Communication avoiding algorithms for LU and QR factorizations

Laura Grigori
Alpines
INRIA Paris - LJLL, Sorbonne Université

October 2021

Plan

- Motivation
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
- LU, QR, Rank Revealing QR factorizations
- Progressively implemented in ScaLAPACK, LAPACK
- Algorithms for multicore processors
- Conclusions

Motivation - the communication wall

- Runtime of an algorithm is the sum of:
- \#flops x time_per_flop
- \#words_moved / bandwidth
- \#messages x latency
- Time to move data >> time per flop
- Gap steadily and exponentially growing over time

Motivation - the communication wall

- Runtime of an algorithm is the sum of:
- \#flops x time_per_flop
- \#words_moved / bandwidth
- \#messages x latency
- Time to move data >> time per flop
- Gap steadily and exponentially growing over time

Annual improvements			
Time/flop		Bandwidth	Latency
59%	Network	26%	15%
	DRAM	23%	5%

Adapted from J. Demmel

- Performance of an application is less than 10% of the peak performance
"We are going to hit the memory wall, unless something basic changes"
[W. Wulf, S. McKee, 95]

Compelling numbers

DRAM latency:

- DDR2 (2007) ~ 120 ns 1 x
- DDR4 (2014) ~ 45 ns
2.6x in 7 yrs
- Stacked memory ~ similar to DDR4

Time/flop

- 2008 Intel Nehalem $3.2 \mathrm{GHz} \times 4$ cores (51.2 GFlops/socket) 1 x
- 2017 Intel Skylake XP $2.1 \mathrm{GHz} \times 28$ cores (1.8 TFlops/socket) 35 x in 9 yrs

Network latency

- Interconnect (example one machine today): 0.25μ s to $3.7 \mu \mathrm{~s} \mathrm{MPI}$ latency

Selected past work on reducing communication

- Only few examples shown, many references available

A. Tuning

- Overlap communication and computation, at most a factor of 2 speedup
B. Ghosting
- Standard approach in explicit methods
- Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE

$$
u_{t}=\alpha \Delta u
$$

with a finite difference, the solution at a grid point is:

$$
\begin{aligned}
u_{i, j+1} & =u\left(x_{i,}, t_{j+1}\right) \\
& =f\left(u_{i-1, j}, u_{i j}, u_{i+1, j}\right)
\end{aligned}
$$

Page 6

Selected past work on reducing communication

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra

- Barron and Swinnerton-Dyer, 1960
- LU factorization used to solve a system with 31 equations - first subroutine written for EDSAC 2
- Block LU factorization used to solve a system with 100 equations using an auxiliary magnetic-tape
- The basis of the algorithm used in LAPACK

Cache oblivious algorithms

- recursive Cholesky, LU, QR (Gustavson ‘97, Toledo ‘97, Elmroth and Gustavson '98, Frens and Wise '03, Ahmed and Pingali '00)

Selected past work on reducing communication

D. Same algebraic framework, different numerical algorithm

More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)

- LU-like factorization based on pairwise pivoting and its block version $P A=L_{1} L_{2} \ldots L_{n} U$
- With small modifications, minimizes communication between two levels of fast-slow memory
- Stable for small matrices, unstable for nowadays matrices

Communication in CMB data analysis

- Map-making problem
- Find the best map x from observations d, scanning strategy A, and noise N^{-1}
- Solve generalized least squares problem involving sparse matrices of size 10^{12}-by- 10^{7}
- Spherical harmonic transform (SHT)
- Synthesize a sky image from its harmonic representation
- Computation over rows of a 2D object (summation of spherical harmonics)
- Communication to transpose the 2D object
- Computation over columns of the 2D object (FFTs)

SHT, with R. Stómpor, M. Szydlarski Simulation on a petascale computer

Motivation

- The communication problem needs to be taken into account higher in the computing stack
- A paradigm shift in the way the numerical algorithms are devised is required
- Communication avoiding algorithms - a novel perspective for numerical linear algebra
- Minimize volume of communication
- Minimize number of messages
- Minimize over multiple levels of memory/parallelism
- Allow redundant computations (preferably as a low order term)

Evolution of numerical libraries

LINPACK (70's)

- vector operations, use BLAS1
- HPL benchmark based on Linpack LU factorization

ScaLAPACK (90's)

- Targets distributed memories
- 2D block cyclic distribution of data
- PBLAS based on message passing

LAPACK (80's)

- Block versions of the algorithms used in LINPACK
- Uses BLAS3

PLASMA (2008): new algorithms

- Targets many-core
- Block data layout
- Low granularity, high asynchronicity

Project developed by U Tennessee Knoxville, UC Berkeley, other collaborators.
Source: inspired from J. Dongarra, UTK, J. Langou, CU Denver

Communication Complexity of Dense Linear Algebra

- Matrix multiply, using $2 \mathrm{n}^{3}$ flops (sequential or parallel)
- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth $=\Omega$ (\#flops / M ${ }^{1 / 2}$)
- Lower bound on Latency $=\Omega\left(\# f l o p s / M^{3 / 2}\right)$
- Same lower bounds apply to LU using reduction
- Demmel, LG, Hoemmen, Langou 2008

$$
\left(\begin{array}{ccc}
1 & & -B \\
A & 1 & \\
& & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
A & 1 & \\
& & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & \\
& -B \\
& 1
\end{array}\right)
$$

- And to almost all direct linear algebra [Ballard, Demmel, Holtz, Schwartz, 09]

Lower bounds for linear algebra

- Computation modelled as an n-by-n-by-n set of lattice points (i,j,k) represents the operation $\left.c(i, j)+=f_{i j}\left(g_{i j k}\left(a(i, k)^{*} b(k, j)\right)\right)\right)$
- The computation is divided in S phases
- Each phase contains exactly M (the fast memory size) load and store instructions
- Determine how many flops the algorithm can compute in each phase, by applying discrete Loomis-Whitney inequality:

$$
w^{2} \leq N_{A} N_{B} N_{C}
$$

Algorithms in direct linear alg

$$
\text { for, } j, k=1: n
$$

$$
c(i, j)=f_{i j}\left(g_{j j k}(a(i, k), b(k, j))\right)
$$

endfor- set of points in R^{3}, represent w arithmetic- orthogonal projections of the points onto coordinate planes N_{A}, N_{B}, N_{G} represent values of A, B, C

Lower bounds for matrix multiplication (contd)

- Discrete Loomis-Whitney inequality:

$$
W^{2} \leq N_{A} N_{B} N_{C}
$$

- Since there are at most 2 M elements of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in a phase, the bound is:

$$
w \leq 2 \sqrt{2} M^{3 / 2}
$$

- The number of phases S is \#flops/w, and hence the lower bound on communication is:
$\#$ messag $(S) \geq \frac{\# \text { flops }}{w}=\Omega\left(\frac{\# \text { flops }}{M^{3 / 2}}\right)$
\#loadslstores $\Omega\left(\frac{\# \text { flops }}{M^{1 / 2}}\right)$

Matrix distributions

1) 1D Column Blocked Layout

2) 1D Column Block Cyclic Layout
3) 2D Row and Column Blocked Layout

णपणाणणन

2	3	2	3	2	3	2

| 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3

| 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |

Generalizes others

6) 2D Row and Column Block Cyclic Layout

MatMul with 2D Layout

- Consider processors in 2D grid (physical or logical)
- Processors can communicate with 4 nearest neighbors
- Broadcast along rows and columns

- Assume p processors form square $s \times s$ grid, $s=p^{1 / 2}$

Cannon' s Algorithm

$\ldots \mathrm{C}(\mathrm{i}, \mathrm{j})=\mathrm{C}(\mathrm{i}, \mathrm{j})+\sum_{k} \mathrm{~A}(\mathrm{i}, \mathrm{k})^{*} \mathrm{~B}(\mathrm{k}, \mathrm{j})$
... assume $s=\operatorname{sqrt}(p)$ is an integer
forall $\mathbf{i = 0}$ to s-1 ... "skew" A
left-circular-shift row i of A by i
... so that $A(i, j)$ overwritten by $A(i,(j+i) m o d s)$
forall $\mathrm{i}=0$ to $\mathbf{s - 1} \quad . .{ }^{-1}$ "skew" B
up-circular-shift column i of By i
... so that $B(i, j)$ overwritten by $B((i+j) \bmod s), j)$
for $k=0$ to $\mathbf{s - 1} \quad . .$. sequential
forall $\mathrm{i}=0$ to $\mathbf{s - 1}$ and $\mathbf{j = 0}$ to $\mathbf{s - 1} \quad . .$. all processors in parallel
$C(i, j)=C(i, j)+A(i, j) * B(i, j)$
left-circular-shift each row of A by 1
up-circular-shift each column of B by 1

Cannon's Matrix Multiplication

Cannon's Matrix Multiplication Algorithm

$\mathbf{A (0 , 0)}$	$\mathbf{A (0 , 1)}$	$\mathbf{A (0 , 2)}$
$\mathbf{A (1 , 0)}$	$\mathbf{A (1 , 1)})$	$\mathbf{A (1 , 2)}$
$\mathbf{A (2 , 0)}$	$\mathbf{A (2 , 1)}$	$\mathbf{A (2 , 2)}$

$B(0,0)$	$B(0,1)$	$B(0,2)$
$B(1,0)$	$B(1,1)$	$B(1,2)$
$B(2,0)$	$B(2,1)$	$B(2,2)$

Initial A, B

$A(0,0)$	$A(0,1)$	$A(0,2)$
$A(1,1)$	$A(1,2)$	$A(1,0)$
$A(2,2)$	$A(2,0)$	$A(2,1)$

$\mathrm{B}(0,0)$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$
$\mathrm{B}(2,0)$	$\mathrm{B}(0,1)$	$\mathrm{B}(1,2)$

A, B after skewing

$A(0,1)$	$A(0,2)$	$A(0,0)$
$A(1,2)$	$A(1,0)$	$A(1,1)$
$A(2,0)$	$A(2,1)$	$A(2,2)$

$B(1,0)$	$B(2,1)$	$B(0,2)$
$B(2,0)$	$B(0,1)$	$B(1,2)$
$B(0,0)$	$B(1,1)$	$B(2,2)$

A, B after shift $k=1$

$A(0,2)$	$A(0,0)$	$A(0,1)$
$A(1,0)$	$A(1,1)$	$A(1,2)$
$A(2,1)$	$A(2,2)$	$A(2,0)$

$B(2,0)$	$B(0,1)$	$\mathbb{B}(1,2)$
$B(0,0)$	$B(1,1)$	$B(2,2)$
$B(1,0)$	$B(2,1)$	$B(0,2)$

A, B after shift k=2

$$
\mathrm{C}(1,2)=\mathrm{A}(1,0) \text { * } \mathrm{B}(0,2)+\mathrm{A}(1,1) * \mathrm{~B}(1,2)+\mathrm{A}(1,2) \text { * } \mathrm{B}(2,2)
$$

Cost of Cannon' s Algorithm

$\begin{array}{ll}\text { forall } \mathbf{i}=0 \text { to } \mathbf{s - 1} & \ldots \text { recall } s=\operatorname{sqrt}(p) \\ \quad \text { left-circular-shift row i of } \mathbf{A} \text { by } \mathbf{i} \quad \ldots \operatorname{cost} \leq s^{*}\left(\alpha+\beta^{*} n^{2 / p}\right)\end{array}$ forall $\mathrm{i}=0$ to $\mathrm{s}-1$
up-circular-shift column i of B by i ... cost $\leq s^{*}\left(\alpha+\beta^{*} n^{2 / p}\right)$
for $k=0$ to $s-1$
forall $\mathrm{i}=0$ to $\mathrm{s}-1$ and $\mathrm{j}=0$ to $\mathrm{s}-1$

$$
C(i, j)=C(i, j)+A(i, j)^{*} B(i, j) \quad \ldots \text { cost }=2^{*}(n / s)^{3}=2^{*} n^{3 /} p^{3 / 2}
$$ left-circular-shift each row of \mathbf{A} by $1 \ldots$ cost $=\alpha+\beta^{*} n^{2 / p}$ up-circular-shift each column of B by $1 \quad . . . \operatorname{cost}=\alpha+\beta^{*} n^{2 / p}$

- Total Time $=2^{*} n^{3} / p+4^{*} s^{*} \alpha+4^{*} \beta^{*} n^{2 / s}$ - Optimal!
- Parallel Efficiency $=2^{*} n^{3} /(p$ * Total Time)

$$
\begin{aligned}
& =1 /\left(1+\alpha^{*} 2^{*}(s / n)^{3}+\beta^{*} 2^{*}(s / n)\right) \\
& =1 /(1+O(\operatorname{sqrt}(p) / n))
\end{aligned}
$$

- Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows

