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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.
� A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure: Nonzero structure of the matrix
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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.

� GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure: Nonzero structure of the matrix
Figure: Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse matrices and graphs

� Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure: Nonzero structure of the matrix
Figure: Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse linear solvers

Direct methods of factorization
� For solving Ax = b, least squares problems

� Cholesky, LU, QR, LDLT factorizations

� Limited by fill-in/memory consumption and scalability

Iterative solvers
� For solving Ax = b, least squares, Ax = λx , SVD

� When only multiplying A by a vector is possible

� Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods
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Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0)

2. Petrov-Galerkin condition: rk ⊥ Lk

⇐⇒ (rk)ty = 0, ∀ y ∈ Lk

where
� x0 is the initial iterate, r0 is the initial residual,

� Kk (A, r0) = span{r0,Ar0,A2r0, ...,Ak−1r0} is the Krylov subspace of dimension k,

� Lk is a well-defined subspace of dimension k.

9 of 46



One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

� Russian mathematician Alexei Krylov writes first paper, 1931.

� Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

� Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to

matrix computations (Householder), Quicksort, Fast multipole, FFT.
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Choosing a Krylov method

Source slide: J. Demmel
11 of 46



Conjugate gradient (Hestenes, Stieffel, 52)

� A Krylov projection method for SPD matrices where Lk = Kk(A, r0).

� Finds x∗ = A−1b by minimizing the quadratic function

φ(x) =
1

2
(x)tAx − btx

5φ(x) = Ax − b = 0

� After j iterations of CG,

||x∗ − xj ||A ≤ 2||x − x0||A

(√
κ(A)− 1√
κ(A) + 1

)j

, (1)

where x0 is starting vector, ||x ||A =
√
xTAx and κ(A) = |λmax(A)|/|λmin(A)|.
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Conjugate gradient

� Computes A-orthogonal search directions by conjugation of the residuals{
p1 = r0 = −5 φ(x0)
pk = rk−1 + βkpk−1

(2)

� At k-th iteration,

pk = rk−1 + βkpk−1 (3)

xk = xk−1 + αkpk = argminx∈x0+Kk (A,r0)φ(x) (4)

rk = rk−1 − αkApk (5)

where αk is the step along pk .

� CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rTk ri = 0, for all i 6= k ,

pTk Api = 0, for all i 6= k .

13 of 46



CG derivation

Since we have xk = xk−1 + αkpk we obtain

rk = rk−1 − αkApk and (rk , rk−1) = 0 hence

rTk−1rk−1 − αk r
T
k−1Apk = 0 =⇒ αk =

(rk−1, rk−1)

(Apk , rk−1)

Since we have pk = rk−1 + βkpk−1,

(Apk , rk−1) = (Apk , pk − βkpk−1) = (Apk , pk) =⇒ αk =
(rk−1, rk−1)

(Apk , pk)

Since pk = rk−1 + βkpk−1 is A-orthogonal to pk−1 we obtain

βk = − (rk−1,Apk−1)

(pk−1,Apk−1)
and Apk−1 =

1

αk−1
(rk−2 − rk−1) =⇒ βk =

(rk−1, rk−1)

(rk−2, rk−2)
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CG algorithm

Algorithm 1 The CG Algorithm

1: r0 = b − Ax0, ρ0 = ||r0||22, p1 = r0, k = 1
2: while (

√
ρk > ε||b||2 and k < kmax ) do

3: if (k 6= 1) then
4: βk = (rk−1, rk−1)/(rk−2, rk−2)
5: pk = rk−1 + βkpk−1

6: end if
7: αk = (rk−1, rk−1)/(Apk , pk)
8: xk = xk−1 + αkpk
9: rk = rk−1 − αkApk

10: ρk = ||rk ||22
11: k = k + 1
12: end while
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Properties of CG

� The directions p1, . . . pn are A-conjugate, the following properties are
satisfied:

(Apk , pj) = 0, for all k , j , k 6= j

(rk , rj) = 0, for all k , j , k 6= j

(pk , rj) = 0, for all k , j , k < j

� The Krylob subspace is spanned by the residuals and the search
directions:

Kk(A, r0) = span{r0, r1, ..., rk−1} = span{p0, p1, ..., pk−1}

Adviced exercice: prove the above relations, e.g. by using recurrence on
equations (3), (4), (5).
We do not prove (4) and (1), the proofs are not required for the exam. The
proofs can be found in [Saad, 2003]
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Challenge in getting efficient and scalable solvers

� A Krylov solver finds xk+1 from x0 +Kk+1(A, r0) where

Kk+1(A, r0) = span{r0,Ar0,A2r0, ...,A
k r0},

such that the Petrov-Galerkin condition b − Axk+1 ⊥ Lk+1 is satisfied.

� Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

� Finds best solution xk+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication
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Ways to improve performance

� Improve the performance of sparse matrix-vector product.

� Improve the performance of collective communication.

� Change numerics - reformulate or introduce Krylov subspace algorithms
to:
� reduce communication,
� increase arithmetic intensity - compute sparse matrix-set of vectors product.

� Use preconditioners to decrease the number of iterations till convergence.
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Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

� Partition the matrix into N domains

� Split the residual r0 into t vectors corresponding to the N domains,
obtain Re

0 ,

r0 R
e
0

� Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Re
0 ,AR

e
0 ,A

2Re
0 , ...,A

k−1Re
0}

� Search for the solution of the system Ax = b in Kt,k(A, r0)
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Properties of enlarged Krylov subspaces

� The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

� For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly increasing
by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

� The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) ( ... ( Kt,kmax−1(A, r0) ( Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0

� The solution of the system Ax = b belongs to the subspace x0 +Kt,kmax .
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Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x)tAx − btx over x0 +Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 +Kt,k(A, r0)}

� Can be seen as a particular case of a block Krylov method
� AX = S(b), such that S(b)ones(t, 1) = b;Re

0 = AX0 − S(b)
� Orthogonality condition involves the block residual Rk ⊥ Kt,k
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Related work

� Block Krylov methods [O’Leary, 1980]: solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 +K�
k (A,R0),

K�
k (A,R0) = block − span{R0,AR0,A

2R0, ...,A
k−1R0}.

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses

� BRRHS-CG [Nikishin and Yeremin, 1995]: use a block method with t-1
random right hand sides

� Multiple preconditioners
� GMRES with multiple preconditioners [Greif, Rees, Szyld, 2011]
� AMPFETI [Rixen, 97], [Gosselet et al, 2015]

� And to reduce communication: s-step methods, pipelined methods
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Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||x∗ − xk ||A is the k th error of CG

� ||x∗ − xk ||A is the k th error of ECG

Result
CG ECG

||x∗ − xk ||A ≤ 2||x∗ − x0||A
(√

κ− 1√
κ+ 1

)k

where κ = λmax (A)
λmin(A)

||x∗ − xk ||A ≤ C ||x∗ − x0||A
(√

κt − 1
√
κt + 1

)k

where κt = λmax (A)
λt(A)

C is a const indpdt. of k, dpdt. of t

From here on, results on ECG obtained with O. Tissot.
Proof of convergence of ECG not required for exam, it can be found
in [Grigori and Tissot, 2019].
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 2 Classical CG

1: p1 = r0(r>0 Ar0)−1/2

2: while ||rk−1||2 > ε||b||2 do

3: αk = p>k rk−1

4: xk = xk−1 + pkαk

5: rk = rk−1 − Apkαk

6: zk+1 = rk − pk (p>k Ark )

7: pk+1 = zk+1(z>k+1Azk+1)−1/2

8: end while

Cost per iteration
# flops = O( n

P ) ← BLAS 1 & 2
# words = O(1)
# messages = O(1) from SpMV +
O(logP) from dot prod + norm

Algorithm 3 ECG

1: P1 = Re
0 (Re

0
>ARe

0 )−1/2

2: while ||
∑>

i=1 R
(i)
k ||2 < ε||b||2 do

3: αk = P>k Rk−1 . t × t matrix
4: Xk = Xk−1 + Pkαk

5: Rk = Rk−1 − APkαk

6: Construct Zk+1 s.t. Z>k+1APi = 0, ∀i ≤ k

7: Pk+1 = Zk+1(Z>k+1AZk+1)−1/2

8: end while
9: x =

∑>
i=1 X

(i)
k

Cost per iteration

# flops = O( nt2

P ) ← BLAS 3
# words = O(t2) ← Fit in the buffer
# messages = O(1) from SpMV +
O(logP) from A-ortho
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Construction of the search directions Pk+1

1 Construct Zk+1 s.t. Z>k+1APi = 0, ∀i ≤ k by using:

1.a Orthomin as in block CG [O’Leary., 1980] and original CG
method [Hestenes and Stiefel., 1952]:

Zk+1 = Rk − Pk(P>k ARk)

1.b or Orthodir as in ECG [Grigori et al., 2016], based on Lanczos formula
[Ashby et al., 1990]:

Zk+1 = APk − Pk(P>k AAPk)− Pk−1(P>k−1AAPk)

2 A-orthonormalize Pk+1, using e.g. A Cholesky QR:

Pk+1 = Zk+1(Z>k+1AZk+1)−1/2

Orthomin (Omin) Orthodir (Odir)
→ Cheaper
→ In practice breakdowns

→ More expensive
→ In practice no breakdowns
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Orthomin (Omin) versus Orthodir (Odir)

Both rely on same projection process

� X̂k = X̃k and R̂k = R̃k

!! P̂k 6= P̃k and Ẑk 6= Z̃k

� With a tilde → Omin variables

� With a hat → Odir variables

Proposition
Assume no breakdown occurred, then there exists orthogonal matrix δk st:

P̃k = P̂kδk

Z̃k+1 = −Ẑk+1δk α̃k , where α̃k = P̃T
k R̃k−1

� Generalization of result in [Ashby et al., 1990]; explicit link between
Lanczos and CG

� When k is large, ||α̃k ||2 becomes small, hence ||Z̃k+1||2 < ||Ẑk+1||2
� The conditioning of Z̃>k+1AZ̃k+1 can be worse than that of Ẑ>k+1AẐk+1!
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Test cases: boundary value problem

2D and 3D Skyscraper Problem - SKY2D,3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi ] = 0mod(2), i = 1, 2, 3,
1, otherwise.
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Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure: The distribution of
Young’s modulus

� u ∈ Rd is the unknown displacement field, f is some body force.

� Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

� Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.

Matrices Generated with FreeFem++ (F. Hecht, Sorbonne Université)
Linear Elasticity discretized using P1 FE, 1600× Y × Y grid
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Enlarged CG: numerical results

� Block Jacobi preconditioner (1024 blocks)

� Stopping criterion 10−6, initial block size 32

� BRRHS-CG: block method with t − 1 random
rhs

matrix n(A) nnz(A)
SKY2D 10,000 49,600
Ela3D100 36,663 1,231,497
Ela2D200 80,802 964,800

PCG BRRHS-CG ECG
red. size iter iter dim(K32,k) iter dim(K32,k)

SKY2D × 655 61 1952 57 1824
X 655 61 1739 59 1546

Ela3D100 × 955 102 3264 109 3488
X 955 102 3093 116 2384

Ela2D200 × 4551 255 8160 253 8096
X 4551 258 7331 266 6553
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Enlarged CG: parallel performance

� Stopping criterion 10−5, blocks
Jacobi = #MPI

� Performance study on:
– Kebnekaise (Suede), Intel Xeon
(Broadwell), 28 MPI process/node
– Cori NERSC, Intel KNL, 68 cores
each

D-Odir(24) CG
# MPI # iter res # iter res

252 513 1.3E-4 13,626 1.3E-4
504 531 1.9E-4 15,819 1.9E-4

1,008 606 2.6E-4 17,023 2.7E-4
2,016 696 2.6E-4 19,047 2.7E-4

252 504 1008 2016
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Preconditioned Krylov subspace methods

� Solve by using iterative methods

Ax = b.

� Convergence depends on κ(A) and the eigenvalue distribution (for SPD
matrices).

� To accelerate convergence, solve

M−1Ax = M−1b,

where
� M approximates well the inverse of A and/or
� improves κ(A), the condition number of A.

� Ideally, we would like to bound κ(A), independently of the size of the
matrix A.
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Additive Schwarz: notations

Solve M−1Ax = M−1b, where A ∈ Rn×n is SPD

For N = {1, . . . , n}, let Ni ⊂ N for i = 1 . . .N be the subset of DOF of
subdomain i , referred to as Ωi , possibly with overlap. We define:

� The restriction operator Ri ∈ Rni×n, Ri = In (Ni , : ).

� The prolongation operator, RT
i ∈ Rn×ni

� The matrix associated to domain i ,
Ai ∈ Rni×ni ,

Ai = RiAR
T
i

� The algebraic partition of unity (Di )1≤i≤N ,

In =
N∑
i=1

RT
i DiRi

Page 56 

Direct factorization of a matrix in  
arrow block diagonal form 

1 1 

1 1 1/2 1 1 1/2 
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Additive and Restrictive Additive Schwarz methods

� Original idea from Schwarz algorithm at the continuous level (Schwarz
1870)

� Restricted Additive Schwarz (Cai & Sarkis 1999) defined as

M−1
RAS :=

N∑
i=1

RT
i DiA

−1
i Ri

� Symmetric formulation, Additive Schwarz (1989) defined as

M−1
AS :=

N∑
i=1

RT
i A−1

i Ri

� In practice, RAS more efficient than AS
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Two level preconditioners

Given a coarse subspace V0 ∈ Rn×n0 and Z its basis, V0 = span Z , let
R0 = ZT , the coarse grid R0AR

T
0 .

The two level AS preconditioner is

M−1
AS,2 := RT

0

(
R0AR

T
0

)−1
R0 +

N∑
i=1

RT
i (Ai )

−1 Ri

Let kc be minimum number of distinct colors so that
(
span{RT

i }
)

1≤i≤N of

the same color are mutually A-orthogonal. The following holds (e.g. Chan
and Mathew 1994)

λmax(M−1
AS,2A) ≤ kc + 1
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Convergence theory

Results from e.g. [Chan and Mathew, 1994, Dolean et al., 2015].

M−1
AS,2A :=

N∑
i=0

RT
i (Ai )

−1 RiA =
N∑
i=0

Pi , where Pi = RT
i (Ai )

−1 RiA

Pi are orthogonal projection matrices in the A inner product since

PiPi = RT
i (Ai )

−1 RiAR
T
i (Ai )

−1 RiA = RT
i (Ai )

−1 RiA = Pi

APi = ART
i (Ai )

−1 RiA = PT
i A

Recall that a(u, v) = vTAu and ||Pi || ≤ 1.

λmax(M−1
AS,2A) = sup

u∈Rn

a(M−1
AS,2Au, u)

a(u, u)

= sup
u∈Rn

N∑
i=0

a(Piu, u)

||u||2a
= sup

u∈Rn

N∑
i=0

a(Piu,Piu)

||u||2a

≤
N∑
i=0

sup
u∈Rn

a(Piu,Piu)

||u||2a
≤ N + 1
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Convergence theory (contd)

If we define a-orthogonal projectors

P̃i =
∑
j∈Θi

Pj , for i = 1, . . . kc

where Θi is a set of indices with the same color (that is the indices denoting
disjoint subdomains). We can apply the same reasoning and obtain

λmax(M−1
AS,2A) ≤ kc + 1
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How to compute the coarse subspace V0 = span Z

� Nicolaides 87 (CG): kernel of the operator (constant vectors) for a
Poisson like problem works well

Z :=
(
RT
i DiRi1

)
i=1:N

Z defined as in (Nicolaides 1987):

Z =


1Ω1

1Ω2

. . .

1ΩN


Courtesy of F. Nataf 
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How to compute the coarse subspace V0 = span Z

� Nicolaides 87 (CG): kernel of the operator (constant vectors)

Z :=
(
RT
i DiRi1

)
i=1:N

� Other early references: [Morgan 92] (GMRES), [Chapman, Saad 92],
[Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]

� Estimations of eigenvectors corresponding to smallest eigenvalues /
knowledge from the physics

� Geneo [Nataf, Spillane et al]: through solving local Gen EVPs, bounds
smallest eigenvalue for standard FE and bilinear forms, SPD input matrix

subd dofs AS AS-ZEM (V0) GenEO (V0)
4 1452 79 54 (24) 16 (46)
8 29040 177 87 (48) 16 (102)

16 58080 378 145 (96) 16 (214)
V0: size of the coarse space
AS-ZEM Nicolaides with rigid body motions, 6 per subd
Results for 3D elasticity problem provided by F. Nataf
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How to compute the coarse subspace V0 = span Z
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The need for two level preconditioners

� When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coefficients (high contrast,
multiscale).

� Flow in porous media

� Elasticity problems

� CMB data analysys (no PDE)

� Most of the existing preconditioners lack robustness
� wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one

level DDM methods (block Jacobi, RAS), incomplete LU
� A few small eigenvalues hinder the convergence of iterative methods
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Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I − AZE−1ZT , E := ZTAZ

where

� Z is the deflation subspace matrix of full rank

� E is the coarse grid correction, a small dense invertible matrix

� P is the deflation matrix, PAZ = 0

Usage in different classes of preconditioners

� DDM - Z and ZT are the restriction and prolongation operators based on
subdomains, E is a coarse grid, P is a subspace correction

� Deflation - Z contains the vectors to be deflated

� Multigrid - interpretation possible
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Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I − AZE−1ZT , E := ZTAZ

where
� Z is the deflation subspace matrix of full rank
� E is the coarse grid correction, a small dense invertible matrix
� P is the deflation matrix, PAZ = 0

Example of preconditioner

P−1
2lvl = M−1P + ZE−1ZT ,

where M is the first level preconditioner (eg based on block Jacobi).

� P−1
2lvlAZ = Z

� The small eigenvalues are shifted to 1.

� P2lvl is not SPD, even when A is, better choices available, but more
expensive.

43 of 46



Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I − AZE−1ZT , E := ZTAZ

where
� Z is the deflation subspace matrix of full rank
� E is the coarse grid correction, a small dense invertible matrix
� P is the deflation matrix, PAZ = 0

Example of preconditioner

P−1
2lvl = M−1P + ZE−1ZT ,

where M is the first level preconditioner (eg based on block Jacobi).

� P−1
2lvlAZ = Z

� The small eigenvalues are shifted to 1.

� P2lvl is not SPD, even when A is, better choices available, but more
expensive.

43 of 46



Two level preconditioners (contd)

Computing the preconditioner requires
� Deflation subspace Z , which can be formed by

� Eigenvectors corresponding to smallest eigenvalues - from previous linear
systems solved with different right hand sides, etc.

� Using knowledge from the physics, partition of the unity, etc.

� Computing AZ and E = ZTAZ .

Applying the preconditioner at each iteration requires

� Computing y = ZE−1ZT (Axi ) = ZE−1ZT v
⇒ involves collective communication when computing ZT v ,

⇒ and solving a linear system with E .
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