Dense LU and QR factorizations

Laura Grigori

INRIA and LJLL, Sorbonne Université

November 2021

SORBONNE
UNIVERSITÉ
CREATEURS DE FUTURS
DEPUIS 1257

Direct methods of factorization
LU factorization
Block LU factorization
QR factorization
Block QR factorization

Norms and other notations

$$
\begin{aligned}
\|A\|_{F} & =\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} \\
\|A\|_{2} & =\sigma_{\max }(A) \\
\|A\|_{\infty} & =\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
\|A\|_{1} & =\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Inequalities $|x| \leq|y|$ and $|A| \leq|B|$ hold componentwise.

Direct methods of factorization
LU factorization
Block LU factorization
QR factorization
Block QR factorization

Algebra of the LU factorization

LU factorization

Compute the factorization $\mathrm{PA}=\mathrm{LU}$

Example

Given the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 3 \\
6 & 7 & 3 \\
9 & 12 & 3
\end{array}\right)
$$

Let

$$
M_{1}=\left(\begin{array}{ccc}
1 & & \\
-2 & 1 & \\
-3 & & 1
\end{array}\right), \quad M_{1} A=\left(\begin{array}{ccc}
3 & 1 & 3 \\
0 & 5 & -3 \\
0 & 9 & -6
\end{array}\right)
$$

Algebra of the LU factorization

- In general

$$
\begin{aligned}
A^{(k+1)} & =M_{k} A^{(k)}:=\left(\begin{array}{ccccc}
I_{k-1} & & & & \\
& 1 & & & \\
& -m_{k+1, k} & 1 & & \\
\cdots & & \ddots & \\
& -m_{n, k} & & 1
\end{array}\right) A^{(k)}, \text { where } \\
M_{k} & =I-m_{k} e_{k}^{T}, \quad M_{k}^{-1}=I+m_{k} e_{k}^{T}
\end{aligned}
$$

where e_{k} is the k-th unit vector, $m_{k}=\left(0, \ldots, 0,1, m_{k+1, k}, \ldots, m_{n, k}\right)^{T}$, $e_{i}^{T} m_{k}=0, \forall i \leq k$

- The factorization can be written as

$$
M_{n-1} \ldots M_{1} A=A^{(n)}=U
$$

Algebra of the LU factorization

- We obtain

$$
\begin{aligned}
A & =M_{1}^{-1} \ldots M_{n-1}^{-1} U \\
& =\left(I+m_{1} e_{1}^{T}\right) \ldots\left(I+m_{n-1} e_{n-1}^{T}\right) U \\
& =\left(I+\sum_{i=1}^{n-1} m_{i} e_{i}^{T}\right) U \\
& =\left(\begin{array}{cccc}
1 & \\
m_{21} & 1 & \\
\vdots & \vdots & \ddots & \\
m_{n 1} & m_{n 2} & \ldots & 1
\end{array}\right) U=L U
\end{aligned}
$$

The need for pivoting

- For stability, avoid division by small diagonal elements
- For example

$$
A=\left(\begin{array}{lll}
0 & 3 & 3 \tag{1}\\
3 & 1 & 3 \\
6 & 2 & 3
\end{array}\right)
$$

has an LU factorization if we permute the rows of matrix A

$$
P A=\left(\begin{array}{lll}
6 & 2 & 3 \tag{2}\\
0 & 3 & 3 \\
3 & 1 & 3
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
0.5 & & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
6 & 2 & 3 \\
& 3 & 3 \\
& & 1.5
\end{array}\right)
$$

- Partial pivoting allows to bound the multipliers $m_{i k} \leq 1$ and hence $|L| \leq 1$

Wilkinson's backward error stability result

Growth factor g_{w} defined as

$$
g_{W}=\frac{\max _{i, j, k}\left|a_{i j}^{k}\right|}{\max _{i, j}\left|a_{i j}\right|}
$$

Note that

$$
\left|u_{i j}\right|=\left|a_{i j}^{i}\right| \leq g_{W} \max _{i, j}\left|a_{i j}\right|
$$

Theorem (Wilkinson's backward error stability result, see also [N.J.Higham, 2002] for more details)
Let $A \in \mathbb{R}^{n \times n}$ and let \hat{x} be the computed solution of $A x=b$ obtained by using GEPP. Then

$$
(A+\Delta A) \hat{x}=b, \quad\|\Delta A\|_{\infty} \leq n^{2} \gamma_{3 n} g_{W}(n)\|A\|_{\infty}
$$

where $\gamma_{n}=n u /(1-n u), u$ is machine precision and assuming $n u<1$.

The growth factor

- The LU factorization is backward stable if the growth factor is small (grows linearly with n).
- For partial pivoting, the growth factor $g(n) \leq 2^{n-1}$, and this bound is attainable.
- In practice it is on the order of $n^{2 / 3}-n^{1 / 2}$

Exponential growth factor for Wilkinson matrix

$$
A=\operatorname{diag}(\pm 1)\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 1 \\
-1 & 1 & 0 & \cdots & 0 & 1 \\
-1 & -1 & 1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & 1 \\
-1 & -1 & \cdots & -1 & 1 & 1 \\
-1 & -1 & \cdots & -1 & -1 & 1
\end{array}\right]
$$

Experimental results for special matrices

Several errror bounds for GEPP, the normwise backward error η and the componentwise backward error $w(r=b-A x)$.

$$
\begin{aligned}
\eta & =\frac{\|r\|_{1}}{\|A\|_{1}\|x\|_{1}+\|b\|_{1}}, \\
w & =\max _{i} \frac{\left|r_{i}\right|}{(|A||x|+|b|)_{i}} .
\end{aligned}
$$

| matrix | $\operatorname{cond}(\mathrm{A}, 2)$ | g_{W} | $\\|L\\|_{1}$ | $\operatorname{cond}(U, 1)$ | $\frac{\\|P A-L U\\|_{F}}{\\|A\\|_{F}}$ | η | w_{b} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hadamard | $1.0 \mathrm{E}+0$ | $4.1 \mathrm{E}+3$ | $4.1 \mathrm{E}+3$ | $5.3 \mathrm{E}+5$ | $0.0 \mathrm{E}+0$ | $3.3 \mathrm{E}-16$ | $4.6 \mathrm{E}-15$ |
| randsvd | $6.7 \mathrm{E}+7$ | $4.7 \mathrm{E}+0$ | $9.9 \mathrm{E}+2$ | $1.4 \mathrm{E}+10$ | $5.6 \mathrm{E}-15$ | $3.4 \mathrm{E}-16$ | $2.0 \mathrm{E}-15$ |
| chebvand | $3.8 \mathrm{E}+19$ | $2.0 \mathrm{E}+2$ | $2.2 \mathrm{E}+3$ | $4.8 \mathrm{E}+22$ | $5.1 \mathrm{E}-14$ | $3.3 \mathrm{E}-17$ | $2.6 \mathrm{E}-16$ |
| frank | $1.7 \mathrm{E}+20$ | $1.0 \mathrm{E}+0$ | $2.0 \mathrm{E}+0$ | $1.9 \mathrm{E}+30$ | $2.2 \mathrm{E}-18$ | $4.9 \mathrm{E}-27$ | $1.2 \mathrm{E}-23$ |
| hilb | $8.0 \mathrm{E}+21$ | $1.0 \mathrm{E}+0$ | $3.1 \mathrm{E}+3$ | $2.2 \mathrm{E}+22$ | $2.2 \mathrm{E}-16$ | $5.5 \mathrm{E}-19$ | $2.0 \mathrm{E}-17$ |

Block formulation of the LU factorization

Partitioning of matrix A of size $n \times n$

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is of size $b \times b, A_{21}$ is of size $(m-b) \times b, A_{12}$ is of size $b \times(n-b)$ and A_{22} is of size $(m-b) \times(n-b)$.

Block LU algebra
The first iteration computes the factorization:

$$
P_{1}^{T} A=\left[\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right] \cdot\left[\begin{array}{cc}
U_{11} & U_{12} \\
& A^{1}
\end{array}\right]
$$

The algorithm continues recursively on the trailing matrix A^{1}.

Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block column

$$
P_{1}\binom{A_{11}}{A_{21}}=\binom{L_{11}}{L_{21}} U_{11}
$$

2. Pivot by applying the permutation matrix P_{1}^{T} on the entire matrix,

$$
\bar{A}=P_{1}^{T} A .
$$

3. Solve the triangular system

$$
L_{11} U_{12}=\bar{A}_{12}
$$

4. Update the trailing matrix,

$$
A^{1}=\bar{A}_{22}-L_{21} U_{12}
$$

5. Compute recursively the block LU factorization of A^{1}.

LU Factorization as in ScaLAPACK

LU factorization on a $\mathrm{P}=\mathrm{Pr} \times \mathrm{Pc}$ grid of

 processorsFor $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b
$A(i b)=A(i b: n, i b: n)$

1. Compute panel factorization
\square find pivot in each column, swap rows
2. Apply all row permutations

\square broadcast pivot information along the rows
\square swap rows at left and right
3. Compute block row of U
\square broadcast right diagonal block of L of
 current panel
4. Update trailing matrix
\square broadcast right block column of L
\square broadcast down block row of U

Cost of LU Factorization in ScaLAPACK

LU factorization on a $\mathrm{P}=\operatorname{Pr} \times \mathrm{Pc}$ grid of processors
For $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b
$A(i b)=A(i b: n, i b: n)$

1. Compute panel factorization
\square \#messages $=O\left(n \log _{2} P_{r}\right)$

2. Apply all row permutations
\square messages $=O\left(n / b\left(\log _{2} P_{r}+\log _{2} P_{c}\right)\right)$
3. Compute block row of U
\#messages $=O\left(n / b \log _{2} P_{c}\right)$

4. Update trailing matrix
\square \#messages $=O\left(n / b\left(\log _{2} P_{r}+\log _{2} P_{c}\right)\right.$

Cost of parallel block LU

Consider that we have a $\sqrt{P} \times \sqrt{P}$ grid, block size b

$$
\begin{array}{r}
\gamma \cdot\left(\frac{2 / 3 n^{3}}{P}+\frac{n^{2} b}{\sqrt{P}}\right)+\beta \cdot \frac{n^{2} \log P}{\sqrt{P}}+ \\
\alpha \cdot\left(1.5 n \log P+\frac{3.5 n}{b} \log P\right) .
\end{array}
$$

The QR factorization

Given a matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, its $Q R$ factorization is

$$
A=Q R=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0}=Q_{1} R_{1}
$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.
If A has full rank, the factorization $Q_{1} R_{1}$ is essentialy unique (modulo signs of diagonal elements of R).

- $A^{T} A=R_{1}^{T} R_{1}$ is a Cholesky factorization and $A=A R_{1}^{-1} R_{1}$ is a QR factorization.
- $A=Q_{1} D \cdot D R_{1}, D=\operatorname{diag}(\pm 1)$ is a $Q R$ factorization.

Householder transformation

The Householder matrix

$$
P=I-\frac{2}{v^{\top} v} v^{T}
$$

has the following properties:

- is symmetric and orthogonal, $P^{2}=l$,
- is independent of the scaling of v,
- it reflects x about the hyperplane $\operatorname{span}(v)^{\perp}$

$$
P x=x-\frac{2 v^{\top} x}{v^{\top} v} v=x-\alpha v
$$

Presentation of Householder transformations and stability analysis from [N.J.Higham, 2002].

Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a vector x, except first one.

$$
P x=y, \quad\|x\|_{2}=\|y\|_{2}, \quad y=\sigma e_{1}, \quad \sigma= \pm\|x\|_{2}
$$

With the choice of sign made to avoid cancellation when computing $v_{1}=x_{1}-\sigma$ (where v_{1}, x_{1} are the first elements of vectors v, x respectively), we have

$$
\begin{aligned}
v & =x-y=x-\sigma e_{1}, \\
\sigma & =-\operatorname{sign}\left(x_{1}\right)\|x\|_{2}, v=x-\sigma e_{1}, \\
P & =I-\beta v v^{\top}, \beta=\frac{2}{v^{\top} v}
\end{aligned}
$$

Householder based QR factorization

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \\
P_{1} A=\left(\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & x & x
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& \tilde{P}_{2}
\end{array}\right) P_{1}=\left(\begin{array}{lll}
x & x & x \\
0 & x & x \\
0 & 0 & x
\end{array}\right)=R
\end{gathered}
$$

So we have

$$
\begin{aligned}
Q^{T} A & =P_{n} P_{n-1} \ldots P_{1} A=R, \\
Q & =\left(I-\beta_{1} v_{1} v_{1}^{T}\right) \ldots\left(I-\beta_{n-1} v_{n-1} v_{n-1}^{T}\right)\left(I-\beta_{n} v_{n} v_{n}^{T}\right)
\end{aligned}
$$

\#flops $=2 n^{2}(m-n / 3)$

Error analysis of the QR factorization

The following result follows
Theorem ([N.J.Higham, 2002])
Let $\hat{R} \in \mathbb{R}^{m \times n}$ be the computed factor of $A \in \mathbb{R}^{m \times n}$ obtained by using Householder transformations. Then there is an orthogonal $Q \in \mathbb{R}^{m \times m}$ such that

$$
A+\Delta A=Q \hat{R}, \text { where }\left\|\Delta a_{j}\right\|_{2} \leq \tilde{\gamma}_{m n}\left\|a_{j}\right\|_{2}, \quad j=1: n,
$$

where $\tilde{\gamma}_{m n}=c m n u /(1-c m n u), c$ is a constant, u is machine precision, $m n u<1, a_{j}$ denotes the j-th column of A.

Computational complexity

- Flops per iterations
\square Dot product $w=v_{k}^{\top} A(k: m, k+1: n): 2(m-k)(n-k)$
\square Outer product $v_{k} w:(m-k)(n-k)$
\square Subtraction $A(k: m, k+1: n)-\ldots:(m-k)(n-k)$
- Flops of Householder-QR

$$
\begin{aligned}
& \sum_{k=1}^{n} 4(m-k)(n-k)=4 \sum_{k=1}^{n}\left(m n-k(m+n)+k^{2}\right) \\
& \approx 4 m n^{2}-4(m+n) n^{2} / 2+4 n^{3} / 3=2 m n^{2}-2 n^{3} / 3
\end{aligned}
$$

Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]

$$
Q=Q_{1} Q_{2} \ldots Q_{k}=\left(I-\beta_{1} v_{1} v_{1}^{T}\right) \ldots\left(I-\beta_{k} v_{k} v_{k}^{T}\right)=I-Y T Y^{T}
$$

Example for $k=2$

$$
Y=\left(v_{1} \mid v_{2}\right), \quad T=\left(\begin{array}{cc}
\beta_{1} & -\beta_{1} v_{1}^{T} v_{2} \beta_{2} \\
0 & \beta_{2}
\end{array}\right)
$$

Example for combining two compact representations

$$
\begin{aligned}
Q & =\left(I-Y_{1} T_{1} Y_{1}^{T}\right)\left(I-Y_{2} T_{2} Y_{2}^{T}\right) \\
T & =\left(\begin{array}{cc}
T_{1} & -T_{1} Y_{1}^{T} Y_{2} T_{2} \\
0 & T_{2}
\end{array}\right)
\end{aligned}
$$

Block algorithm for computing the QR factorization

Partitioning of matrix A of size $m \times n$

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is of size $b \times b, A_{21}$ is of size $(m-b) \times b, A_{12}$ is of size $b \times(n-b)$ and A_{22} is of size $(m-b) \times(n-b)$.

Block QR algebra
The first step of the block QR factorization algorithm computes:

$$
Q_{1}^{T} A=\left(\begin{array}{cc}
R_{11} & R_{12} \\
& A^{1}
\end{array}\right)
$$

The algorithm continues recursively on the trailing matrix A^{1}.

Algebra of block QR factorization

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=Q_{1}\left(\begin{array}{cc}
R_{11} & R_{12} \\
& A^{1}
\end{array}\right)
$$

Block QR algebra

1. Compute the factorization

$$
\binom{A_{11}}{A_{12}}=Q_{1} R_{11}
$$

2. Compute the compact representation $Q_{1}=I-Y T Y^{\top}$
3. Apply Q_{1}^{T} on the trailing matrix

$$
\left(I-Y T^{T} Y^{T}\right)\binom{A_{12}}{A_{22}}=\binom{A_{12}}{A_{22}}-Y\left(T^{T}\left(Y^{T}\binom{A_{12}}{A_{22}}\right)\right)
$$

4. The algorithm continues recursively on the trailing matrix A^{1}.

Parallel implementation of the QR factorization

QR factorization on a $P=P_{r} \times P_{c}$ grid of processors
For $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b

1. Compute panel factorization on P_{r} processors

$$
\binom{A_{11}}{A_{12}}=Q_{1} R_{11}=\left(I-Y T Y^{T}\right) R_{11}
$$

2. The P_{r} processors broadcast along the rows their parts of Y and T
3. Apply Q_{1}^{T} on the trailing matrix:
\square All processors compute their local part of

$$
W_{l}=Y_{l}^{T}\left(A_{12 l} ; A_{22 l}\right)
$$

\square The processors owning block row ib compute the sum over W_{1}, that is

$$
W=Y^{T}\left(A_{12} ; A_{22}\right)
$$

and then compute $W^{\prime}=T^{T} W$
\square The processors owning block row ib broadcast along the columns their part of W^{\prime}
4. All processors compute

$$
\left(A_{12}^{1} ; A_{22}^{1}\right)=\left(A_{12} ; A_{22}\right)-Y * W^{\prime}
$$

Cost of parallel QR factorization

$$
\begin{aligned}
& \gamma \cdot\left(\frac{6 m n b-3 n^{2} b}{2 p_{r}}+\frac{n^{2} b}{2 p_{c}}+\frac{2 m n^{2}-2 n^{3} / 3}{p}\right) \\
+ & \beta \cdot\left(n b \log p_{r}+\frac{2 m n-n^{2}}{p_{r}}+\frac{n^{2}}{p_{c}}\right) \\
+ & \alpha \cdot\left(2 n \log p_{r}+\frac{2 n}{b} \log p_{c}\right) .
\end{aligned}
$$

Solving least squares problems

Given matrix $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n$, vector $b \in \mathbb{R}^{m \times 1}$, the unique solution to $\min _{x}\|A x-b\|_{2}$ is

$$
x=A^{+} b, \quad A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Using the QR factorization of A

$$
A=Q R=\left(\begin{array}{ll}
Q_{1} & Q_{2} \tag{3}
\end{array}\right)\binom{R_{1}}{0}
$$

We obtain

$$
\begin{aligned}
\|r\|_{2}^{2} & =\|b-A x\|_{2}^{2}=\left\|b-\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0} x\right\|_{2}^{2} \\
& =\left\|\binom{Q_{1}^{T}}{Q_{2}^{T}} b-\binom{R_{1}}{0} x\right\|_{2}^{2}=\left\|\binom{Q_{1}^{T} b-R_{1} x}{Q_{2}^{T} b}\right\|_{2}^{2} \\
& =\left\|Q_{1}^{T} b-R_{1} x\right\|_{2}^{2}+\left\|Q_{2}^{T} b\right\|_{2}^{2}
\end{aligned}
$$

Solve $R_{1} x=Q_{1}^{T} b$ to minimize $\|r\|_{2}$.

Acknowledgement

- Some of the examples taken from [Golub and Van Loan, 1996]

References (1)

(1996).

Matrix Computations (3rd Ed.).
Johns Hopkins University Press, Baltimore, MD, USA.
國 N.J.Higham (2002).
Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.
R Schreiber, R. and Loan, C. V. (1989).
A storage efficient $W Y$ representation for products of Householder transformations.
SIAM J. Sci. Stat. Comput., 10(1):53-57.

