
Communication avoiding algorithms
for LU and QR factorizations

Laura Grigori

INRIA Paris - LJLL, Sorbonne Université

October 2021

Page 2

Plan
• Motivation

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, QR, Rank Revealing QR factorizations

• Progressively implemented in ScaLAPACK, LAPACK

• Algorithms for multicore processors

• Conclusions

Page 3

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time

Page 4

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time

• Performance of an application is less than 10% of the peak performance

“We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%
DRAM 23% 5%

0.1

1

10

102

104

2000 2004

Te
ra
flo
ps

1996

Peak Performance

Real Performance

103

2008 2012
Adapted from J. Demmel

Page 5

Compelling numbers

DRAM latency:
• DDR2 (2007) ~ 120 ns 1x
• DDR4 (2014) ~ 45 ns 2.6x in 7 yrs
• Stacked memory ~ similar to DDR4

Time/flop
• 2008 Intel Nehalem 3.2GHz�4 cores (51.2 GFlops/socket) 1x
• 2017 Intel Skylake XP 2.1GHz�28 cores (1.8 TFlops/socket) 35x in 9 yrs

Network latency
• Interconnect (example one machine today): 0.25μs to 3.7μs MPI latency

Source: G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)

Page 6
Ghost data on P0

Selected past work on reducing communication

• Only few examples shown, many references available

A. Tuning
• Overlap communication and computation, at most a factor of 2 speedup

B. Ghosting
• Standard approach in explicit methods
• Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE
ut = a Du

with a finite difference,
the solution at a grid point is:

ui,j+1 = u(xi, tj+1)
= f(ui-1,j, uij, ui+1,j) t0

t1

t2

t3

t4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

u13

Initial data on P0

Page 7

Selected past work on reducing communication

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra
• Barron and Swinnerton-Dyer, 1960

• LU factorization used to solve a system with 31 equations - first
subroutine written for EDSAC 2

• Block LU factorization used to solve a system with 100 equations using
an auxiliary magnetic-tape

• The basis of the algorithm used in LAPACK

Cache oblivious algorithms
• recursive Cholesky, LU, QR
(Gustavson ‘97, Toledo ‘97,
Elmroth and Gustavson ‘98,
Frens and Wise ’03,
Ahmed and Pingali ‘00)

Page 8

Selected past work on reducing communication

D. Same algebraic framework, different numerical algorithm
More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)
• LU-like factorization based on pairwise pivoting and its block version

PA = L1 L2 …Ln U
• With small modifications, minimizes communication between two levels of

fast-slow memory
• Stable for small matrices, unstable for nowadays matrices

Page 9

Communication in CMB data analysis

• Map-making problem
• Find the best map x from observations d, scanning strategy A, and noise N−1

• Solve generalized least squares problem involving sparse matrices of size 1012-by-107

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• Computation over rows of a 2D object (summation of spherical harmonics)

• Communication to transpose the 2D object

• Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer

Computation

Communication

Overall runtime

Page 10

Motivation

• The communication problem needs to be taken into account
higher in the computing stack

• A paradigm shift in the way the numerical algorithms are
devised is required

• Communication avoiding algorithms - a novel perspective for
numerical linear algebra
• Minimize volume of communication
• Minimize number of messages
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)

Page 11

Evolution of numerical libraries

LINPACK (70’s)
• vector operations, use BLAS1

• HPL benchmark based on Linpack LU

factorization

LAPACK (80’s)
• Block versions of the algorithms used in

LINPACK

• Uses BLAS3

ScaLAPACK (90’s)
• Targets distributed memories

• 2D block cyclic distribution of data

• PBLAS based on message passing

PLASMA (2008): new algorithms
• Targets many-core

• Block data layout

• Low granularity, high asynchronicity

L

U

A(ib)L

U

A(ib)

L A(ib)

U

Project developed by U Tennessee Knoxville, UC Berkeley, other collaborators.

Source: inspired from J. Dongarra, UTK, J. Langou, CU Denver

L

U

Page 12

Communication Complexity of
Dense Linear Algebra

• Matrix multiply, using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = W (#flops / M1/2)
• Lower bound on Latency = W (#flops / M3/2)

• Same lower bounds apply to LU using reduction
• Demmel, LG, Hoemmen, Langou 2008

• And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 13

Lower bounds for linear algebra
• Computation modelled as an n-by-n-by-n set of lattice points

(i,j,k) represents the operation c(i,j) += fij(gijk (a(i,k)*b(k,j))))
• The computation is divided in S phases
• Each phase contains exactly M (the fast memory size) load and store instructions
• Determine how many flops the algorithm can compute in each phase, by applying

discrete Loomis-Whitney inequality:

- set of points in R3, represent w arithmetics

- orthogonal projections of the points onto coordinate
planes , represent values of A, B, C

C face

A face
B face

i

j

k

Page 14

Lower bounds for matrix multiplication (contd)

• Discrete Loomis-Whitney inequality:

• Since there are at most 2M elements of A, B, C in a phase, the bound is:

• The number of phases S is #flops/w, and hence the lower bound on
communication is:

Page 15

Matrix distributions

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Source slide: J. Demmel

Page 16

MatMul with 2D Layout
• Consider processors in 2D grid (physical or logical)
• Processors can communicate with 4 nearest neighbors

• Broadcast along rows and columns

• Assume p processors form square s x s grid, s = p1/2

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(1,2)

p(2,0) p(2,1) p(2,2)

= *

Source slide: J. Demmel

Page 17

Cannon�s Algorithm
… C(i,j) = C(i,j) + S A(i,k)*B(k,j)
… assume s = sqrt(p) is an integer

forall i=0 to s-1 … �skew� A
left-circular-shift row i of A by i
… so that A(i,j) overwritten by A(i,(j+i)mod s)

forall i=0 to s-1 … �skew� B
up-circular-shift column i of B by i
… so that B(i,j) overwritten by B((i+j)mod s), j)

for k=0 to s-1 … sequential
forall i=0 to s-1 and j=0 to s-1 … all processors in parallel

C(i,j) = C(i,j) + A(i,j)*B(i,j)
left-circular-shift each row of A by 1
up-circular-shift each column of B by 1

k

Source slide: J. Demmel

Page 18

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon�s Matrix Multiplication

Source slide: J. Demmel

Cost of Cannon�s Algorithm
forall i=0 to s-1 … recall s = sqrt(p)

left-circular-shift row i of A by i … cost ≤ s*(a + b*n2/p)
forall i=0 to s-1

up-circular-shift column i of B by i … cost ≤ s*(a + b*n2/p)
for k=0 to s-1

forall i=0 to s-1 and j=0 to s-1

C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2

left-circular-shift each row of A by 1 … cost = a + b*n2/p
up-circular-shift each column of B by 1 … cost = a + b*n2/p

� Total Time = 2*n3/p + 4* s*a + 4*b*n2/s - Optimal!
� Parallel Efficiency = 2*n3 / (p * Total Time)

= 1/(1 + a * 2*(s/n)3 + b * 2*(s/n))
= 1/(1 + O(sqrt(p)/n))

� Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows

Source slide: J. Demmel

