Communication avoiding algorithms for LU and QR factorizations

Laura Grigori

Alpines

INRIA Paris - LJLL, Sorbonne Université

November 2018
Plan

• Motivation
• Communication complexity of linear algebra operations
• Communication avoiding for dense linear algebra
 • LU, QR, Rank Revealing QR factorizations
 • Progressively implemented in ScaLAPACK, LAPACK
 • Algorithms for multicore processors
• Conclusions
Approaches for reducing communication

• **Tuning**
 • Overlap communication and computation, at most a factor of 2 speedup

• **Same numerical algorithm, different schedule of the computation**
 • Block algorithms for NLA
 • Barron and Swinnerton-Dyer, 1960
 • ScaLAPACK, Blackford et al 97
 • Cache oblivious algorithms for NLA
 • Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00

• **Same algebraic framework, different numerical algorithm**
 • The approach used in CA algorithms
 • More opportunities for reducing communication, may affect stability
Communication Complexity of Dense Linear Algebra

- **Matrix multiply**, using $2n^3$ flops (sequential or parallel)
 - Lower bound on Bandwidth $= \Omega \left(\frac{\text{#flops}}{M^{1/2}} \right)$
 - Lower bound on Latency $= \Omega \left(\frac{\text{#flops}}{M^{3/2}} \right)$

- **Same lower bounds apply to LU using reduction**
 - Demmel, LG, Hoemmen, Langou 2008

$$\begin{pmatrix} I & -B \\ A & I \\ I & I \end{pmatrix} = \begin{pmatrix} I & I \\ A & I \\ I & I \end{pmatrix} \begin{pmatrix} I & -B \\ I & AB \\ I & I \end{pmatrix}$$

- **And to almost all direct linear algebra** [Ballard, Demmel, Holtz, Schwartz, 09]
Lower bounds for linear algebra

- Computation modelled as an n-by-n-by-n set of lattice points
 \((i,j,k)\) represents the operation \(c(i,j) += f_{ij}(g_{ijk}(a(i,k) \cdot b(k,j)))\)
- The computation is divided into \(S\) phases
- Each phase contains exactly \(M\) (the fast memory size) load and store instructions
- Determine how many flops the algorithm can compute in each phase, by applying the discrete Loomis-Whitney inequality:

\[w^2 \leq N_A N_B N_C \]

Algorithms in direct linear algebra:

\[
\begin{align*}
\text{for } i,j,k = 1 : n \\
c(i,j) = f_{ij}(g_{ijk}(a(i,k), b(k,j))) \\
\text{endfor}
\end{align*}
\]

- Set of points in \(\mathbb{R}^3\), represent \(w\) arithmetics
- Orthogonal projections of the points onto coordinate planes \(N_A, N_B, N_C\) represent values of A, B, C
Lower bounds for matrix multiplication (contd)

• Discrete Loomis-Whitney inequality:
\[w^2 \leq N_A N_B N_C \]

• Since there are at most 2M elements of A, B, C in a phase, the bound is:
\[w \leq 2 \sqrt{2} M^{3/2} \]

• The number of phases S is \#flops/w, and hence the lower bound on communication is:
\[
\# messages(S) \geq \frac{\# flops}{w} = \Omega \left(\frac{\# flops}{M^{3/2}} \right) \\
\# loads/stores \geq \Omega \left(\frac{\# flops}{M^{1/2}} \right)
\]
Matrix distributions

1) 1D Column Blocked Layout

2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

5) 2D Row and Column Blocked Layout

6) 2D Row and Column Block Cyclic Layout

Generalizes others

Source slide: J. Demmel
MatMul with 2D Layout

- Consider processors in 2D grid (physical or logical)
- Processors can communicate with 4 nearest neighbors
 - Broadcast along rows and columns

\[
\begin{array}{ccc}
 p(0,0) & p(0,1) & p(0,2) \\
 p(1,0) & p(1,1) & p(1,2) \\
 p(2,0) & p(2,1) & p(2,2) \\
\end{array}
\]

\[
\begin{array}{ccc}
 p(0,0) & p(0,1) & p(0,2) \\
 p(1,0) & p(1,1) & p(1,2) \\
 p(2,0) & p(2,1) & p(2,2) \\
\end{array}
\]

\[=\]

\[
\begin{array}{ccc}
 p(0,0) & p(0,1) & p(0,2) \\
 p(1,0) & p(1,1) & p(1,2) \\
 p(2,0) & p(2,1) & p(2,2) \\
\end{array}
\]

\[
\begin{array}{ccc}
 p(0,0) & p(0,1) & p(0,2) \\
 p(1,0) & p(1,1) & p(1,2) \\
 p(2,0) & p(2,1) & p(2,2) \\
\end{array}
\]

- Assume \(p \) processors form square \(s \times s \) grid, \(s = p^{1/2} \)

Source slide: J. Demmel
Cannon’s Algorithm

... \(C(i,j) = C(i,j) + \sum_{k} A(i,k) * B(k,j) \)
... assume \(s = \sqrt{p} \) is an integer
forall \(i=0 \) to \(s-1 \) ... “skew” \(A \)
 left-circular-shift row \(i \) of \(A \) by \(i \)
... so that \(A(i,j) \) overwritten by \(A(i,(j+i) \mod s) \)
forall \(i=0 \) to \(s-1 \) ... “skew” \(B \)
 up-circular-shift column \(i \) of \(B \) by \(i \)
... so that \(B(i,j) \) overwritten by \(B((i+j) \mod s), j \)
for \(k=0 \) to \(s-1 \) ... sequential
forall \(i=0 \) to \(s-1 \) and \(j=0 \) to \(s-1 \) ... all processors in parallel
 \(C(i,j) = C(i,j) + A(i,j) \times B(i,j) \)
left-circular-shift each row of \(A \) by 1
up-circular-shift each column of \(B \) by 1

Source slide: J. Demmel
Cannon’s Matrix Multiplication

Cannon’s Matrix Multiplication Algorithm

\[
C(1,2) = A(1,0) \times B(0,2) + A(1,1) \times B(1,2) + A(1,2) \times B(2,2)
\]

Source slide: J. Demmel
Cost of Cannon’s Algorithm

forall \ i=0 \ to \ s-1 \quad \text{... recall } s = \sqrt{p} \\
\quad \text{left-circular-shift row } i \text{ of } A \text{ by } i \quad \text{... cost } \leq s^*(\alpha + \beta*n^2/p) \\
forall \ i=0 \ to \ s-1 \\
\quad \text{up-circular-shift column } i \text{ of } B \text{ by } i \quad \text{... cost } \leq s^*(\alpha + \beta*n^2/p) \\
for k=0 \ to \ s-1 \\
\quad \text{forall } \ i=0 \ to \ s-1 \text{ and } j=0 \ to \ s-1 \\
\quad \quad C(i,j) = C(i,j) + A(i,j)*B(i,j) \quad \text{... cost } = 2*(n/s)^3 = 2*n^3/p^{3/2} \\
\quad \text{left-circular-shift each row of } A \text{ by } 1 \quad \text{... cost } = \alpha + \beta*n^2/p \\
\quad \text{up-circular-shift each column of } B \text{ by } 1 \quad \text{... cost } = \alpha + \beta*n^2/p \\

° Total Time = 2*n^3/p + 4*s^*\alpha + 4*\beta*n^2/s \text{ - Optimal!} \\
° Parallel Efficiency = 2*n^3 / (p \times \text{Total Time}) \\
\quad = 1/(1 + \alpha \times 2*(s/n)^3 + \beta \times 2*(s/n)) \\
\quad = 1/(1 + O(\sqrt{p}/n)) \\
° Grows to 1 as n/s = n/\sqrt{p} = \sqrt{\text{data per processor}} \text{ grows} \\
° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

Source slide: J. Demmel
Sequential algorithms and communication bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>LAPACK</td>
<td>[Gustavson, 97]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ahmed, Pingali, 00]</td>
</tr>
<tr>
<td>LU</td>
<td>LAPACK (few cases)</td>
<td>[LG, Demmel, Xiang, 08]</td>
</tr>
<tr>
<td></td>
<td>[Toledo,97], [Gustavson, 97]</td>
<td>[Khabou, Demmel, LG, Gu, 12]</td>
</tr>
<tr>
<td></td>
<td>both use partial pivoting</td>
<td>uses tournament pivoting</td>
</tr>
<tr>
<td>QR</td>
<td>LAPACK (few cases)</td>
<td>[Frens, Wise, 03], 3x flops</td>
</tr>
<tr>
<td></td>
<td>[Elmroth,Gustavson,98]</td>
<td>[Demmel, LG, Hoemmen, Langou, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ballard et al, 14]</td>
</tr>
<tr>
<td>RRQR</td>
<td></td>
<td>[Demmel, LG, Gu, Xiang 11]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting, 3x flops</td>
</tr>
</tbody>
</table>

- Only several references shown for block algorithms (LAPACK), cache-oblivious algorithms and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation
2D Parallel algorithms and communication bounds

- If memory per processor = n^2 / P, the lower bounds become

 \[\#\text{words}_\text{moved} \geq \Omega \left(\frac{n^2}{P^{1/2}} \right), \quad \#\text{messages} \geq \Omega \left(P^{1/2} \right) \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>ScaLAPACK</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>LU</td>
<td>ScaLAPACK</td>
<td>[LG, Demmel, Xiang, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Khabou, Demmel, LG, Gu, 12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting</td>
</tr>
<tr>
<td>QR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Hoemmen, Langou, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ballard et al, 14]</td>
</tr>
<tr>
<td>RRQR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Gu, Xiang 13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting, 3x flops</td>
</tr>
</tbody>
</table>

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors

For $ib = 1$ to $n-1$ step b

$A^{(ib)} = A(ib:n, ib:n)$ \hspace{1cm} \#messages

1. Compute panel factorization \hspace{1cm} $O(n \log_2 P_r)$
 - find pivot in each column, swap rows

2. Apply all row permutations \hspace{1cm} $O(n / b(\log_2 P_c + \log_2 P_r))$
 - broadcast pivot information along the rows
 - swap rows at left and right

3. Compute block row of U \hspace{1cm} $O(n / b \log_2 P_c)$
 - broadcast right diagonal block of L of current panel

4. Update trailing matrix \hspace{1cm} $O(n / b(\log_2 P_c + \log_2 P_r))$
 - broadcast right block column of L
 - broadcast down block row of U
Block QR factorization

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} & R_{12} \\ \text{ } & A_{22}^{-1} \end{pmatrix} \]

Block QR algebra:

1. Compute panel factorization:
 \[\begin{pmatrix} A_{11} \\ A_{12} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \end{pmatrix}, \quad Q_1 = H_1 H_2 \ldots H_b \]

2. Compute the compact representation:
 \[Q_1 = I - Y_1 T_1 Y_1^T \]

3. Update the trailing matrix:
 \[\begin{pmatrix} I - Y_1 T_1 Y_1^T \end{pmatrix} \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y_1 \begin{pmatrix} \text{ } \\ \text{ } \end{pmatrix} T_1^T Y_1^T \begin{pmatrix} A_{12} \end{pmatrix} = \begin{pmatrix} R_{12} \\ A_{22}^{-1} \end{pmatrix} \]

4. The algorithm continues recursively on the trailing matrix.
TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of $m \times b$ matrix W, $m >> b$
 - P processors, block row layout

- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages $\propto b \log P$

- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

\[
W = \begin{bmatrix}
W_0 \\
W_1 \\
W_2 \\
W_3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30} \\
\end{bmatrix} \rightarrow \begin{bmatrix}
R_{01} \\
R_{11} \\
R_{02} \\
\end{bmatrix}
\]

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 16
Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02
Algebra of TSQR

Parallel: $W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow R_{02}$

\[
W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} Q_{00}R_{00} \\ Q_{10}R_{10} \\ Q_{20}R_{20} \\ Q_{30}R_{30} \end{pmatrix} = \begin{pmatrix} Q_{00} \\ Q_{10} \\ Q_{20} \\ Q_{30} \end{pmatrix} \begin{pmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{pmatrix}
\]

\[
\begin{pmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{pmatrix} = \begin{pmatrix} Q_{01}R_{01} \\ Q_{11}R_{11} \end{pmatrix} = \begin{pmatrix} Q_{01} \\ Q_{11} \end{pmatrix} \begin{pmatrix} R_{01} \\ R_{11} \end{pmatrix}
\]

Q is represented implicitly as a product
Output: \{Q_{00}, Q_{10}, Q_{00}, Q_{20}, Q_{30}, Q_{01}, Q_{11}, Q_{02}, R_{02}\}
Flexibility of TSQR and CAQR algorithms

Parallel: \[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{02} \]

Sequential: \[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{02} \rightarrow R_{03} \]

Dual Core: \[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{02} \rightarrow R_{03} \]

Reduction tree will depend on the underlying architecture, could be chosen dynamically

Page 19
Algebra of TSQR

Parallel: $W = W_0 W_1 W_2 W_3 \rightarrow R_{00} R_{10} R_{01} R_{20} R_{11} R_{02}$

CAQR
QR for General Matrices

• Cost of CAQR vs ScaLAPACK’s PDGEQRF
 • n x n matrix on $P^{1/2} \times P^{1/2}$ processor grid, block size b
 • Flops: $(4/3)n^3/P + (3/4)n^2b \log P/P^{1/2}$ vs $(4/3)n^3/P$
 • Bandwidth: $(3/4)n^2 \log P/P^{1/2}$ vs same
 • Latency: $2.5 n \log P / b$ vs $1.5 n \log P$

• Close to optimal (modulo log P factors)
 • Assume: $O(n^2/P)$ memory/processor, $O(n^3)$ algorithm,
 • Choose b near $n / P^{1/2}$ (its upper bound)
 • Bandwidth lower bound:
 $\Omega(n^2 / P^{1/2})$ – just log(P) smaller
 • Latency lower bound:
 $\Omega(P^{1/2})$ – just polylog(P) smaller
Performance of TSQR vs Sca/LAPACK

• Parallel
 • Intel Xeon (two socket, quad core machine), 2010
 • Up to 5.3x speedup (8 cores, $10^5 \times 200$)
 • Pentium III cluster, Dolphin Interconnect, MPICH, 2008
 • Up to 6.7x speedup (16 procs, 100K x 200)
 • BlueGene/L, 2008
 • Up to 4x speedup (32 procs, 1M x 50)
 • Tesla C 2050 / Fermi (Anderson et al)
 • Up to 13x (110,592 x 100)
 • Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
 • QR computed locally using recursive algorithm (Elmroth-Gustavson) – enabled by TSQR

• Results from many papers, for some see [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS 10].
Modeled Speedups of CAQR vs ScaLAPACK

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

\[\gamma = 2 \cdot 10^{-12} \text{s}, \alpha = 10^{-5} \text{s}, \beta = 2 \cdot 10^{-9} \text{s/word}. \]
Impact

- TSQR/CAQR implemented in
 - Intel Data analytics library
 - GNU Scientific Library
 - ScaLAPACK
 - Spark for data mining

- CALU implemented in
 - Cray’s libsci
 - To be implemented in lapack/scapalack
Algebra of TSQR

Parallel: \[W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow R_{02} \]
Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

\[W = QR = (I - YTY_1^T)R \]

can be re-written as an LU factorization

\[W - R = Y(-TY_1^T)R \]
\[Q - I = Y(-TY_1^T) \]
Reconstruct Householder vectors TSQR-HR

1. Perform TSQR
2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: $Q - I = LU$

4. Set $Y = L$
5. Set $T = -UY_1^{-T}$

\[
I - YTY^T = I - \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} T \begin{bmatrix} Y_1^T & Y_2^T \end{bmatrix}
\]
Strong scaling

- **Hopper:** Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
- **Edison:** Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2mn^2 - 2n^3/3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.
The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

\[
W = \begin{pmatrix}
W_0 \\
W_1 \\
W_2 \\
W_3
\end{pmatrix} = \begin{pmatrix}
\Pi_{00} & \Pi_{10} \\
\Pi_{20} & \Pi_{30}
\end{pmatrix} \begin{pmatrix}
L_{00} & \\
L_{10} & L_{20} \\
\end{pmatrix} \begin{pmatrix}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{pmatrix}
\]

\[
\begin{pmatrix}
U_{00} \\
U_{10} \\
U_{20} \\
U_{30}
\end{pmatrix} = \begin{pmatrix}
\Pi_{01} & \Pi_{11}
\end{pmatrix} \begin{pmatrix}
L_{01} & \\
L_{11} & L_{11}
\end{pmatrix} \begin{pmatrix}
U_{01} \\
U_{11}
\end{pmatrix} \begin{pmatrix}
U_{01} \\
U_{11}
\end{pmatrix} = \Pi_{02} L_{02} U_{02}
\]
Obvious generalization of TSQR to LU

• Block parallel pivoting:
 • uses a binary tree and is optimal in the parallel case

\[
W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow U_{00} \rightarrow U_{01} \rightarrow U_{02}
\]

• Block pairwise pivoting:
 • uses a flat tree and is optimal in the sequential case
 • introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
 • used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

\[
W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow U_{00} \rightarrow U_{01} \rightarrow U_{02} \rightarrow U_{03}
\]
Stability of the LU factorization

- The backward stability of the LU factorization of a matrix A of size n-by-n
 \[\| \hat{L} \cdot \hat{U} \|_\infty \leq (1 + 2(n^2 - n)g_w)\|A\|_\infty \]
 depends on the growth factor
 \[g_w = \frac{\max_{i,j,k} |a_{ij}^k|}{\max_{i,j} |a_{ij}|} \]
 where a_{ij}^k are the values at the k-th step.

- $g_w \leq 2^{n-1}$, attained for Wilkinson matrix
 but in practice it is on the order of $n^{2/3}$ -- $n^{1/2}$

- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90] :
 - the multipliers in L are small,
 - the correction introduced at each elimination step is of rank 1.
Block parallel pivoting

- Unstable for large number of processors P
- When $P=$ number rows, it corresponds to parallel pivoting, known to be unstable
 (Trefethen and Schreiber, 90)
Block pairwise pivoting

- Results shown for random matrices
- Will become unstable for large matrices

\[W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \quad \rightarrow \quad U_{00} \rightarrow U_{01} \rightarrow U_{02} \rightarrow U_{03} \]
Tournament pivoting - the overall idea

• At each iteration of a block algorithm

\[
A = \begin{pmatrix}
\tilde{A}_{11} & \tilde{A}_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
b \\n\end{pmatrix}
\begin{pmatrix}
A_{11} \\
A_{21}
\end{pmatrix}
\] , where \(W = \begin{pmatrix}
A_{11} \\
A_{21}
\end{pmatrix} \)

• Preprocess \(W \) to find at low communication cost good pivots for the LU factorization of \(W \), return a permutation matrix \(P \).
• Permute the pivots to top, ie compute \(PA \).
• Compute LU with no pivoting of \(W \), update trailing matrix.

\[
PA = \begin{pmatrix}
L_{11} & I_{n-b} \\
L_{21} & I_{n-b}
\end{pmatrix}
\begin{pmatrix}
U_{11} & U_{12} \\
A_{22} - L_{21}U_{12}
\end{pmatrix}
\]
Tournament pivoting for a tall skinny matrix

1) Compute GEPP factorization of each W_i, find permutation Π_0

$$\begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} = \begin{bmatrix} \Pi_{00}L_{00}U_{00} \\ \Pi_{10}L_{10}U_{10} \\ \Pi_{20}L_{20}U_{20} \\ \Pi_{30}L_{30}U_{30} \end{bmatrix}$$

Pick b pivot rows, form A_{00}

Same for A_{10}

Same for A_{20}

Same for A_{30}

2) Perform $\log_2(P)$ times GEPP factorizations of $2b$-by-b rows, find permutations Π_1, Π_2

$$\begin{bmatrix} A_{00} \\ A_{10} \\ A_{20} \\ A_{30} \end{bmatrix} = \begin{bmatrix} \Pi_{01}L_{01}U_{01} \\ \Pi_{11}L_{11}U_{11} \end{bmatrix}$$

Pick b pivot rows, form A_{01}

Same for A_{11}

$$\begin{bmatrix} A_{01} \\ A_{11} \end{bmatrix} = \frac{\Pi_{02}L_{02}U_{02}}{\Pi_2}$$

3) Compute LU factorization with no pivoting of the permuted matrix:

$$\Pi_2^T\Pi_1^T\Pi_0^TW = LU$$
Tournament pivoting

\[
\begin{align*}
\mathbf{P}_0 & = \left(\begin{array}{cc}
2 & 4 \\
0 & 1 \\
2 & 0 \\
1 & 2 \\
\end{array} \right) = \Pi_0 L_0 U_0 \\
\Pi^T W_0 & = \left(\begin{array}{cc}
2 & 4 \\
0 & 2 \\
4 & 1 \\
2 & 0 \\
\end{array} \right) = \Pi_0 L_0 U_0 \\
\mathbf{W}_0 & = \left(\begin{array}{cc}
2 & 4 \\
0 & 2 \\
4 & 1 \\
2 & 0 \\
\end{array} \right) = \Pi_0 L_0 U_0 \\
\Pi^T W_0 & = \left(\begin{array}{cc}
4 & 1 \\
2 & 4 \\
4 & 2 \\
1 & 4 \\
\end{array} \right) = \Pi_0 L_0 U_0 \\
\Pi_0 & = \left(\begin{array}{cc}
4 & 1 \\
2 & 4 \\
4 & 2 \\
1 & 4 \\
\end{array} \right) \\
\end{align*}
\]

Good pivots for factorizing \(W \)

\[
\begin{align*}
\mathbf{P}_1 & = \left(\begin{array}{cc}
2 & 0 \\
0 & 0 \\
4 & 1 \\
1 & 0 \\
\end{array} \right) = \Pi_1 L_1 U_1 \\
\Pi^T W_1 & = \left(\begin{array}{cc}
4 & 1 \\
2 & 0 \\
\end{array} \right) \\
\mathbf{W}_1 & = \left(\begin{array}{cc}
4 & 1 \\
2 & 0 \\
\end{array} \right) \\
\Pi^T W_2 & = \left(\begin{array}{cc}
4 & 2 \\
1 & 4 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) = \Pi_2 L_2 U_2 \\
\Pi^T W_2 & = \left(\begin{array}{cc}
4 & 2 \\
1 & 4 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) = \Pi_2 L_2 U_2 \\
\mathbf{P}_2 & = \left(\begin{array}{cc}
0 & 1 \\
1 & 4 \\
0 & 0 \\
0 & 2 \\
\end{array} \right) = \Pi_2 L_2 U_2 \\
\Pi^T W_3 & = \left(\begin{array}{cc}
4 & 2 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) \\
\mathbf{W}_3 & = \left(\begin{array}{cc}
4 & 2 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) \\
\end{align*}
\]

Good pivots for factorizing \(W \)

\[
\begin{align*}
\mathbf{P}_3 & = \left(\begin{array}{cc}
2 & 1 \\
0 & 2 \\
1 & 0 \\
4 & 2 \\
\end{array} \right) = \Pi_3 L_3 U_3 \\
\Pi^T W_3 & = \left(\begin{array}{cc}
4 & 2 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) \\
\mathbf{W}_3 & = \left(\begin{array}{cc}
4 & 2 \\
0 & 2 \\
4 & 2 \\
0 & 2 \\
\end{array} \right) \\
\end{align*}
\]

Page 36
• Random matrices from a normal distribution
• Same behaviour for all matrices in our test, and $|L| \leq 4.2$
Stability of CALU (experimental results)

- Results show $||PA-LU||/||A||$, normwise and componentwise backward errors, for random matrices and special ones
 - See [LG, Demmel, Xiang, SIMAX 2011] for details
 - BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
Our “proof of stability” for CALU

• CALU as stable as GEPP in following sense:
 In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.

• Example of one step of tournament pivoting:

 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix}$

 tournament pivoting:

 $\begin{pmatrix} A_{11} \\ A_{21} \\ A_{31} \end{pmatrix} \rightarrow \begin{pmatrix} A_{11} \\ A_{21} \\ A_{11} \end{pmatrix}$

 $G = \begin{pmatrix} A_{11}^\prime & A_{12}^\prime \\ A_{21} & A_{21} \\ -A_{31} & A_{32} \end{pmatrix}$

• Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).
Outline of the proof of stability for CALU

• Consider \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix} \), and the result of TSLU as

\[
\begin{pmatrix} A_{11} \\ A_{21} \\ A_{31} \end{pmatrix} \rightarrow A_{11} \quad \rightarrow A_{21} \quad \rightarrow A_{11}
\]

• After the factorization of first panel by CALU, \(A_{32}^{s} \) (the Schur complement of \(A_{32} \)) is not bounded as in GEPP,

\[
\begin{pmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{21} & \Pi_{22} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \\ \bar{A}_{31} & \bar{A}_{32} \end{pmatrix} = \begin{pmatrix} \bar{L}_{11} & \bar{U}_{11} \\ \bar{L}_{21} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix} \begin{pmatrix} \bar{L}_{11} & \bar{U}_{11} \\ \bar{L}_{21} & I \end{pmatrix} \begin{pmatrix} A_{22} \\ A_{32}^{s} \end{pmatrix}
\]

• but \(A_{32}^{s} \) can be obtained by GEPP on larger matrix \(G \) formed from blocks of \(A \)

\[
G = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \\ \bar{A}_{31} & \bar{A}_{32} \end{pmatrix} = \begin{pmatrix} \bar{L}_{11} & \bar{L}_{11}^{-1} \\ \bar{A}_{21} & \bar{A}_{21}^{-1} \bar{U}_{11} \\ \bar{A}_{31} & \bar{A}_{31}^{-1} \bar{U}_{11} \end{pmatrix} \begin{pmatrix} \bar{U}_{11} & \bar{U}_{11}^{-1} \bar{U}_{12} \\ \bar{U}_{21} & \bar{U}_{21}^{-1} \bar{U}_{12} \end{pmatrix}
\]

• GEPP on \(G \) does not permute and

\[
L_{31}L_{21}^{-1}A_{21}U_{11}^{-1}U_{12} + A_{32}^{s} = L_{31}U_{21}^{-1}U_{11}^{-1}U_{12} + A_{32}^{s} = A_{31}U_{11}^{-1}U_{12} + A_{32}^{s} = \bar{L}_{31}U_{12} + A_{32}^{s} = A_{32}
\]
LU factorization and low rank matrices

• For low rank matrices, the factorization of A_1 computed as following might not be stable

\[
\text{Compute } PA=LU \text{ by using GEPP} \\
\text{Permute the matrix } A_1=PA \\
\text{Compute } LU \text{ with no pivoting } A_1=L_1U_1
\]

\[
L(k+1:end,k) = A(k+1:end,k)/A(k,k) \\
L(k+1:end,k) = L(k+1:end,k) \times (1/A(k,k))
\]

• Example $A = \text{randn}(6,3)\times\text{randn}(3,5)$, $\text{max(abs(L))} = 1$, $\text{max(abs(L_1))} = 10^{15}$

After 4 steps of factorization of PA we obtain:

\[
PA^4 = \begin{pmatrix}
1.0000 \\
0.1729 & 1.0000 \\
0.6061 & 0.8608 & 1.0000 \\
0.5776 & 0.0543 & 0.3264 & 1.0000 \\
0.4789 & -0.2877 & -0.1545 & 2.3333 \\
-0.3264 & -0.7514 & -0.4597 & 1.7778
\end{pmatrix}
\begin{pmatrix}
4.4766 & 3.0163 & -4.7390 & 4.2180 & -0.8164 \\
-1.5439 & -0.4703 & 1.9267 & 1.0925 \\
1.6149 & 2.3623 & 0.3167 \\
9.9e-16 & 1.6e-16 \\
1
\end{pmatrix}
\]

Schur complement after 4 elimination steps:

\[
A_1^4 = \begin{pmatrix}
1.0000 \\
0.1729 & 1.0000 \\
0.6061 & 0.8608 & 1.0000 \\
0.5776 & 0.0543 & 0.3264 & 1.0000 \\
0.4789 & -0.2877 & -0.1545 & 2.3333 \\
-0.3264 & -0.7514 & -0.4597 & 1.7778
\end{pmatrix}
\begin{pmatrix}
4.4766 & 3.0163 & -4.7390 & 4.2180 & -0.8164 \\
-1.5439 & -0.4703 & 1.9267 & 1.0925 \\
1.6149 & 2.3623 & 0.3167 \\
9.9e-16 & 1.6e-16 \\
1
\end{pmatrix}
\]
LU_PRRP: LU with panel rank revealing pivoting

- Pivots are selected by using strong rank revealing QR on each panel
- The factorization after one panel elimination is written as

\[
PA = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I_b & A_{11}^{-1} \\ A_{21}A_{11}^{-1} & I_{n-b} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}
\]

\(A_{21}A_{11}^{-1}\) is computed through strong rank revealing QR and \(\max(|A_{21}A_{11}^{-1}|)_{ij} \leq f\)

- LU_PRRP and CALU_PRRP stable for pathological cases (Wilkinson matrix) and matrices from two real applications (Volterra integral equation - Foster, a boundary value problem - Wright) on which GEPP fails.

A. Khabou, J. Demmel, LG, M. Gu, 2012
Growth factor in exact arithmetic

- Matrix of size m-by-n, reduction tree of height $H = \log(P)$.
- (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. Demmel, LG, M. Gu, SIMAX 2013)
- “In practice” means observed/expected/conjectured values.

<table>
<thead>
<tr>
<th></th>
<th>CALU</th>
<th>GEPP</th>
<th>CALU_PRRP</th>
<th>LU_PRRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper bound</td>
<td>$2^n(\log(P)+1)-1$</td>
<td>2^{n-1}</td>
<td>$(1+2b)^{(n/b)\log(P)}$</td>
<td>$(1+2b)^{(n/b)}$</td>
</tr>
<tr>
<td>In practice</td>
<td>$n^{2/3} -- n^{1/2}$</td>
<td>$n^{2/3} -- n^{1/2}$</td>
<td>$(n/b)^{2/3} -- (n/b)^{1/2}$</td>
<td>$(n/b)^{2/3} -- (n/b)^{1/2}$</td>
</tr>
</tbody>
</table>

Better bounds

- For a matrix of size 10^7-by-10^7 (using petabytes of memory)
 $n^{1/2} = 10^{3.5}$
CALU – a communication avoiding LU factorization

- Consider a 2D grid of P processors P_r-by-P_c, using a 2D block cyclic layout with square blocks of size b.

For $ib = 1$ to $n-1$ step b

\[A^{(ib)} = A(ib:n, ib:n) \]

1. Find permutation for current panel using TSLU $O(n/b \log_2 P_r)$
2. Apply all row permutations ($pdlaswp$) $O(n/b(\log_2 P_c + \log_2 P_r))$
 - broadcast pivot information along the rows of the grid
3. Compute panel factorization ($dtrsm$)
4. Compute block row of U ($pdtrsm$)
 - broadcast right diagonal part of L of current panel
5. Update trailing matrix ($pdgemm$)
 - broadcast right block column of L
 - broadcast down block row of U

$O(n/b(\log_2 P_c + \log_2 P_r))$
LU for General Matrices

• Cost of CALU vs ScaLAPACK’s PDGETRF
 • n x n matrix on $P^{1/2} \times P^{1/2}$ processor grid, block size b
 • Flops: $(2/3)n^3/P + (3/2)n^2b / P^{1/2}$ vs $(2/3)n^3/P + n^2b/P^{1/2}$
 • Bandwidth: $n^2 \log P/P^{1/2}$ vs same
 • Latency: $3n \log P / b$ vs $1.5n \log P + 3.5n \log P / b$

• Close to optimal (modulo log P factors)
 • Assume: $O(n^2/P)$ memory/processor, $O(n^3)$ algorithm,
 • Choose b near $n / P^{1/2}$ (its upper bound)
 • Bandwidth lower bound:
 $\Omega(n^2 /P^{1/2})$ – just log(P) smaller
 • Latency lower bound:
 $\Omega(P^{1/2})$ – just polylog(P) smaller
Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
 • IBM Power 5
 • Up to 4.37x faster (16 procs, 1M x 150)
 • Cray XT4
 • Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
 • Intel Xeon (two socket, quad core)
 • Up to 2.3x faster (8 cores, 10^6 x 500)
 • IBM Power 5
 • Up to 2.29x faster (64 procs, 1000 x 1000)
 • Cray XT4
 • Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).
CALU and its task dependency graph

- The matrix is partitioned into blocks of size $T \times b$.
- The computation of each block is associated with a task.
Scheduling CALU’s Task Dependency Graph

- **Static scheduling**
 - Good locality of data
 - Ignores noise

- **Dynamic scheduling**
 - Keeps cores busy
 - Poor usage of data locality
 - Can have large dequeue overhead
Lightweight scheduling

- Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
 - One example is work stealing

- Goal:
 - Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and dequeue overhead.
 - Provide performance consistency

- Approach: combine static and dynamic scheduling
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

<table>
<thead>
<tr>
<th>Design space</th>
<th>Static</th>
<th>Dynamic</th>
<th>Static/(%dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data layout/scheduling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Major Layout (CM)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Block Cyclic Layout (BCL)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-level Block Layout (2l-BL)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

S. Donfack, LG, B. Gropp, V. Kale, IPDPS 2012
Lightweight scheduling

- A self-adaptive strategy to provide
 - A good trade-off between load balance, data locality, and dequeue overhead.
 - Performance consistency
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Combined static/dynamic scheduling:
- A thread executes in priority its statically assigned tasks
- When no task ready, it picks a ready task from the dynamic part
- The size of the dynamic part is guided by a performance model
Data layout and other optimizations

• Three data distributions investigated
 • CM : Column major order for the entire matrix
 • BCL : Each thread stores contiguously (CM) the data on which it operates
 • 2l-BL : Each thread stores in blocks the data on which it operates

• And other optimizations
 • Updates (dgemm) performed on several blocks of columns (for BCL and CM layouts)
Impact of data layout

Impact of data layout and scheduling on AMD 48 cores

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).

BCL : Each thread stores contiguously (CM) its data
2l-BL : Each thread stores in blocks its data
Best performance of CALU on multicore architectures

- Reported performance for PLASMA uses LU with block pairwise pivoting.
- GPU data courtesy of S. Donfack