Randomized low rank approximation

L. Grigori

Inria Paris, UPMC

November 2020

Plan

Randomization for least-squares problem

Low rank matrix approximation

Randomized algorithms for low rank approximation

Plan

Randomization for least-squares problem

Low rank matrix approximation

Randomized algorithms for low rank approximation

Johnson-Lindenstrauss transform

Definition 3 from [Woodruff, 2014].
A random matrix $\Omega_{1} \in \mathbb{R}^{k \times m}$ is a Johnson-Lindenstrauss transform with parameters ϵ, δ, n, or $\operatorname{JLT}(n, \epsilon, \delta)$, if with probability at least $1-\delta$ for any n-element subset $V \subset \mathbb{R}^{m}$, for all $x_{i}, x_{j} \in V$, we have

$$
\begin{equation*}
\left|\left\langle\Omega_{1} x_{i}, \Omega_{1} x_{j}\right\rangle-\left\langle x_{i}, x_{j}\right\rangle\right| \leq \epsilon\left\|x_{i}\right\|_{2}\left\|x_{j}\right\|_{2} \tag{1}
\end{equation*}
$$

- If $x_{i}=x_{j}$ we obtain $\left\|\Omega_{1} x_{i}\right\|_{2}^{2}=(1 \pm \epsilon)\left\|x_{i}\right\|_{2}^{2}$.
- It can also be expressed as: given all vectors $x_{i}, x_{j} \in V$ are rescaled to be unit vectors, then for all $x_{i}, x_{j} \in V$ we require to hold:

$$
\begin{align*}
\left\|\Omega_{1} x_{i}\right\|_{2}^{2} & =(1 \pm \epsilon)\left\|x_{i}\right\|_{2}^{2} \tag{2}\\
\left\|\Omega_{1}\left(x_{i}+x_{j}\right)\right\|_{2}^{2} & =(1 \pm \epsilon)\left\|x_{i}+x_{j}\right\|_{2}^{2} \tag{3}
\end{align*}
$$

Proof that we obtain relation (4):

$$
\begin{aligned}
\left\langle\Omega_{1} x_{i}, \Omega_{1} x_{j}\right\rangle & =\left(\left\|\Omega_{1}\left(x_{i}+x_{j}\right)\right\|_{2}^{2}-\left\|\Omega_{1} x_{i}\right\|_{2}^{2}-\left\|\Omega_{1} x_{j}\right\|_{2}^{2}\right) / 2 \\
& =\left((1 \pm \epsilon)\left\|x_{i}+x_{j}\right\|_{2}^{2}-(1 \pm \epsilon)\left\|x_{i}\right\|_{2}^{2}-(1 \pm \epsilon)\left\|x_{j}\right\|_{2}^{2}\right) / 2 \\
& =\left\langle x_{i}, x_{j}\right\rangle \pm O(\epsilon)
\end{aligned}
$$

Johnson-Lindenstrauss transform (contd)

Let $\Omega_{1} \in \mathbb{R}^{k \times m}$ be a matrix whose entries are independent standard normal random variables, multiplied by $1 / \sqrt{k}$. If $k=O\left(\epsilon^{-2} \log (n / \delta)\right)$, then Ω_{1} is a $\operatorname{JLT}(n, \epsilon, \delta)$.

Source: Theorem 4 in [Woodruff, 2014], see also Theorem 2.1 and proof in S. Dasgupta, A. Gupta, 2003, An Elementary Proof of a Theorem of Johnson and Lindenstrauss

Oblivious subspace embedding

Let $\Omega_{1} \in \mathbb{R}^{k \times m}$ be a matrix whose entries are independent standard normal random variables, multiplied by $1 / \sqrt{k}$. If $k=O\left(\epsilon^{-2}(n+\log (1 / \delta))\right)$, then Ω_{1} is an oblivious subspace embedding (OSE) with parameters (n, ϵ, δ). That is, with probability at least $1-\delta$ for any n -dimensional subspace $\mathbf{V} \subset \mathbb{R}^{m}$, for all $x_{i}, x_{j} \in \mathbf{V}$, we have

$$
\begin{equation*}
\left|\left\langle\Omega_{1} x_{i}, \Omega_{1} x_{j}\right\rangle-\left\langle x_{i}, x_{j}\right\rangle\right| \leq \epsilon\left\|x_{i}\right\|_{2}\left\|x_{j}\right\|_{2} \tag{4}
\end{equation*}
$$

Source: Theorem 6 in [Woodruff, 2014]

Least squares problems

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{n}$, with $m \ll n$, solve

$$
y:=\arg \min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}=\sum_{i=1}^{n}\left(b_{i}-\langle A(i,:), x\rangle\right)^{2}
$$

1. Solve by computing $Q R$ factorization of A or using normal equations,

$$
A^{T} A x=A^{T} b
$$

2. Solve by using randomization, with $\Omega_{1} \in \mathbb{R}^{k \times m}$

$$
y^{*}:=\arg \min _{x \in \mathbb{R}^{n}}\left\|\Omega_{1}(A x-b)\right\|_{2}
$$

Least squares problems with randomization

Solve by using randomization, with $\Omega_{1} \in \mathbb{R}^{k \times m}, k=O\left(\epsilon^{-2}(n+\log (1 / \delta))\right.$, being OSE with parameters (n, ϵ, δ) for $\mathbf{V}=\operatorname{range}(A)+\operatorname{span}(b)$

$$
y^{*}:=\arg \min _{x \in \mathbb{R}^{n}}\left\|\Omega_{1}(A x-b)\right\|_{2}
$$

We obtain with probability $1-\delta$:

$$
\left\|A y^{*}-b\right\|_{2}^{2} \leq(1+O(\epsilon))\|A y-b\|_{2}^{2}
$$

Plan

Randomization for least-squares problem

Low rank matrix approximation

Randomized algorithms for low rank approximation

Low rank matrix approximation

- Problem: given $A \in \mathbb{R}^{m \times n}$, compute rank-k approximation $Z W^{T}$, where Z is $m \times k$ and W^{T} is $k \times n$.

- Problem with diverse applications
\square from scientific computing: fast solvers for integral equations, H-matrices
\square to data analytics: principal component analysis, image processing, ...

$$
\begin{gathered}
A x \rightarrow Z W^{T} x \\
\text { Flops } \quad 2 m n \rightarrow 2(m+n) k
\end{gathered}
$$

Singular value decomposition

For any given $A \in \mathbb{R}^{m \times n}, m \geq n$ its singular value decomposition is

$$
A=U \Sigma V^{T}=\left(\begin{array}{lll}
U_{1} & U_{2} & U_{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2} \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right)^{T}
$$

where

- $U \in \mathbb{R}^{m \times m}$ is orthogonal matrix, the left singular vectors of A, U_{1} is $m \times k, U_{2}$ is $m \times n-k, U_{3}$ is $m \times m-n$
- $\Sigma \in \mathbb{R}^{m \times n}$, its diagonal is formed by $\sigma_{1}(A) \geq \ldots \geq \sigma_{n}(A) \geq 0$ Σ_{1} is $k \times k, \Sigma_{2}$ is $n-k \times n-k$
- $V \in \mathbb{R}^{n \times n}$ is orthogonal matrix, the right singular vectors of A, V_{1} is $n \times k, V_{2}$ is $n \times n-k$

Properties of SVD

Given $A=U \Sigma V^{\top}$, we have

- $A^{T} A=V \Sigma^{T} \Sigma V^{T}$, the right singular vectors of A are a set of orthonormal eigenvectors of $A^{T} A$.
- $A A^{T}=U \Sigma^{T} \Sigma U^{T}$, the left singular vectors of A are a set of orthonormal eigenvectors of $A A^{T}$.
- The non-negative singular values of A are the square roots of the non-negative eigenvalues of $A^{T} A$ and $A A^{T}$.
- If $\sigma_{k} \neq 0$ and $\sigma_{k+1}, \ldots, \sigma_{n}=0$, then $\operatorname{Range}(A)=\operatorname{span}\left(U_{1}\right), \operatorname{Null}(A)=\operatorname{span}\left(V_{2}\right)$, $\operatorname{Range}\left(A^{T}\right)=\operatorname{span}\left(V_{1}\right), \operatorname{Null}(A)=\operatorname{span}\left(U_{2} U_{3}\right)$.

Norms

$$
\begin{aligned}
\|A\|_{p} & =\max _{\|x\|_{p=1}}\|A x\|_{p} \\
\|A\|_{F} & =\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sigma_{1}^{2}(A)+\ldots \sigma_{n}^{2}(A)} \\
\|A\|_{2} & =\sigma_{\max }(A)=\sigma_{1}(A)
\end{aligned}
$$

Some properties:

$$
\begin{aligned}
\max _{i, j}|A(i, j)| & \leq\|A\|_{2} \leq \sqrt{m n} \max _{i, j}|A(i, j)| \\
\|A\|_{2} & \leq\|A\|_{F} \leq \sqrt{\min (m, n)}\|A\|_{2}
\end{aligned}
$$

Orthogonal Invariance: If $Q \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ are orthogonal, then

$$
\begin{aligned}
\|Q A Z\|_{F} & =\|A\|_{F} \\
\|Q A Z\|_{2} & =\|A\|_{2}
\end{aligned}
$$

Low rank matrix approximation

- Best rank-k approximation $A_{\text {opt }, k}=U_{k} \Sigma_{k} V_{k}$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$
\begin{align*}
\min _{\operatorname{rank}\left(A_{k}\right) \leq k}\left\|A-A_{k}\right\|_{2} & =\left\|A-A_{\text {opt }, k}\right\|_{2}=\sigma_{k+1}(A) \tag{5}\\
\min _{\operatorname{rank}\left(A_{k}\right) \leq k}\left\|A-A_{k}\right\|_{F} & =\left\|A-A_{\text {opt }, k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)} \tag{6}
\end{align*}
$$

Image, size 1190×1920

Rank-10 approximation, SVD

Rank-50 approximation, SVD

- Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added progressively.

- Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
- Weakly streaming algorithm: can solve a problem with $O(1)$ passes over the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

Low rank matrix approximation: trade-offs

Truncated CA-SVD	Truncated SVD
CA rank revealing QR Algorithm LU with column/row tournament pivoting (for sparse matrices) (strong) QRCP	
LU with column,	
rook pivoting	

Communication optimal if computing a rank-k approximation on P processors requires $\#$ messages $=\Omega\left(\log _{2} P\right)$.

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\#$ messages $=\Omega\left(\log _{2} P\right)$.

Idea underlying many algorithms

Compute $\tilde{A}_{k}=\mathcal{P} A$, where $\mathcal{P}=\mathcal{P}^{o}$ or $\mathcal{P}=\mathcal{P}^{\text {so }}$ is obtained as:

1. Construct a low dimensional subspace $X=\operatorname{range}\left(A \Omega_{1}\right), \Omega_{1} \in \mathbb{R}^{n \times I}$ that approximates well the range of A, e.g.

$$
\left\|A-\mathcal{P}^{\circ} A\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1 \text {, }
$$

where Q_{1} is orth. basis of $\left(A \Omega_{1}\right)$

$$
\mathcal{P}^{\circ}=A \Omega_{1}\left(A \Omega_{1}\right)^{+}=Q_{1} Q_{1}^{T}, \text { or equiv } \mathcal{P}^{0} a_{j}:=\arg \min _{x \in X}\left\|x-a_{j}\right\|_{2}
$$

Select a semi-inner product $\left\langle\Theta_{1} \cdot, \Theta_{1} \cdot\right\rangle_{2}, \Theta_{1} \in \mathbb{R}^{\prime} \times m \|^{\prime} \geq I$, define

Idea underlying many algorithms

Compute $\tilde{A}_{k}=\mathcal{P} A$, where $\mathcal{P}=\mathcal{P}^{0}$ or $\mathcal{P}=\mathcal{P}^{\text {so }}$ is obtained as:

1. Construct a low dimensional subspace $X=\operatorname{range}\left(A \Omega_{1}\right), \Omega_{1} \in \mathbb{R}^{n \times I}$ that approximates well the range of A, e.g.

$$
\left\|A-\mathcal{P}^{\circ} A\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1 \text {, }
$$

where Q_{1} is orth. basis of $\left(A \Omega_{1}\right)$

$$
\mathcal{P}^{0}=A \Omega_{1}\left(A \Omega_{1}\right)^{+}=Q_{1} Q_{1}^{T}, \text { or equiv } \mathcal{P}^{0} a_{j}:=\arg \min _{x \in X}\left\|x-a_{j}\right\|_{2}
$$

2. Select a semi-inner product $\left\langle\Theta_{1} \cdot, \Theta_{1} \cdot\right\rangle_{2}, \Theta_{1} \in \mathbb{R}^{\prime^{\prime} \times m} I^{\prime} \geq I$, define

$$
\mathcal{P}^{s o}=A \Omega_{1}\left(\Theta_{1} A \Omega_{1}\right)^{+} \Theta_{1}, \text { or equiv } \mathcal{P}^{s o} a_{j}:=\arg \min _{x \in X}\left\|\Theta_{1}\left(x-a_{j}\right)\right\|_{2}
$$

Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2019].

Definition 1

[low-rank approximation] A matrix A_{k} satisfying $\left\|A-A_{k}\right\|_{2} \leq \gamma \sigma_{k+1}(A)$ for some $\gamma \geq 1$ will be said to be a (k, γ) low-rank approximation of A.

Definition 2

[spectrum preserving] If A_{k} satisfies

$$
\sigma_{j}(A) \geq \sigma_{j}\left(A_{k}\right) \geq \gamma^{-1} \sigma_{j}(A)
$$

for $j \leq k$ and some $\gamma \geq 1$, it is a (k, γ) spectrum preserving.
Definition 3
[kernel approximation] If A_{k} satisfies

$$
\sigma_{k+j}(A) \leq \sigma_{j}\left(A-A_{k}\right) \leq \gamma \sigma_{k+j}(A)
$$

for $1 \leq j \leq n-k$ and some $\gamma \geq 1$, it is a (k, γ) kernel approximation of A.

Deterministic rank-k matrix approximation

Given $A \in \mathbb{R}^{m \times n}, \Theta=\binom{\Theta_{1}}{\Theta_{2}} \in \mathbb{R}^{m \times m}, \Omega=\left(\begin{array}{ll}\Omega_{1} & \Omega_{2}\end{array}\right) \in \mathbb{R}^{n \times n}, \Theta, \Omega$ invertible, $\Theta_{1} \in \mathbb{R}^{I^{\prime} \times m}, \Omega_{1} \in \mathbb{R}^{n \times I}, k \leq I \leq I^{\prime}$.

$$
\begin{aligned}
\Theta A \Omega & =\bar{A}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \bar{A}_{21} \bar{A}_{11}^{+} \\
\hline
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right)=\Theta\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right),
\end{aligned}
$$

where $\bar{A}_{11} \in \mathbb{R}^{l^{\prime}, l}, \bar{A}_{11}^{+} \bar{A}_{11}=l, S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{+} \bar{A}_{12}$.

- Generalized LU computes the approximation

$$
A_{k}=\Theta^{-1}\binom{I}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right) \Omega^{-1}
$$

- QR computes the approximation

$$
A_{k}=Q_{1}\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) V^{-1}=Q_{1} Q_{1}^{T} A, \text { where } Q_{1} \text { is orth basis for }\left(A \Omega_{1}\right)
$$

Unified perspective: generalized LU factorization

Given $\Theta_{1}, A, \Omega_{1}, Q_{1}$ orth. basis of $\left(A \Omega_{1}\right), k=I=I^{\prime}$, rank-k approximation,

$$
A_{k}=A \Omega_{1}\left(\Theta_{1} A \Omega_{1}\right)^{-1} \Theta_{1} A
$$

Deterministic algorithms Ω_{1} column permutation and ... QR with column selection (a.k.a. strong rank revealing $Q R$) $\Theta_{1}=Q_{1}^{T}, A_{k}=Q_{1} Q_{1}^{T} A$ $\left\|R_{11}^{-1} R_{12}\right\|_{\text {max }}$ is bounded
LU with column/row selection (a.k.a. rank revealing LU)
Θ_{1} row permutation s.t. $\Theta_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}} \quad \Theta_{1}$ row permutation s.t. $\Theta_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$ $\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ is bounded

Randomized algorithms*
Ω_{1} random matrix and ...
Randomized QR
(a.k.a. randomized SVD)
$\Theta_{1}=Q_{1}^{T}, A_{k}=Q_{1} Q_{1}^{T} A$

Randomized LU with row selection (a.k.a. randomized SVD via Row extraction) $\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ bounded
Randomized LU approximation Θ_{1} random matrix

Deterministic algorithms will be discussed in a future lecture.

Generalized LU factorization $k \leq I \leq I^{\prime}$ (contd)

Given $\Theta_{1}, A, \Omega_{1}, Q_{1}$ orth. basis of $\left(A \Omega_{1}\right), k \leq I \leq I^{\prime}$, rank-k approximation,

$$
\begin{equation*}
A_{k}=\left[\Theta_{1}^{+}\left(I-\left(\Theta_{1} A \Omega_{1}\right)\left(\Theta_{1} A \Omega_{1}\right)^{+}\right)+\left(A \Omega_{1}\right)\left(\Theta_{1} A \Omega_{1}\right)^{+}\right]\left[\Theta_{1} A\right], \tag{7}
\end{equation*}
$$

where Θ_{1} and $\left(\Theta_{1} A \Omega_{1}\right)$ are of dimensions $I^{\prime} \times m$ and $I^{\prime} \times I$ respectively.

Remark Given that only Θ_{1} and Ω_{1} are required for computing A_{k}, Θ and Ω are used only for the analysis, Θ_{2} and Ω_{2} are chosen to be the orthogonal of Θ_{1} and Ω_{1} respectively.

Properties of projection based approximations

Proposition 4 (Proposition 4.3 from [Demmel et al., 2019]) Let $A \in \mathbb{R}^{m \times n}$ matrix with SVD $A=U \Sigma V^{T}$. Set $[Q, R]=\mathbf{Q R}(A \Omega)$, where $\Omega \in \mathbb{R}^{n \times n}$ matrix, $\Omega=\left(\Omega_{1}, \Omega_{2}\right)$, Ω_{1} is full column rank and Ω_{2} is the orthogonal of Ω_{1}. Then the singular values of $Q_{1} Q_{1}^{T} A-A$ are identical to those of matrix $R_{22} \in \mathbb{R}^{(m-l) \times(n-l)}$. Moreover,

$$
\begin{gather*}
\left\|R_{22}\right\|_{F}^{2} \leq\left\|\Sigma_{1,2}\right\|_{F}^{2}+\left\|\Sigma_{1,2}\left(V^{T} \Omega\right)_{21}\left(V^{T} \Omega\right)_{11}^{+}\right\|_{F}^{2} \\
\sigma_{j}(A) \geq \sigma_{j}\left(Q_{1} Q_{1}^{T} A\right) \geq \sigma_{j}\left(A \Omega_{1}\right) \sigma_{\min }\left(\Omega_{1}^{+}\right), \quad \text { for } j \leq k \tag{8}
\end{gather*}
$$

as well as for any given $j \leq \min (m, n)-k$, there is an orthogonal $n \times(n-j)$ matrix \tilde{V} independent of Ω such that

$$
\begin{equation*}
\sigma_{j}^{2}\left(R_{22}\right) \leq \sigma_{j+k}^{2}(A)+\left\|\Sigma_{j, 2}\left(\tilde{V}^{T} \Omega\right)_{21}\left(\tilde{V}^{T} \Omega\right)_{11}^{+}\right\|_{2}^{2} \tag{9}
\end{equation*}
$$

with $\left(\tilde{V}^{\top} \Omega\right)_{11} \in \mathbb{R}^{k \times 1}$, and $\Sigma_{j, 2}:=\operatorname{diag}\left(\sigma_{k+j}(A), \ldots, \sigma_{n}(A), 0, \ldots, 0\right)$, and $\Sigma_{j, 2} \in \mathbb{R}^{(m-k) \times(n-k)}$, where diag denotes the diagonal matrix.

Plan

Randomization for least-squares problem

Low rank matrix approximation

Randomized algorithms for low rank approximation

Randomized algorithms - main idea

- Construct a low dimensional subspace that captures the action of A.
- Restrict A to the subspace and compute a standard QR or SVD factorization.

Obtained as follows:

1. Compute an approximate basis for the range of $A(m \times n)$ find $Q_{1}(m \times k)$ with orthonormal columns and approximate A by the projection of its columns onto the space spanned by Q_{1} :

$$
A \approx Q_{1} Q_{1}^{T} A
$$

2. Use Q_{1} to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Typical randomized SVD

1. Compute an approximate basis for the range of $A \in \mathbb{R}^{m \times n}$ Sample $V_{1} \in \mathbb{R}^{n \times I}, I=p+k$, with independent mean-zero, unit-variance Gaussian entries.
Compute $Y=A V_{1}, Y \in \mathbb{R}^{m \times I}$ expected to span column space of A.
\square Cost of multiplying $A V_{1}: 2 \mathrm{~mm} /$ flops
2. With Q_{1} being orthonormal basis of Y, approximate A as:

$$
\tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
$$

\square Cost of multiplying Q_{1}^{T} A: 2 mn flops

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Typical randomized SVD

Algorithm

Input: matrix $A \in \mathbb{R}^{m \times n}$, desired rank $k, l=p+k$.

1. Sample an $n \times /$ test matrix Ω_{1} with independent mean-zero, unit-variance Gaussian entries.
2. Compute $Y=\left(A A^{T}\right)^{q} A \Omega_{1} /^{*} Y$ is expected to span the column space of $A^{*} /$
3. Construct $Q_{1} \in \mathbb{R}^{m \times I}$ with columns forming an orthonormal basis for the range of Y.
4. Compute $B=Q_{1}^{T} A, B \in \mathbb{R}^{1 \times n}$
5. Compute the rank-k truncated SVD of B as $\hat{U} \Sigma V^{T}, \hat{U} \in \mathbb{R}^{1 \times k}, V^{T} \in$ $\mathbb{R}^{k \times n}$
Return the approximation $\tilde{A}_{k}=Q_{1} \hat{U} \cdot \Sigma \cdot V^{T}$

Randomized SVD $(q=0)$

The best approximation is when Q_{1} equals the first $k+p$ left singular vectors of A. Given $A=U \Sigma V^{\top}$,

$$
\begin{aligned}
Q_{1} Q_{1}^{T} A & =U(1: m, 1: k+p) \Sigma(1: k+p, 1: k+p)(V(1: n, 1: k+p \\
\left\|A-Q_{1} Q_{1}^{T} A\right\|_{2} & =\sigma_{k+p+1}
\end{aligned}
$$

Theorem 1.1 from Halko et al. If Ω_{1} is chosen to be i.i.d. $\mathrm{N}(0,1), k, p \geq 2$, $q=1$, then the expectation with respect to the random matrix Ω_{1} is

$$
\mathbb{E}\left(\left\|A-Q_{1} Q_{1}^{T} A\right\|_{2}\right) \leq\left(1+\frac{4 \sqrt{k+p}}{p-1} \sqrt{\min (m, n)}\right) \sigma_{k+1}(A)
$$

and the probability that the error satisfies

$$
\left\|A-Q_{1} Q_{1}^{T} A\right\|_{2} \leq(1+11 \sqrt{k+p} \cdot \sqrt{\min (m, n)}) \sigma_{k+1}(A)
$$

is at least $1-6 / p^{p}$.
For $p=6$, the probability becomes . 99 .

Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same hypotheses as Theorem 1.1 from Halko et al.,

$$
\mathbb{E}\left(\left\|A-Q_{1} Q_{1}^{T} A\right\|_{2}\right) \leq\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}(A)+\frac{e \sqrt{k+p}}{p}\left(\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)\right)^{1 / 2}
$$

- Fast decay of singular values:

If $\left(\sum_{j>k} \sigma_{j}^{2}(A)\right)^{1 / 2} \approx \sigma_{k+1}$ then the approximation should be accurate.

- Slow decay of singular values:

If $\left(\sum_{j>k} \sigma_{j}^{2}(A)\right)^{1 / 2} \approx \sqrt{n-k} \sigma_{k+1}$ and n large, then the approximation might not be accurate.

Source: G. Martinsson's talk

Power iteration $q \geq 1$

The matrix $\left(A A^{T}\right)^{q} A$ has a faster decay in its singular values:

- has the same left singular vectors as A
- its singular values are:

$$
\sigma_{j}\left(\left(A A^{T}\right)^{q} A\right)=\left(\sigma_{j}(A)\right)^{2 q+1}
$$

Cost of randomized truncated SVD

- Randomized SVD requires $2 q+1$ passes over the matrix.
- The last 4 steps of the algorithm cost:
(2) Compute $Y=\left(A A^{T}\right)^{q} A \Omega_{1}: 2(2 q+1) \cdot n n z(A) \cdot(k+p)$
(3) Compute QR of $Y: 2 m(k+p)^{2}$
(4) Compute $B=Q_{1}^{T} A: 2 n n z(A) \cdot(k+p)$
(5) Compute SVD of $B: O\left(n(k+p)^{2}\right)$
- If $n n z(A) / m \geq k+p$ and $q=1$, then (2) and (4) dominate (3).
- To be faster than deterministic approaches, the cost of (2) and (4) need to be reduced.

Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω_{1} such that computing $A \Omega_{1}$ is cheap, e.g. a subsampled random Hadamard transform (SRHT).
Given $n=2^{p}, l<n$, the SRHT ensemble embedding \mathbb{R}^{n} into \mathbb{R}^{l} is defined as

$$
\begin{equation*}
\Omega_{1}=\sqrt{\frac{n}{l}} \cdot P \cdot H \cdot D, \text { where } \tag{10}
\end{equation*}
$$

- $D \in \mathbb{R}^{n \times n}$ is diagonal matrix of uniformly random signs, random variables uniformly distributed on ± 1
- $H \in \mathbb{R}^{n \times n}$ is the normalized Walsh-Hadamard transform
- $P \in \mathbb{R}^{I \times n}$ formed by subset of $/$ rows of the identity, chosen uniformly at random (draws / rows at random from HD).

References: Sarlos'06, Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06.

Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh-Hadamard Matrix

For given $n=2^{p}, H_{n} \in \mathbb{R}^{n \times n}$ is the non-normalized Walsh-Hadamard transform defined recursively as,

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \tag{11}\\
1 & -1
\end{array}\right), \quad H_{n}=\left(\begin{array}{cc}
H_{n / 2} & H_{n / 2} \\
H_{n / 2} & -H_{n / 2}
\end{array}\right) .
$$

The normalized Walsh-Hadamard transform is $H=n^{-1 / 2} H_{n}$.

Cost of matrix vector multiplication (Theorem 2.1 in [Ailon and Liberty, 2008]):
For $x \in \mathbb{R}^{n}$ and $\Omega_{1} \in \mathbb{R}^{I \times n}$, computing $\Omega_{1} \times$ costs $2 n \log _{2}(I+1)$ flops.

Results from image processing (from Halko et al)

- A matrix A of size 9025×9025 arising from a diffusion geometry approach.
- A is a graph Lapacian on the manifold of 3×3 patches.
- 95×95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
- Vector $x^{(i)} \in \mathbb{R}^{9}$ gives the intensities of the pixels in a 3×3 neighborhood of pixel i.
- W reflects similarities between patches, $\sigma=50$ reflects the level of sensitivity,

$$
w_{i j}=\exp \left\{-\left\|x^{(i)}-x^{(j)}\right\|^{2} / \sigma^{2}\right\},
$$

- Sparsify W, compute dominant eigenvectors of $A=D^{-1 / 2} W D^{-1 / 2}$.

Experimental results (from Halko et al)

- Approximation error: $\left\|A-Q_{1} Q_{1}^{T} A\right\|_{2}$
- Estimated eigenvalues for $k=100$

Oblivious subspace embedding

Definition 5

A (k, ϵ, δ) oblivious subspace embedding (OSE) from \mathbb{R}^{n} to \mathbb{R}^{\prime} is a distribution $\Omega_{1} \sim \mathbb{D}$ over $I \times n$ matrices. It satisfies with probability $1-\delta$

$$
1-\epsilon \leq \sigma_{\text {min }}^{2}\left(\Omega_{1} Q\right) \leq \sigma_{\text {max }}^{2}\left(\Omega_{1} Q\right) \leq 1+\epsilon
$$

for any given orthogonal $n \times k$ matrix Q. We will assume $I \geq k$ and $\epsilon<1 / 6$.
Definition 6
$\Omega_{1} \in \mathbb{R}^{\prime \times n}$ is (ϵ, δ, n) multiplication approximating, if for any A, B having n rows, it satisfies with probability $1-\delta$,

$$
\begin{equation*}
\left\|A^{T} \Omega_{1}^{T} \Omega_{1} B-A^{T} B\right\|_{F} \leq \epsilon\|A\|_{F}\|B\|_{F} . \tag{12}
\end{equation*}
$$

Properties of SRHT ensembles

Additional property of the SRHT ensemble from Lemma 4.8 of [Boutsidis and Gittens, 2013].

Lemma 7

Let Ω_{1} be drawn from an SRHT of dimension $I \times n$. Then for $m \times n$ matrix A with rank ρ, with probability $1-2 \delta$,

$$
\left\|A \Omega_{1}^{T}\right\|_{2}^{2} \leq 5\|A\|_{2}^{2}+\frac{\log (\rho / \delta)}{l}\left(\|A\|_{F}+\sqrt{8 \log (n / \delta)}\|A\|_{2}\right)^{2}
$$

Oblivious embeddings: Let $\Omega_{1} \in \mathbb{R}^{1 \times n}$ be drawn from SRHT ensembles. With $I=4 \epsilon^{-1} k(1+2 \sqrt{\ln (3 / \delta)})^{2}(1+\sqrt{8 \ln (3 n / \delta)})^{2}, \Omega_{1}$ is a $(k, \sqrt{\epsilon}, 3 \delta)$ OSE (Lemma 4.1 from [Boutsidis and Gittens, 2013]). It satisfies the multiplication property with $(\epsilon / k, \delta, n)$ (Lemma 4.11 from [Boutsidis and Gittens, 2013]).

Subspace embeddings

Lemma 5.4 from [Demmel et al., 2019], an extension of Lemma 4.1 of [Boutsidis and Gittens, 2013].

Lemma 8

Let Ω_{1} be an $I \times n$ matrix that is a (k, ϵ, δ) OSE from \mathbb{R}^{n} to \mathbb{R}^{\prime}, and Q be an ($n \times k$) orthogonal matrix. Provided $\epsilon<1 / 6$, then with probability $1-\delta$ both of the following hold,

$$
\begin{array}{r}
\left\|\left(\Omega_{1} Q\right)^{+}-\left(\Omega_{1} Q\right)^{T}\right\|_{2}^{2} \leq 3 \epsilon \\
\left\|\Omega_{1}\right\|_{2}^{2}=O\left(\frac{n}{k}\right), \tag{14}
\end{array}
$$

where in the second of these we require the additional assumption $\delta>2 e^{-k / 5}$.

Randomized SVD with SRHT ensembles

Corollary 9 (Corollary 5.16 in [Demmel et al., 2019])

Let $\Omega_{1} \in \mathbb{R}^{n \times 1}$ be drawn from an SHRT ensemble, $I \geq 4 \epsilon^{-1} k(1+2 \sqrt{\ln (3 / \delta)})^{2}(1+\sqrt{8 \ln (3 n / \delta)})^{2}, \Omega_{1}$, and for simplicity assume $I \geq \log (n / \delta) \log (\rho / \delta)$. Then with probability $1-2 \delta$

$$
\begin{equation*}
\sigma_{j}^{2}\left(R_{22}\right) \leq O(1) \sigma_{k+j}^{2}(A)+O\left(\frac{\log (\rho / \delta)}{l}\right)\left(\sigma_{k+j}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) \tag{15}
\end{equation*}
$$

for $1 \leq j \leq \min (m, n)-k$ with probability $1-3 \delta$ for a particular j. We also have upper and lower bounds on the largest singular values, as for $1 \leq j \leq k$,

$$
\begin{equation*}
\sigma_{j}(A) \geq \sigma_{j}\left(Q_{1} Q_{1}^{T} A\right)=\Omega\left(\sqrt{\frac{k}{n}}\right) \sigma_{j}(A) \tag{16}
\end{equation*}
$$

holds with probability $1-2 \max \left(\delta, e^{-k / 5}\right)$.

Details of proof of eq (15)

Begin by using Proposition 4 and Lemma 8,
$\sigma_{j}^{2}\left(R_{22}\right) \leq\left\|\Sigma_{j, 2}\right\|_{2}^{2}+\left\|\Sigma_{j, 2}\left(\tilde{V}^{T} \Omega\right)_{21}\left(\tilde{V}^{T} \Omega\right)_{11}^{+}\right\|_{2}^{2} \leq\left\|\Sigma_{j, 2}\right\|_{2}^{2}+2\left\|\Sigma_{j, 2}\left(\tilde{V}^{\top} \Omega\right)_{21}\right\|_{2}^{2}$,
with probability $1-\delta$. Next apply Lemma 7 to the second term to get

$$
\begin{align*}
\sigma_{j}^{2}\left(R_{22}\right) & =O\left(1+\frac{\log (\rho / \delta) \log (n / \delta)}{l}\right)\left\|\Sigma_{j, 2}\right\|_{2}^{2}+O\left(\frac{\log (\rho / \delta)}{l}\right)\left\|\Sigma_{j, 2}\right\|_{F}^{2} \\
& \left.=O(1)\left\|\Sigma_{j, 2}\right\|_{2}^{2}+O\left(\frac{\log (\rho / \delta)}{l}\right)\left\|\Sigma_{j, 2}\right\|_{F}^{2}\right) \tag{17}\\
& =O(1) \sigma_{k+j}^{2}(A)+O\left(\frac{\log (\rho / \delta)}{l}\right)\left(\sigma_{k+j}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) \tag{18}
\end{align*}
$$

where ρ is the rank of A, with probability $1-2 \delta$.

Probabilistic guarantees for randomized GLU

- Consider $\Theta_{1} \in \mathbb{R}^{\prime^{\prime} \times m}, \Omega_{1} \in \mathbb{R}^{n \times I}$ are Subsampled Randomized Hadamard Transforms (SRHT), $I^{\prime}>l$.
- Compute A_{k} through generalized LU as in equation (7) costs $O\left(m n \log _{2} I^{\prime}+m I^{\prime}\right)$ flops,

$$
A_{k}=\left[\Theta_{1}^{+}\left(I-\left(\Theta_{1} A \Omega_{1}\right)\left(\Theta_{1} A \Omega_{1}\right)^{+}\right)+\left(A \Omega_{1}\right)\left(\Theta_{1} A \Omega_{1}\right)^{+}\right]\left[\Theta_{1} A\right]
$$

Theorem 10 (Theorem 5.9 from [Demmel et al., 2019])
Let $\Theta_{1} \in \mathbb{R}^{\prime \prime \times m}$ and $\Omega_{1} \in \mathbb{R}^{n \times 1}$ be drawn from SRHT ensembles,
$I=4 \epsilon^{-1} k(1+2 \sqrt{\ln (3 / \delta)})^{2}(1+\sqrt{8 \ln (3 n / \delta)})^{2}$,
$I^{\prime}=4 \epsilon^{-1} I(1+2 \sqrt{\ln (3 / \delta)})^{2}(1+\sqrt{8 \ln (3 m / \delta)})^{2}$.
With probability $1-5 \delta$, the randomized GLU approximation A_{k} satisfies

$$
\begin{aligned}
\left\|A-A_{k}\right\|_{2}^{2} & =O(1) \sigma_{k+1}^{2}(A)+O\left(\frac{\log (n / \delta)}{I}+\frac{\log (m / \delta)}{I^{\prime}}\right)\left(\sigma_{k+1}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) \\
\sigma_{j}^{2}\left(A-A_{k}\right) & \leq O(1) \sigma_{k+j}^{2}+O\left(\frac{\log (\rho / \delta)}{l}+\frac{\log (\rho / \delta)}{I^{\prime}}\right)\left(\sigma_{k+j}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) .
\end{aligned}
$$

References (1)

Ailon, N. and Liberty, E. (2008).
Fast dimension reduction using rademacher series on dual bch codes.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '08, pages 1-9, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Boutsidis, C. and Gittens, A. (2013).
Improved matrix algorithms via the subsampled randomized hadamard transform.
SIAM J. Matrix Analysis Applications, 34:1301-1340.
Demmel, J., Grigori, L., and Rusciano, A. (2019).
An improved analysis and unified perspective on deterministic and randomized low rank matrix approximations.
Technical report, Inria.
available at https://arxiv.org/abs/1910.00223.
Eckart, C. and Young, G. (1936).
The approximation of one matrix by another of lower rank.
Psychometrika, 1:211-218.
Eisenstat, S. C. and Ipsen, I. C. F. (1995).
Relative perturbation techniques for singular value problems.
SIAM J. Numer. Anal., 32(6):1972-1988.
Woodruff, D. P. (2014).
Sketching as a tool for numerical linear algebra.
Found. Trends Theor. Comput. Sci., 10(1\&\#8211;2):1-157.

Results used in the proofs

- Interlacing property of singular values [Golub, Van Loan, 4th edition, page 487]
Let $A=\left[a_{1}|\ldots| a_{n}\right]$ be a column partitioning of an $m \times n$ matrix with $m \geq n$. If $A_{r}=\left[a_{1}|\ldots| a_{r}\right]$, then for $r=1: n-1$

$$
\sigma_{1}\left(A_{r+1}\right) \geq \sigma_{1}\left(A_{r}\right) \geq \sigma_{2}\left(A_{r+1}\right) \geq \ldots \geq \sigma_{r}\left(A_{r+1}\right) \geq \sigma_{r}\left(A_{r}\right) \geq \sigma_{r+1}\left(A_{r+1}\right)
$$

- Given $n \times n$ matrix B and $n \times k$ matrix C, then ([Eisenstat and Ipsen, 1995], p. 1977)

$$
\sigma_{\min }(B) \sigma_{j}(C) \leq \sigma_{j}(B C) \leq \sigma_{\max }(B) \sigma_{j}(C), j=1, \ldots, k
$$

