
Communication avoiding algorithms
for LU and QR factorizations

Laura Grigori

INRIA Paris - LJLL, Sorbonne Université

November 2021

Page 2

Plan
• Motivation

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, QR, Rank Revealing QR factorizations

• Progressively implemented in ScaLAPACK, LAPACK

• Algorithms for multicore processors

• Conclusions

Page 3

Sequential algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing
#words and #messages

Cholesky

LU

QR

RRQR

• Only several references shown for block algorithms (LAPACK),
cache-oblivious algorithms and communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting
[Frens, Wise, 03], 3x flops

[Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

[Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

Page 4

2D Parallel algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

• Only several references shown, block algorithms (ScaLAPACK) and
communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

• If memory per processor = n2 / P, the lower bounds become
#words_moved ≥ W (n2 / P1/2), #messages ≥ W (P1/2)

L

U

A(ib)

Q

R

A(ib)

Page 5

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b

A(ib) = A(ib:n, ib:n)

(1) Compute panel factorization
- find pivot in each column, swap rows

(2) Apply all row permutations
- broadcast pivot information along the rows
- swap rows at left and right

(3) Compute block row of U
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

#messages

Page 6

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x b matrix W, m >> b
• P processors, block row layout

• Classic Parallel Algorithm
• Compute Householder vector for each column
• Number of messages µ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages µ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 7

Parallel TSQR

QR

R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
Becker, Patterson, 02

Page 8

Q is represented implicitly as a product
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

Page 9
Q is represented implicitly as a product

Flexibility of TSQR and CAQR algorithms

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01
R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically

Page 10

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

CAQR

Page 11

QR for General Matrices
• Cost of CAQR vs ScaLAPACK’s PDGEQRF

• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops: (4/3)n3/P + (3/4)n2b log P/P1/2 vs (4/3)n3/P
• Bandwidth: (3/4)n2 log P/P1/2 vs same
• Latency: 2.5 n log P / b vs 1.5 n log P

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near n / P1/2 (its upper bound)
• Bandwidth lower bound:

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound:

W(P1/2) – just polylog(P) smaller

Page 12

Performance of TSQR vs Sca/LAPACK

• Parallel
• Intel Xeon (two socket, quad core machine), 2010

• Up to 5.3x speedup (8 cores, 105 x 200)
• Pentium III cluster, Dolphin Interconnect, MPICH, 2008

• Up to 6.7x speedup (16 procs, 100K x 200)
• BlueGene/L, 2008

• Up to 4x speedup (32 procs, 1M x 50)
• Tesla C 2050 / Fermi (Anderson et al)

• Up to 13x (110,592 x 100)
• Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
• QR computed locally using recursive algorithm (Elmroth-Gustavson) –

enabled by TSQR

• Results from many papers, for some see [Demmel, LG, Hoemmen,
Langou, SISC 12], [Donfack, LG, IPDPS 10].

Page 13

Modeled Speedups of CAQR vs ScaLAPACK

Petascale
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

Page 14

Impact

• TSQR/CAQR implemented in
• Intel Data analytics library
• GNU Scientific Library
• ScaLAPACK
• Spark for data mining

• CALU implemented in
• Cray’s libsci
• To be implemented in lapack/scapalack

Page 15

Algebra of TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

P0

P1

P2

P3

TSQR-HR CAQR

Page 16

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

can be re-written as an LU factorization

IQ - TY Y1T

Page 17

Reconstruct Householder vectors TSQR-HR

1. Perform TSQR
2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: Q - I = LU

4. Set Y = L
5. Set T = -U Y1-T

TY YTI

IQ - TY Y1T

Page 18

Strong scaling

• Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
• Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
• Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

1x

7
x

6
x

1
x

3.7x
2.7x

Page 19

The LU factorization of a tall skinny matrix
First try the obvious generalization of TSQR.

Page 20

Obvious generalization of TSQR to LU

• Block parallel pivoting:
• uses a binary tree and is optimal in the parallel case

• Block pairwise pivoting:
• uses a flat tree and is optimal in the sequential case
• introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
• used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W =
W0
W1
W2
W3

U00
U10
U20
U30

U01

U11

U02

W=
W0
W1
W2
W3

U01
U02

U00

U03

Page 21

Stability of the LU factorization
• The backward stability of the LU factorization of a matrix A of size n-by-n

depends on the growth factor

where aijk are the values at the k-th step.

• gW ≤ 2n-1 , attained for Wilkinson matrix

but in practice it is on the order of n2/3 -- n1/2

• Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

- the multipliers in L are small,

- the correction introduced at each elimination step is of rank 1.

Page 22

Block parallel pivoting

• Unstable for large number of processors P

• When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 23

Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices W=

W0
W1
W2
W3

U01
U02

U00

U03

Page 24

Tournament pivoting - the overall idea

• At each iteration of a block algorithm

, where

• Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

• Permute the pivots to top, ie compute PA.
• Compute LU with no pivoting of W, update trailing matrix.

Page 25

Tournament pivoting for a tall skinny matrix
1) Compute GEPP factorization of each Wi., find permutation

2) Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations

3) Compute LU factorization with no pivoting of the permuted matrix:

Pick b pivot rows, form A00

Same for A10

Same for A20

Same for A30

Pick b pivot rows, form A01

Same for A11

Page 26

Tournament pivoting

time

P0

P1

P2

P3

Good pivots for
factorizing W

Page 27

Growth factor for binary tree based CALU

• Random matrices from a normal distribution
• Same behaviour for all matrices in our test, and |L| <= 4.2

Page 28

Our “proof of stability” for CALU
• CALU as stable as GEPP in following sense:

In exact arithmetic, CALU process on a matrix A is equivalent to GEPP
process on a larger matrix G whose entries are blocks of A and zeros.

• Example of one step of tournament pivoting:

• Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).

A11
A21
A31

A11

A21

A11

tournament pivoting:

Page 29

Outline of the proof of stability for CALU

• Consider , and the result of TSLU as

• After the factorization of first panel by CALU, As
32 (the Schur complement of A32) is not

bounded as in GEPP,

• but As
32 can be obtained by GEPP on larger matrix G formed from blocks of A

• GEPP on G does not permute and

A11
A21
A31

A11

A21

A11

Page 30

Growth factor in exact arithmetic
• Matrix of size m-by-n, reduction tree of height H=log(P).
• (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, SIMAX 2013)
• “In practice” means observed/expected/conjectured values.

Better bounds

CALU GEPP

Upper bound 2n(log(P)+1)-1 2n-1

In practice n2/3 -- n1/2 n2/3 -- n1/2

Page 31

CALU – a communication avoiding LU factorization
• Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square

blocks of size b.

For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

(1) Find permutation for current panel using TSLU

(2) Apply all row permutations (pdlaswp)
- broadcast pivot information along the rows of the grid

(3) Compute panel factorization (dtrsm)

(4) Compute block row of U (pdtrsm)
- broadcast right diagonal part of L of current panel

(5) Update trailing matrix (pdgemm)
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

Page 32

LU for General Matrices

• Cost of CALU vs ScaLAPACK’s PDGETRF
• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops: (2/3)n3/P + (3/2)n2b / P1/2 vs (2/3)n3/P + n2b/P1/2

• Bandwidth: n2 log P/P1/2 vs same
• Latency: 3 n log P / b vs 1.5 n log P+ 3.5n logP / b

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near n / P1/2 (its upper bound)
• Bandwidth lower bound:

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound:

W(P1/2) – just polylog(P) smaller

Page 33

Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
• IBM Power 5

• Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
• Intel Xeon (two socket, quad core)

• Up to 2.3x faster (8 cores, 10^6 x 500)
• IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Page 34

CALU and its task dependency graph

• The matrix is partitioned into blocks of size T x b.
• The computation of each block is associated with a task.

Page 35

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+ Good locality of data - Ignores noise

• Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality

- Can have large dequeue overhead

Page 36

Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
• One example is work stealing

• Goal:
• Design a tunable strategy that is able to provide a good trade-off between load

balance, data locality, and dequeue overhead.
• Provide performance consistency

• Approach: combine static and dynamic scheduling
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Data layout/scheduling Static Dynamic Static/(%dynamic)

Column Major Layout (CM) Ö

Block Cyclic Layout (BCL) Ö Ö Ö

2-level Block Layout (2l-BL) Ö Ö Ö

Design space

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Page 37

Lightweight scheduling

• A self-adaptive strategy to provide
• A good trade-off between load balance, data locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
• A thread executes in priority its

statically assigned tasks
• When no task ready, it picks a

ready task from the dynamic
part

• The size of the dynamic part is
guided by a performance model

Page 38

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU
with block pairwise pivoting.

• GPU data courtesy of S. Donfack

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

