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Low rank matrix approximation

� Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn→ 2(m + n)k
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Singular value decomposition

For any given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 · (V1 V2

)T
where

� U ∈ Rm×m is orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

� Σ ∈ Rm×n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k, Σ2 is n − k × n − k

� V ∈ Rn×n is orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k
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Properties of SVD

Given A = UΣV T , we have

� ATA = VΣTΣV T ,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

� AAT = UΣTΣUT ,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

� The non-negative singular values of A are the square roots of the
non-negative eigenvalues of ATA and AAT .

� If σk 6= 0 and σk+1, . . . , σn = 0, then
Range(A) = span(U1), Null(A) = span(V2),
Range(AT ) = span(V1), Null(A) = span(U2 U3).
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Norms

||A||p = max
||x||p=1

||Ax ||p

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2

1(A) + . . . σ2
n(A)

||A||2 = σmax(A) = σ1(A)

Some properties:

max
i,j
|A(i , j)| ≤ ||A||2 ≤

√
mnmax

i,j
|A(i , j)|

||A||2 ≤ ||A||F ≤
√

min(m, n)||A||2
Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2
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Low rank matrix approximation

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk )≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A) (1)

min
rank(Ãk )≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

� Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

� Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.
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Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

# messages = Ω (log2 P) .
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Idea underlying many algorithms

Compute Ãk = PA, where P = Po or P = Pso is obtained as:

1. Construct a low dimensional subspace X = range(AΩ1), Ω1 ∈ Rn×l that
approximates well the range o f A, e.g.

‖A− PoA‖2 ≤ γσk+1(A), for some γ ≥ 1,

where Q1 is orth. basis of (AΩ1)

Po = AΩ1(AΩ1)+ = Q1Q
T
1 , or equiv Poaj := arg min

x∈X
‖x − aj‖2

2. Select a semi-inner product 〈Θ1·,Θ1·〉2, Θ1 ∈ Rl′×m l ′ ≥ l , define

Pso = AΩ1(Θ1AΩ1)+Θ1, or equiv Psoaj := arg min
x∈X
‖Θ1(x − aj)‖2
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Properties of the approximations

Definitions and some of the results taken from [?].

Definition
[low-rank approximation] A matrix Ak satisfying ‖A− Ak‖2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.
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Low rank approximation based on max-vol

Theorem
([Goreinov and Tyrtshnikov, 2001, Thm. 2.1]) Given the matrix

A =

[
A11 A12

A21 A22

]
(3)

where A11 ∈ Rk×k has maximal volume (i.e., maximum determinant in
absolute value) among all k × k submatrices of A, then we have

‖S(A11)‖max ≤ (k + 1)σk+1, (4)

where S(A11) = A22 − A21A
−1
11 A12.

But finding a submatrix with maximum volume is NP-hard
[Civril and Magdon-Ismail, 2013].
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Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
, (5)

where R11 is k × k , Pc and k are chosen such that ||R22||2 is small and R11

is well-conditioned.

� By the interlacing property of singular values [Golub, Van Loan, 4th
edition, page 487],

σi (R11) ≤ σi (A) and σj(R22) ≥ σk+j(A)

for 1 ≤ i ≤ k and 1 ≤ j ≤ n − k .

� σk+1(A) ≤ σmax(R22) = ||R22||
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Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
. (6)

If ||R22||2 is small,

� Q(:, 1 : k) forms an approximate orthogonal basis for the range of A,

A(:, j) =

min(j,k)∑
i=1

R(i , j)Q(:, i) ∈ span{Q(:, 1), . . .Q(:, k)}

Range(A) ∈ span{Q(:, 1), . . .Q(:, k)}

� Pc

[
−R−1

11 R12

I

]
is an approximate right null space of A.
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Rank revealing QR factorization

The factorization from equation (7) is rank revealing if

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ1(n, k),

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k , where

σmax(A) = σ1(A) ≥ . . . ≥ σmin(A) = σn(A)

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

||R−1
11 R12||max ≤ γ2(n, k)
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Low rank approximation with strong RRQR

Given A ∈ Rm×n and R11 ∈ Rk×k ,

APc = QR =
(
Q1 Q2

)(R11 R12

R22

)
,

Ãqr = Q1

(
R11 R12

)
PT
c = Q1Q

T
1 A = PoA

� It can be shown that

σj(R22) = σj(A− Ãqr )

� [Gu and Eisenstat, 1996] show that given k and f , there exists
permutation V ∈ Rn×n such that the factorization satisfies,

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ γ(n, k), γ(n, k) =

√
1 + f 2k(n − k)

||R−1
11 R12||max ≤ f

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .
� Cost: 4mnk (QRCP) plus O(mnk) flops and O(k log2 P) messages.
→ Ãqr with strong RRQR is (k, γ(n, k)) spectrum preserving and kernel approximation of

A
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QR with column pivoting [Businger and Golub, 1965]

Idea:

� At first iteration, trailing columns decomposed into parallel part to first
column (or e1) and orthogonal part (in rows 2 : m).

� The column of maximum norm is the column with largest component
orthogonal to the first column.

Implementation:

� Find at each step of the QR factorization the column of maximum norm.

� Permute it into leading position.

� If rank(A) = k, at step k + 1 the maximum norm is 0.

� No need to compute the column norms at each step, but just update
them since

QT v = w =

[
w1

w(2 : n)

]
, ||w(2 : n)||22 = ||v ||22 − w2

1
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QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm
column norm vector: colnrm(j) = ||A(:, j)||2, j = 1 : n.
for j = 1 : n do

Find column p of largest norm
if colnrm[p] > ε then

1. Pivot: swap columns j and p in A and modify colnrm.
2. Compute Householder matrix Hj s.t. HjA(j : m, j) = ±||A(j :

m, j)||2e1.
3. Update A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n).
4. Norm downdate colnrm(j + 1 : n)2− = A(j , j + 1 : n)2.

else Break
end if

end for

If algorithm stops after k steps

σmax(R22) ≤
√
n − k max

1≤j≤n−k
||R22(:, j)||2 ≤

√
n − kε
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Strong RRQR [Gu and Eisenstat, 1996]

Since

det(R11) =
k∏

i=1

σi (R11) =
√
det(ATA)/

n−k∏
i=1

σi (R22)

a strong RRQR is related to a large det(R11). The following algorithm
interchanges columns that increase det(R11), given f and k.

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP
while there exist i and j such that det(R̃11)/det(R11) > f , where

R11 = R(1 : k , 1 : k), Πi,j+k permutes columns i and j + k,

RΠi,j+k = Q̃R̃, R̃11 = R̃(1 : k , 1 : k) do
Find i and j
Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while
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Strong RRQR (contd)

It can be shown that

det(R̃11)

det(R11)
=

√(
R−1

11 R12

)2

i,j
+ ρ2

i (R11)χ2
j (R22) (7)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k (the 2-norm of the j-th column of A is
χj(A), and the 2-norm of the j-th row of A−1 is ρj(A) ).

Compute a strong RRQR factorization, given k :

Compute AΠ = QR by using QRCP

while max1≤i≤k,1≤j≤n−k

√(
R−1

11 R12

)2

i,j
+ ρ2

i (R11)χ2
j (R22) > f do

Find i and j such that
√(

R−1
11 R12

)2

i,j
+ ρ2

i (R11)χ2
j (R22) > f

Compute RΠi,j+k = Q̃R̃ and Π = ΠΠi,j+k

end while
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Strong RRQR (contd)

� det(R11) strictly increases with every permutation, no permutation
repeats, hence there is a finite number of permutations to be performed.
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Strong RRQR (contd)

Theorem
[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in
equation (7) satisfies inequality√(

R−1
11 R12

)2

i,j
+ ρ2

i (R11)χ2
j (R22) < f

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k , then

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f 2k(n − k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k .
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Sketch of the proof ([Gu and Eisenstat, 1996])

Assume A is full column rank. Let α = σmax(R22)/σmin(R11), and let

R =

[
R11

R22/α

] [
Ik R−1

11 R12

αIn−k

]
= R̃1W1.

We have
σi (R) ≤ σi (R̃1)||W1||2, 1 ≤ i ≤ n.

Since σmin(R11) = σmax(R22/α), then σi (R̃1) = σi (R11), for 1 ≤ i ≤ k.

||W1||22 ≤ 1 + ||R−1
11 R12||22 + α2 = 1 + ||R−1

11 R12||22 + ||R22||22||R−1
11 ||

2
2

≤ 1 + ||R−1
11 R12||2F + ||R22||2F ||R−1

11 ||
2
F

= 1 +
k∑

i=1

n−k∑
j=1

(
(R−1

11 R12)2
i,j + ρ2

i (R11)χ2
j (R22)

)
≤ 1 + f 2k(n − k)

We obtain,
σi (A)

σi (R11)
≤
√

1 + f 2k(n − k)
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Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

� 1D column block partition of A, select k cols

from each block with strong RRQR
( A11 A12 A13 A14 )

= = = =

( Q00R00Pc
T
00 Q10R10Pc

T
10 Q20R20Pc

T
20 Q30R30Pc

T
30 )

↓ ↓ ↓ ↓
I00 I10 I20 I30

� Reduction tree to select k cols from sets of 2k
cols,

( A(:, I00 ∪ I10) A(:, I20 ∪ I30); )

= =

( Q01R01Pc
T
01 Q11R11Pc

T
11 )

↓ ↓
I01 I11

A(:, I01 ∪ I11) = Q02R02Pc
T
02 → I02

� Return selected columns A(:, I02)
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Select k columns from a tall and skinny matrix

Given W of size m × 2k , m >> k , k columns are selected as:

W = QR02 using TSQR
R02Pc = Q2R2 using QRCP
Return WPc(:, 1 : k)
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Reduction trees

Any shape of reduction tree can be used during CA RRQR, depending on
the underlying architecture.

� Binary tree:

A00 A10 A20 A30

↓ ↓ ↓ ↓
f (A00) f (A10) f (A20) f (A30)

↘ ↙ ↘ ↙
f (A01) f (A11)

↘ ↙
f (A02)

� Flat tree:

A00 A10 A20 A30

↓

��)

������) ���������)

f (A00)

↓
f (A01)

↓
f (A02)

↓
f (A03)

Notation: at each node of the reduction tree, f (Aij) returns the first b columns

obtained after performing (strong) RRQR of Aij .
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Rank revealing properties of tournament pivoting

It is shown in [Demmel et al., 2015] that the column permutation computed
by CA-RRQR satisfies

χ2
j

(
R−1

11 R12

)
+ (χj (R22) /σmin(R11))2 ≤ F 2

TP , for j = 1, . . . , n − k . (8)

where FTP depends on k , f , n, the shape of reduction tree used during
tournament pivoting, and the number of iterations of CARRQR.
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CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with
the following bounds:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP(n − k),

||R−1
11 R12||max ≤ FTP

� Binary tree of depth log2(n/k),

FTP ≤
1√
2k

(n/k)log2(
√

2fk) . (9)

The upper bound is a decreasing function of k when k >
√

n/(
√

2f ).

� Flat tree of depth n/k ,

FTP ≤
1√
2k

(√
2fk
)n/k

. (10)
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Tournament pivoting for 1D row partitioning - 1Dr TP

� Row block partition A as e.g.

A =


A11

A21

A31

A41

 =


Q00R00Pc

−1
00

Q10R10Pc
−1
10

Q20R20Pc
−1
20

Q30R30Pc
−1
30


→ select k cols I00

→ select k cols I10

→ select k cols I20

→ select k cols I30

� Apply 1D-TP on sets of 2k sub-columns
(
A11

A21

)
(:, I00 ∪ I10)(

A31

A41

)
(:, I20 ∪ I30)

 =

(
Q01R01Pc

−1
01

Q11R11Pc
−1
11

)
→ I01

→ I11

A(:, I01 ∪ I11) =
(
Q02R02Pc

−1
02

)
→ I02

� Return columns A(:, I02)
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(
A11

A21

)
(:, I00 ∪ I10)(

A31

A41

)
(:, I20 ∪ I30)

 =

(
Q01R01Pc

−1
01

Q11R11Pc
−1
11

)
→ I01

→ I11

A(:, I01 ∪ I11) =
(
Q02R02Pc

−1
02

)
→ I02

� Return columns A(:, I02)
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Tournament pivoting for 1D row partitioning - 1Dr TP

� Row block partition A as e.g.

A =


A11

A21

A31

A41
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Q00R00Pc
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00
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20

Q30R30Pc
−1
30


→ select k cols I00

→ select k cols I10

→ select k cols I20

→ select k cols I30

� Apply 1D-TP on sets of 2k sub-columns
(
A11

A21

)
(:, I00 ∪ I10)(

A31

A41

)
(:, I20 ∪ I30)

 =

(
Q01R01Pc

−1
01

Q11R11Pc
−1
11

)
→ I01

→ I11

A(:, I01 ∪ I11) =
(
Q02R02Pc

−1
02

)
→ I02

� Return columns A(:, I02)

32 of 63



CA-RRQR : 2D tournament pivoting

� A distributed on Pr × Pc procs as e.g.

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)

� Select k cols from each column block by 1Dr-TP,(
A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

� Apply 1Dc-TP on sets of k selected cols,

A(:, I00) A(:, I10) A(:, I20) A(:, I30)

� Return columns selected by 1Dc-TP A(:, I02)
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Numerical results

� Stability close to QRCP for many tested matrices.

� Absolute value of diagonals of R referred to as R-values.

� Methods compared

� RRQR: QR with column pivoting

� CA-RRQR-B with tournament pivoting 1Dc-TP based on binary tree

� CA-RRQR-F with tournament pivoting 1Dc-TP based on flat tree

� SVD
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Numerical results (contd)
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� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: shaw - 1D image restoration model [Hansen, 2007]

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (11)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (12)

where Πj (j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B, and

CARRQR-F, and ε is the machine precision.
35 of 63



CA-RRQR : 2D tournament pivoting
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Numerical experiments

Original image, size 1190× 1920
Singular values and ratios

0 20 40 60 80 100
i

0

25000

50000

75000

100000

125000

150000

175000

matrix billiard

SVD

RRQR

Approximation rank

2D TP

0.6

0.7

0.8

0.9

1.0

E
rr

or

2D TP / SVD

Rank-10 approx, 2D TP 8× 8 procs Rank-50 approx, 2D TP 8× 8 procs

� Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Numerical results - a set of 18 matrices

� Ratios |R(i , i)|/σi (R), for QRCP (top plot), CARRQR-B (second plot), and
CARRQR-F (third plot).

� The number along x-axis represents the index of test matrices.
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Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP
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LU versus QR - filled graph G+(A)

� Consider A is SPD and A = LLT

� Given G (A) = (V ,E ), G+(A) = (V ,E+) is defined as:
there is an edge (i , j) ∈ G+(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� G (L + LT ) = G+(A), ignoring cancellations.
� Definition holds also for directed graphs (LU factorization).

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x



1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G+(A)
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LU versus QR

Filled column intersection graph G+
∩ (A)

� Graph of the Cholesky factor of ATA

� G (R) ⊆ G+
∩ (A)

� ATA can have many more nonzeros than A
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LU versus QR

Numerical stability

� Let L̂ and Û be the computed factors of the block LU factorization. Then

L̂Û = A + E , ‖E‖max ≤ c(n)ε
(
‖A‖max + ‖L̂‖max‖Û‖max

)
. (13)

� For partial pivoting, ‖L‖max ≤ 1, ‖U‖max ≤ 2n‖A‖max

In practice, ‖U‖max ≤
√
n‖A‖max
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Low rank approximation based on LU factorization

� Given desired rank k, the factorization has the form

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
, (14)

where A ∈ Rm×n, Ā11 ∈ Rk,k , S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12.

� The rank-k approximation matrix Ãk is

Ãk =

(
I

Ā21Ā
−1
11

)(
Ā11 Ā12

)
=

(
Ā11

Ā21

)
Ā−1

11

(
Ā11 Ā12

)
. (15)

� Ā−1
11 is never formed, its factorization is used when Ãk is applied to a

vector.
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Design space

Non-exhaustive list for selecting k columns and rows:

1. Select k linearly independent columns of A (call result B), by using

1.1 (strong) QRCP/tournament pivoting using QR,
1.2 LU / tournament pivoting based on LU, with some form of pivoting

(column, complete, rook),
1.3 randomization: premultiply X = ZA where random matrix Z is short and

fat, then pick k rows from XT , by some method from 2) below,
1.4 tournament pivoting based on randomized algorithms to select columns at

each step.

2. Select k linearly independent rows of B, by using

2.1 (strong) QRCP / tournament pivoting based on QR on BT , or on QT , the
rows of the thin Q factor of B,

2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook)
on B,

2.3 tournament pivoting based on randomized algorithms to select rows.
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Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji
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LU CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting
on matrix A of size m × n:

1. Select k columns by using tournament pivoting, permute them in front,
bounds for s.v. governed by q1(n, k)

APc = Q

(
R11 R12

R22

)
=

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
2. Select k rows from (Q11; Q21)T of size m × k by using tournament

pivoting,

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
such that ||Q̄21Q̄

−1
11 ||max ≤ FTP and bounds for s.v. governed by q2(m, k).
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Orthogonal matrices

Given orthogonal matrix Q ∈ Rm×m and its partitioning

Q =

(
Q11 Q12

Q21 Q22

)
, (16)

the selection of k cols by tournament pivoting from (Q11;Q21)T leads to
the factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(17)

where S(Q̄11) = Q̄22 − Q̄21Q̄
−1
11 Q̄12 = Q̄−T22 since

S(Q̄11)Q̄T
22 = Q̄22Q̄

T
22 − Q̄21Q̄

−1
11 Q̄12Q̄

T
22 = I − Q̄21Q̄

T
21 − Q̄21Q̄

−1
11 Q̄12Q̄

T
22

= I − Q̄21(Q̄T
21 − Q̄−1

11 Q̄11Q̄
T
21) = I
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Orthogonal matrices (contd)

The factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(18)

satisfies:

ρj(Q̄21Q̄
−1
11 ) ≤ FTP , (19)

1

q2(m, k)
≤ σi (Q̄11) ≤ 1, (20)

σmin(Q̄11) = σmin(Q̄22) (21)

for all 1 ≤ i ≤ k , 1 ≤ j ≤ m − k , where ρj(A) is the 2-norm of the j-th row

of A, q2(m, k) =
√

1 + F 2
TP(m − k).

Exercice: show that σmin(Q̄11) = σmin(Q̄22) by considering unit vectors
x ∈ Rk , y ∈ Rm−k

1 = ||Q̄11x ||2 + ||Q̄21x ||2, 1 = ||Q̄T
22y ||2 + ||Q̄T

21y ||2

and showing min||x||=1 ||Q̄11x ||2 = min||y ||=1 ||Q̄T
22y ||2
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Sketch of the proof

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)(
R11 R12

R22

)
(22)

where

Q̄21Q̄
−1
11 = Ā21Ā

−1
11 ,

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22.
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Sketch of the proof (contd)

Ā11 = Q̄11R11, (23)

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22. (24)

We obtain

σi (A) ≥ σi (Ā11) ≥ σmin(Q̄11)σi (R11) ≥ 1

q1(n, k)q2(m, k)
σi (A),

We also have that

σk+j(A) ≤ σj(S(Ā11)) = σj(S(Q̄11)R22) ≤ ||S(Q̄11)||2σj(R22)

≤ q1(n, k)q2(m, k)σk+j(A),

where q1(n, k) =
√

1 + F 2
TP(n − k), q2(m, k) =

√
1 + F 2

TP(m − k).
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LU CRTP factorization - bounds if rank = k

Given A of size m × n, one step of LU CRTP computes the decomposition

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(25)

where Ā11 is of size k × k and

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12 = Ā22 − Q̄21Q̄

−1
11 Ā12. (26)

It satisfies the following properties:

ρl(Ā21Ā
−1
11 ) = ρl(Q̄21Q̄

−1
11 ) ≤ FTP , (27)

||S(Ā11)||max ≤ min((1 + FTP

√
k)||A||max ,FTP

√
1 + F 2

TP(m − k)σk(A))

1 ≤ σi (A)

σi (Ā11)
,
σj(S(Ā11))

σk+j(A)
≤ q(m, n, k), (28)

for any 1 ≤ l ≤ m − k , 1 ≤ i ≤ k , and 1 ≤ j ≤ min(m, n)− k,
q(m, n, k) = q1(n, k)q2(m, k) =

√
(1 + F 2

TP(n − k)) (1 + F 2
TP(m − k)).
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Details on the pivot growth

First bound: ρl(Ā21Ā
−1
11 ) = ρl(Q̄21Q̄

−1
11 ) ≤ FTP , for each row l of Ā21Ā

−1
11 .

Element growth in S(Ā11) is bounded as follows.

|S(Ā11)(i , j)| = |Ā22(i , j)− (Ā21Ā
−1
11 )(i , :)Ā12(:, j)|

≤ ||A||max + ||(Ā21Ā
−1
11 )(i , :)||2||Ā12(:, j)||2

≤ ||A||max + ρi (Ā21Ā
−1
11 )
√
k ||A||max

≤ (1 + FTP

√
k)||A||max

Second bound: χj(R22) = ||R22(:, j)||2 ≤ FTPσmin(R11) ≤ FTPσk(A). The
absolute value of an element of S(Ā11) can be bounded as follows,

|S(Ā11)(i , j)| = |Q̄−T22 (i , :)R22(:, j)| ≤ ||Q̄−1
22 (:, i)||2||R22(:, j)||2

≤ ||Q̄−1
22 ||2||R22(:, j)||2 = ||R22(:, j)||2/σmin(Q̄22)

≤ q2(m, k)FTPσk(A).

Hence:

||S(Ā11)||max ≤ min((1 + FTP

√
k)||A||max ,FTP

√
1 + F 2

TP(m − k)σk(A))

52 of 63



Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP
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Numerical results

Index of singular values
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� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: foxgood - Severely ill-posed test problem of the 1st kind Fredholm integral
equation used by Fox and Goodwin
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Numerical results

� Here k = 16 and the factorization is truncated at K = 128 (bars) or K = 240
(red lines).

� LU CTP: Column tournament pivoting + partial pivoting

� All singular values smaller than machine precision, ε, are replaced by ε.

� The number along x-axis represents the index of test matrices.
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Results for image of size 919× 707

Original image Rank-38 approx, SVD Singular value distribution

Rank-38 approx, LUPP Rank-38 approx, LU CRTP Rank-75 approx, LU CRTP
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Results for image of size 691× 505

Original image Rank-105 approx, SVD
Singular value distribution

Rank-105 approx, LUPP Rank-105 approx, LU CRTP Rank-209 approx, LU CRTP
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Comparing nnz in the factors L,U versus Q,R

Name/size Nnz Rank K Nnz QRCP/ Nnz LU CRTP/
A(:, 1 : K ) Nnz LU CRTP Nnz LUPP

gemat11 1232 128 2.1 2.2
4929 4895 512 3.3 2.6

9583 1024 11.5 3.2
wang3 896 128 3.0 2.1
26064 3536 512 2.9 2.1

7120 1024 2.9 1.2
Rfdevice 633 128 10.0 1.1

74104 2255 512 82.6 0.9
4681 1024 207.2 0.0

Parab fem 896 128 − 0.5
525825 3584 512 − 0.3

7168 1024 − 0.2
Mac econ 384 128 − 0.3

206500 1535 512 − 0.3
5970 1024 − 0.2

58 of 63



Performance results

Selection of 256 columns by tournament pivoting

� Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)

� Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time
in secs

Matrices: dimension at leaves on 32 procs

� Parab fem: 528825× 528825 528825× 16432

� Mac econ: 206500× 206500 206500× 6453

Time Time leaves Number of MPI processes
2k cols 32procs 16 32 64 128 256 512 1024

SPQR + dGEQP3
Parab fem 0.26 0.26 + 1129 46.7 24.5 13.7 8.4 5.9 4.8 4.4
Mac econ 0.46 25.4 + 510 132.7 86.3 111.4 59.6 27.2 − −
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More details on CA deterministic algorithms

� [Demmel et al., 2015] Communication avoiding rank revealing QR
factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J.
Matrix Analysis and Applications, 2015.

� Low rank approximation of a sparse matrix based on LU factorization
with column and row tournament pivoting, with S. Cayrols and J.
Demmel, Inria TR 8910.
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Results used in the proofs

� Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A = [a1| . . . |an] be a column partitioning of an m × n matrix with
m ≥ n. If Ar = [a1| . . . |ar ], then for r = 1 : n − 1

σ1(Ar+1) ≥ σ1(Ar ) ≥ σ2(Ar+1) ≥ . . . ≥ σr (Ar+1) ≥ σr (Ar ) ≥ σr+1(Ar+1).

� Given n × n matrix B and n × k matrix C , then
([Eisenstat and Ipsen, 1995], p. 1977)

σmin(B)σj(C ) ≤ σj(BC ) ≤ σmax(B)σj(C ), j = 1, . . . , k .

63 of 63


	Low rank matrix approximation
	Low rank approximation based on max-vol
	Rank revealing QR factorization
	LU_CRTP: Truncated LU factorization with column and row tournament pivoting
	Experimental results, LU_CRTP

