Communication avoiding algorithms for LU and QR factorizations

Laura Grigori
Alpines
INRIA Paris - LJLL, Sorbonne Université

November 2021

Plan

- Motivation
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
- LU, QR, Rank Revealing QR factorizations
- Progressively implemented in ScaLAPACK, LAPACK
- Algorithms for multicore processors
- Conclusions

Sequential algorithms and communication bounds

Algorithm	Minimizing \#words (not \#messages)	Minimizing \#words and \#messages
Cholesky	LAPACK	[Gustavson, 97] [Ahmed, Pingali, 00]
LU	LAPACK (few cases) [Toledo,97], [Gustavson, 97] both use partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting
QR	LAPACK (few cases) [Elmroth,Gustavson,98]	[Frens, Wise, 03], 3x flops [Demmel, LG, Hoemmen, Langou, 08] [Ballard et al, 14]
RRQR	[Demmel, LG, Gu, Xiang 11]	
uses tournament pivoting, 3x flops		

- Only several references shown for block algorithms (LAPACK), cache-oblivious algorithms and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

2D Parallel algorithms and communication bounds

- If memory per processor $=n^{2} / P$, the lower bounds become \#words_moved $\geq \Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right)$, \#messages $\geq \Omega\left(\mathrm{P}^{1 / 2}\right)$

Algorithm	Minimizing \#words (not \#messages)		Minimizing \#words and \#messages
Cholesky	ScaLAPACK		

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P=P_{r} \times P_{c}$ grid of processors
For ib $=1$ to $\mathrm{n}-1$ step b $A^{(i b)}=A(i b: n, i b: n)$
(1) Compute panel factorization
$O\left(n \log _{2} P_{r}\right)$

- find pivot in each column, swap rows
(2) Apply all row permutations
- broadcast pivot information along the rows

U

- swap rows at left and right
(3) Compute block row of U
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix
- broadcast right block column of L

Page 5

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of $m \times b$ matrix $W, m \gg b$
- P processors, block row layout
- Classic Parallel Algorithm
- Compute Householder vector for each column
- Number of messages $\propto b \log P$
- Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages $\propto \log P$

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right] \rightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}
$$

Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02

Algebra of TSQR

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow \begin{array}{lll}R_{00} \\ & \rightarrow & R_{20} \\ R_{30}\end{array} \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}$

$$
\begin{aligned}
& W=\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right)=\binom{\frac{Q_{00} R_{00}}{Q_{1} R_{10}}}{\frac{Q_{20} R_{20}}{Q_{30} R_{30}}}=\left(\begin{array}{l}
\frac{Q_{00}}{Q_{10}} \\
\frac{R_{00}}{Q_{30}} \\
\frac{Q_{10}}{R_{20}} \\
\frac{R_{30}}{R_{30}}
\end{array}\right) \\
& \left(\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right)=\binom{Q_{01} R_{01}}{Q_{1} R_{11}}=\left(\frac{Q_{01}}{Q_{11}}\right) \cdot\left(\frac{R_{01}}{R_{11}}\right) \quad\left(\frac{R_{01}}{R_{11}}\right)=Q_{02} R_{02}
\end{aligned}
$$

Q is represented implicitly as a product Output: $\left\{Q_{00}, Q_{10}, Q_{00}, Q_{20}, Q_{30}, Q_{01}, Q_{11}, Q_{02}, R_{02}\right\}$

Flexibility of TSQR and CAQR algorithms

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \rightarrow \begin{array}{llll}R_{00} & \longrightarrow & R_{10} & R_{30} \\ R_{30}\end{array} \longrightarrow R_{11} \longrightarrow R_{02}$

Sequential: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\longrightarrow} R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$
Dual Core: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{R_{00} \longrightarrow R_{01} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}}$
Reduction tree will depend on the underlying architecture, could be chosen dynamically

Algebra of TSQR

Parallel: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{\rightarrow} \begin{array}{ll}R_{00} \\ \rightarrow & R_{20} \\ R_{20} \\ R_{30}\end{array} \longrightarrow R_{01} \longrightarrow R_{02}$

CAQR

QR for General Matrices

- Cost of CAQR vs ScaLAPACK's PDGEQRF
- $\mathrm{n} \times \mathrm{n}$ matrix on $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$ processor grid, block size b
- Flops: $(4 / 3) n^{3} / P+(3 / 4) n^{2} b \log P / P^{1 / 2}$ vs (4/3) n^{3} / P
- Bandwidth: $(3 / 4) n^{2} \log P / P^{1 / 2}$
vs same
- Latency:
$2.5 \mathrm{n} \log \mathrm{P} / \mathrm{b}$
vs $1.5 \mathrm{n} \log \mathrm{P}$
- Close to optimal (modulo log P factors)
- Assume: $O\left(n^{2} / P\right)$ memory/processor, $O\left(n^{3}\right)$ algorithm,
- Choose b near n/ $\mathrm{P}^{1 / 2}$ (its upper bound)
- Bandwidth lower bound:

$$
\Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right) \text { - just } \log (\mathrm{P}) \text { smaller }
$$

- Latency lower bound:

$$
\Omega\left(\mathrm{P}^{1 / 2}\right) \text { - just polylog(P) smaller }
$$

Page 11

Performance of TSQR vs Sca/LAPACK

- Parallel
- Intel Xeon (two socket, quad core machine), 2010
- Up to $5.3 x$ speedup (8 cores, $10^{5} \times 200$)
- Pentium III cluster, Dolphin Interconnect, MPICH, 2008
- Up to $6.7 \times$ speedup (16 procs, $100 \mathrm{~K} \times 200$)
- BlueGene/L, 2008
- Up to 4 x speedup (32 procs, $1 \mathrm{M} \times 50$)
- Tesla C 2050 / Fermi (Anderson et al)
- Up to 13x (110,592 x 100)
- Grid $-4 x$ on 4 cities vs 1 city (Dongarra, Langou et al)
- QR computed locally using recursive algorithm (Elmroth-Gustavson) enabled by TSQR
- Results from many papers, for some see [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS 10].

Modeled Speedups of CAQR vs ScaLAPACK

Peta:Time PDGEQRF/Time CAQR max $=22.9444, \mathrm{n}=10000, \mathrm{P}=8192$

Petascale up to $22.9 x$

IBM Power 5 up to $9.7 x$
"Grid" up to $11 x$

Petascale machine with 8192 procs, each at $500 \mathrm{GFlops} / \mathrm{s}$, a bandwidth of $4 \mathrm{~GB} / \mathrm{s}$.

$$
\gamma=2 \cdot 10^{12} s, \alpha=10^{5} s, \beta=2 \cdot 10^{9} s / \text { word }
$$

Impact

- TSQR/CAQR implemented in
- Intel Data analytics library
- GNU Scientific Library
- ScaLAPACK
- Spark for data mining
- CALU implemented in
- Cray’s libsci
- To be implemented in lapack/scapalack

Algebra of TSQR

$$
\text { Parallel: } w=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow \begin{array}{ll}
R_{00} \\
\rightarrow & R_{20} \\
R_{30}
\end{array} \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}
$$

Page 15

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

$$
W=Q R=\left(I-Y T Y_{1}^{T}\right) R
$$

can be re-written as an LU factorization

$$
\begin{aligned}
& W-R=Y\left(-T Y_{1}^{\top}\right) R \\
& Q-I=Y\left(-T Y_{1}^{\top}\right) \\
& \text { a } \quad \begin{array}{l}
Y=-T \\
V_{1}^{\top}
\end{array}
\end{aligned}
$$

Reconstruct Householder vectors TSQR-HR

1. Perform TSQR

2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: $Q-I=L U$
4. Set $Y=L$
5. Set $T=-U Y_{1}^{-T}$

$$
I-Y T Y^{\top}=I-\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right] T\left[\begin{array}{ll}
Y_{1}^{\top} & Y_{2}^{\top}
\end{array}\right]
$$

Strong scaling

Strong Scaling, Edison (MKL)
294912-by-32 problem

- Hopper: Cray XE6 (NERSC) - 2×12-core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) - 2×12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2 m n^{2}-2 n^{3} / 3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

$$
W=\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right)=\left(\begin{array}{llll}
\Pi_{00} & & & \\
& \Pi_{10} & & \\
& & \Pi_{20} & \\
& & & \Pi_{30}
\end{array}\right) \cdot\left(\begin{array}{llll}
L_{00} & & & \\
& L_{10} & & \\
& & L_{20} & \\
& & & L_{30}
\end{array}\right) \cdot\left(\begin{array}{l}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{array}\right)=\left(\begin{array}{cc}
\prod_{01} & \\
& \Pi_{11}
\end{array}\right) \cdot\left(\begin{array}{ll}
L_{01} & \\
& L_{11}
\end{array}\right) \cdot\binom{U_{01}}{U_{11}}
$$

Obvious generalization of TSQR to LU

- Block parallel pivoting:
- uses a binary tree and is optimal in the parallel case

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow U_{00} \rightarrow U_{10} \rightarrow U_{30} \rightarrow U_{11} \rightarrow U_{02}
$$

- Block pairwise pivoting:
- uses a flat tree and is optimal in the sequential case
- introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
- used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \xrightarrow{\longrightarrow U_{00} \longrightarrow U_{01} \longrightarrow U_{02} \longrightarrow U_{03}}
$$

Stability of the LU factorization

- The backward stability of the LU factorization of a matrix A of size n-by-n

$$
\|\hat{L} \cdot \mid \hat{U}\|_{\infty} \leq\left(1+2\left(n^{2}-n\right) g_{w}\right)\|A\|_{\infty}
$$

depends on the growth factor

$$
g_{w}=\frac{\max _{i, j, k}\left|a_{i j}^{k}\right|}{\max _{i, j}\left|a_{i j}\right|} \quad \text { where } a_{i j}^{k} \text { are the values at the k-th step. }
$$

- $g_{w} \leq 2^{n-1}$, attained for Wilkinson matrix
but in practice it is on the order of $n^{2 / 3}-n^{1 / 2}$
- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90] :
- the multipliers in L are small,
- the correction introduced at each elimination step is of rank 1.

Block parallel pivoting

- Unstable for large number of processors P
- When $\mathrm{P}=$ number rows, it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)

Block pairwise pivoting

- Results shown for random matrices
- Will become unstable for large matrices $W=$

Page 23

Tournament pivoting - the overall idea

- At each iteration of a block algorithm
- Preprocess W to find at low communication cost good pivots for the LU factorization of W , return a permutation matrix P .
- Permute the pivots to top, ie compute PA.
- Compute LU with no pivoting of W, update trailing matrix.

$$
P A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& A_{22}-L_{2} U_{12}
\end{array}\right)
$$

Tournament pivoting for a tall skinny matrix

1) Compute GEPP factorization of each W_{i}, find permutation Π_{0}

$$
W=\left(\frac{\frac{W_{0}}{W_{1}}}{\frac{W_{2}}{W_{3}}}\right)=\binom{\frac{\Pi_{00} L_{00} ل_{00}}{\Pi_{10} L_{10} ل_{10}}}{\frac{\Pi_{20} L_{20} ل_{20}}{\Pi_{30} L_{30} U_{30}}}, \begin{aligned}
& \text { Pick b pivot rows, form } A_{00} \\
& \text { Same for } A_{10} \\
& \text { Same for for } A_{20} \\
& \text { Same }
\end{aligned}
$$

2) Perform $\log _{2}(P)$ times GEPP factorizations of 2b-by-b rows, find permutations Π_{1}, Π_{2}

$$
\left(\begin{array}{l}
A_{00} \\
\frac{A_{10}}{A_{20}} \\
A_{30}
\end{array}\right)=\left(\frac{\prod_{01} L_{0} U_{01}}{\prod_{11} L_{1} U_{11}}\right) \begin{aligned}
& \text { Pick b pivot rows, form } \mathrm{A}_{01} \\
& \text { Same for A11 }
\end{aligned}
$$

3) Compute LU factorization with no pivoting of the permuted matrix:

$$
\Pi_{2}^{T} \Pi_{1}^{T} \Pi_{0}^{T} W=L U
$$

Tournament pivoting

Growth factor for binary tree based CALU

- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and \mid 니 <= 4.2

Our "proof of stability" for CALU

- CALU as stable as GEPP in following sense:

In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.

- Example of one step of tournament pivoting:

$$
\left.\begin{array}{ll}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right) & {\left[\begin{array}{l}
\text { tournament pivoting: } \\
A_{11} \\
A_{21} \\
A_{31}
\end{array}\right] \rightarrow A_{11} \rightarrow A_{21}}
\end{array}\right) \bar{A}_{11}
$$

- Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).

Outline of the proof of stability for CALU

- Consider $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32}\end{array}\right)$, and the result of TSLU as $\left[\begin{array}{l}A_{11} \\ A_{21} \\ A_{31}\end{array}\right] \rightarrow A_{11} \rightarrow \bar{A}_{21} \longrightarrow \bar{A}_{11}$
- After the factorization of first panel by CALU, A_{32} (the Schur complement of A_{32}) is not bounded as in GEPP,

$$
\left(\begin{array}{lll}
\Pi_{11} & \Pi_{12} & \\
\Pi_{21} & \Pi_{22} & \\
& & I
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right)=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22} \\
A_{31} & A_{32}
\end{array}\right)=\left(\begin{array}{lll}
\bar{L}_{11} & \\
\bar{L}_{21} & 1 & \\
\bar{L}_{31} & I
\end{array}\right)\left(\begin{array}{ll}
\bar{U}_{11} & \bar{U}_{12} \\
& A_{22}^{s} \\
& A_{32}^{s}
\end{array}\right)
$$

- but $\mathrm{A}^{\mathrm{s}}{ }_{32}$ can be obtained by GEPP on larger matrix G formed from blocks of A

$$
G=\left(\begin{array}{ccc}
\bar{A}_{11} & & \bar{A}_{12} \\
A_{21} & A_{21} & \\
& -A_{31} & A_{32}
\end{array}\right)=\left(\begin{array}{ccc}
\bar{L}_{11} & & \\
A_{21} \bar{U}_{11}^{-1} & L_{21} & \\
& -L_{31} & 1
\end{array}\right)\left(\begin{array}{ccc}
\bar{U}_{11} & & \bar{U}_{12} \\
& U_{21} & -L_{21}^{-1} A_{21} \bar{U}_{11}^{-1} \bar{U}_{12} \\
& & A_{32}^{s}
\end{array}\right)
$$

- GEPP on G does not permute and

$$
\begin{array}{r}
L_{31} L_{21}^{-1} A_{21} \bar{U}_{11}^{-1} \bar{U}_{12}+A_{32}^{s}=L_{3} U_{21} \bar{U}_{11}^{-1} \bar{U}_{12}+A_{32}^{s}=A_{31} \bar{U}_{11}^{-1} \bar{U}_{12}+A_{32}^{s}=\bar{L}_{31} \bar{U}_{12}+A_{32}^{s}=A_{32} \\
\text { Page } 29
\end{array}
$$

Growth factor in exact arithmetic

- Matrix of size m-by-n, reduction tree of height $\mathrm{H}=\log (\mathrm{P})$.
- (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. Demmel, LG, M. Gu, SIMAX 2013)
- "In practice" means observed/expected/conjectured values.

	CALU	GEPP
Upper bound	$2^{\mathrm{n}(\log (\mathrm{P})+1)-1}$	$2^{\mathrm{n}-1}$
In practice	$\mathrm{n}^{2 / 3}--\mathrm{n}^{1 / 2}$	$\mathrm{n}^{2 / 3}--\mathrm{n}^{1 / 2}$

Better bounds

CALU - a communication avoiding LU factorization

- Consider a 2D grid of P processors $\mathrm{P}_{\mathrm{r}}-$ by- P_{c}, using a 2D block cyclic layout with square blocks of size b .

For $\mathrm{ib}=1$ to $\mathrm{n}-1$ step b

$$
A^{(i b)}=A(i b: n, i b: n)
$$

(1) Find permutation for current panel using TSLU $O\left(n / b \log _{2} P_{r}\right)$
(2) Apply all row permutations (pdlaswp)

- broadcast pivot information along the rows of the grid
(3) Compute panel factorization (dtrsm)
(4) Compute block row of U (pdtrsm)

$O\left(n / b \log _{2} P_{c}\right)$

- broadcast right diagonal part of L of current panel
(5) Update trailing matrix (pdgemm)
- broadcast right block column of L
- broadcast down block row of U

LU for General Matrices

- Cost of CALU vs ScaLAPACK's PDGETRF
- $\mathrm{n} \times \mathrm{n}$ matrix on $\mathrm{P}^{1 / 2} \times \mathrm{P}^{1 / 2}$ processor grid, block size b
- Flops: $(2 / 3) n^{3} / P+(3 / 2) n^{2} b / P^{1 / 2}$ vs $(2 / 3) n^{3} / P+n^{2} b / P^{1 / 2}$
- Bandwidth: $n^{2} \log P / P^{1 / 2}$
vs same
- Latency: $3 n \log P / b \quad$ vs $1.5 n \log P+3.5 n \log P / b$
- Close to optimal (modulo log P factors)
- Assume: $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{P}\right)$ memory/processor, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm,
- Choose b near n/ $\mathrm{P}^{1 / 2}$ (its upper bound)
- Bandwidth lower bound:

$$
\Omega\left(n^{2} / P^{1 / 2}\right) \text { - just } \log (P) \text { smaller }
$$

- Latency lower bound:

$$
\Omega\left(\mathrm{P}^{1 / 2}\right) \text { - just polylog }(\mathrm{P}) \text { smaller }
$$

Page 32

Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)
- IBM Power 5
- Up to 4.37x faster (16 procs, 1M x 150)
- Cray XT4
- Up to 5.52x faster (8 procs, 1M x 150)
- Parallel CALU (LU on general matrices)
- Intel Xeon (two socket, quad core)
- Up to 2.3x faster (8 cores, 10^6 x 500)
- IBM Power 5
- Up to 2.29x faster (64 procs, 1000 x 1000)
- Cray XT4
- Up to 1.81x faster (64 procs, 1000×1000)
- Details in SC08 (LG, Demmel, Xiang), IPDPS'10 (S. Donfack, LG).

CALU and its task dependency graph

- The matrix is partitioned into blocks of size $T \times b$.
- The computation of each block is associated with a task.

Scheduling CALU's Task Dependency Graph

- Static scheduling
+ Good locality of data

- Dynamic scheduling

Lightweight scheduling

- Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
- One example is work stealing
- Goal:
- Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and dequeue overhead.
- Provide performance consistency
- Approach: combine static and dynamic scheduling
- Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

	Design space			
Data layout/scheduling	Static	Dynamic	Static/(\%dynamic)	
Column Major Layout (CM)		\checkmark		
Block Cyclic Layout (BCL)	\checkmark	\checkmark	\checkmark	
2-level Block Layout (2l-BL)	\checkmark	\checkmark	\checkmark	

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Lightweight scheduling

- A self-adaptive strategy to provide
- A good trade-off between load balance, data locality, and dequeue overhead.
- Performance consistency
- Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Combined static/dynamic scheduling:

- A thread executes in priority its statically assigned tasks
- When no task ready, it picks a ready task from the dynamic part
- The size of the dynamic part is guided by a performance model

Best performance of CALU on multicore architectures

Static scheduling

Static + 10\% dynamic scheduling

100% dynamic scheduling

- Reported performance for PLASMA uses LU with block pairwise pivoting.
- GPU data courtesy of S. Donfack

