top} A Z
$$

where

- Z is the deflation subspace matrix of full rank
- E is the coarse grid correction, a small dense invertible matrix
- P is the deflation matrix, $P A Z=0$

Example of preconditioner

$$
P_{2|v|}^{-1}=M^{-1} P+Z E^{-1} Z^{\top},
$$

where M is the first level preconditioner (eg based on block Jacobi).

- $P_{2|v|}^{-1} A Z=Z$
- The small eigenvalues are shifted to 1 .
- $P_{2 / \mathrm{ll}}$ is not SPD, even when A is, better choices available, but more expensive.

Two level preconditioners (contd)

Computing the preconditioner requires

- Deflation subspace Z, which can be formed by
\square Eigenvectors corresponding to smallest eigenvalues - from previous linear systems solved with different right hand sides, etc.
\square Using knowledge from the physics, partition of the unity, etc.
- Computing $A Z$ and $E=Z^{T} A Z$.

Applying the preconditioner at each iteration requires
Computing $y=Z E^{-1} Z^{\top}\left(A x_{i}\right)=Z E^{-1} Z^{\top} v$
\Rightarrow involves collective communication when computing $Z^{\top} V$
and solving a linear svstem with F

Two level preconditioners (contd)

Computing the preconditioner requires

- Deflation subspace Z, which can be formed by
\square Eigenvectors corresponding to smallest eigenvalues - from previous linear systems solved with different right hand sides, etc.
\square Using knowledge from the physics, partition of the unity, etc.
- Computing $A Z$ and $E=Z^{T} A Z$.

Applying the preconditioner at each iteration requires

- Computing $y=Z E^{-1} Z^{T}\left(A x_{i}\right)=Z E^{-1} Z^{T} v$
\Rightarrow involves collective communication when computing $Z^{T} v$, and solving a linear svstem with E

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).
A taxonomy for conjugate gradient methods.
SIAM Journal on Numerical Analysis, 27(6):1542-1568.
Chan, T. F. and Mathew, T. P. (1994).
Domain decomposition algorithms.
Acta Numerica, 3:61-143.
Dolean, V., Jolivet, P., and Nataf, F. (2015).
An introduction to domain decomposition methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Algorithms, theory, and parallel implementation.
Grigori, L., Moufawad, S., and Nataf, F. (2016).
Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communicatio n.
SIAM Journal on Scientific Computing, 37(2):744-773.
Also as INRIA TR 8266.
Grigori, L. and Tissot, O. (2019).
Scalable linear solvers based on enlarged krylov subspaces with dynamic reduct ion of search directions.
SIAM Journal on Scientific Computing, 34(1):206-239.
Hestenes, M. R. and Stiefel., E. (1952).
Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards., 49:409-436.
O'Leary., D. P. (1980).
The block conjugate gradient algorithm and related methods.
Linear Algebra and Its Applications, 29:293-322.

References (2)

Saad, Y. (2003).
Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition.

Tang, J. M., Nabben, R., Vuik, C., and Erlangga, Y. A. (2009).
Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
J. Sci. Comput., 39:340-370.

[^0]: V_{0} : size of the coarse space
 AS-ZEM Nicolaides with rigid body motions, 6 per subd
 Results for 3D elasticity problem provided by F. Nataf

[^1]: V_{0} : size of the coarse space
 AS-ZEM Nicolaides with rigid body motions, 6 per subd
 Results for 3D elasticity problem provided by F. Nataf

