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Norms and other notations

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

|aij |2

‖A‖2 = σmax(A)

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |

Inequalities |x | ≤ |y | and |A| ≤ |B| hold componentwise.
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Algebra of the LU factorization

LU factorization
Compute the factorization PA = LU

Example
Given the matrix

A =

3 1 3
6 7 3
9 12 3


Let

M1 =

 1
−2 1
−3 1

 , M1A =

3 1 3
0 5 −3
0 9 −6
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Algebra of the LU factorization

� In general

A(k+1) = MkA(k) :=


Ik−1

1
−mk+1,k 1

. . .
. . .

−mn,k 1

A(k),where

Mk = I −mkeT
k , M−1k = I + mkeT

k

where ek is the k-th unit vector, mk = (0, . . . , 0, 1,mk+1,k , . . . ,mn,k)T ,
eT
i mk = 0,∀i ≤ k

� The factorization can be written as

Mn−1 . . .M1A = A(n) = U
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Algebra of the LU factorization

� We obtain

A = M−11 . . .M−1n−1U

= (I + m1eT
1 ) . . . (I + mn−1eT

n−1)U

=

(
I +

n−1∑
i=1

mie
T
i

)
U

=


1

m21 1
...

...
. . .

mn1 mn2 . . . 1

U = LU
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The need for pivoting

� For stability, avoid division by small diagonal elements

� For example

A =

0 3 3
3 1 3
6 2 3

 (1)

has an LU factorization if we permute the rows of matrix A

PA =

6 2 3
0 3 3
3 1 3

 =

 1
1

0.5 1

 ·
6 2 3

3 3
1.5

 (2)

� Partial pivoting allows to bound the multipliers mik ≤ 1 and hence |L| ≤ 1
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Existence of the LU factorization

Theorem
Given a full rank matrix A of size m × n, m ≥ n, the matrix A can be
decomposed as A = PLU where P is a permutation matrix of size m ×m, L
is a unit lower triangular matrix of size m × n and U is a nonsingular upper
triangular matrix of size n × n.

Proof: simpler proof for the square case. Since A is full rank, there is a
permutation P1 such that P1a11 is nonzero. Write the factorization as

P1A =

(
a11 A12

A21 A22

)
=

(
1 0

A21/a11 I

)(
a11 A12

0 A22 − a−111 A21A12

)
,

where S = A22 − a−111 A21A12.
Since det(A) 6= 0, then det(S) 6= 0. Continue the proof by induction on S .
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Solving Ax = b by using Gaussian elimination

Composed of 4 steps

1. Factor A = PLU, (2/3)n3) flops

2. Compute PTb to solve LUx = PTb

3. Forward substitution: solve Ly = PT ∗ b, n2 flops

4. Backward substitution: solve Ux = y , n2 flops
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Algorithm to compute the LU factorization

� Algorithm for computing the in place LU factorization of a matrix of size
n × n.

� #flops = 2n3/3

1: for k = 1:n-1 do
2: Let aik be the element of maximum magnitude in A(k : n, k)
3: Permute row i and row k
4: A(k + 1 : n, k) = A(k + 1 : n, k)/akk
5: for i = k + 1 : n do
6: for j = k + 1 : n do
7: aij = aij − aikakj
8: end for
9: end for

10: end for
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Wilkinson’s backward error stability result

Growth factor gW defined as

gW =
maxi,j,k |akij |
maxi,j |aij |

Note that
|uij | = |aiij | ≤ gW max

i,j
|aij |

Theorem (Wilkinson’s backward error stability result, see also
[N.J.Higham, 2002] for more details)
Let A ∈ Rn×n and let x̂ be the computed solution of Ax = b obtained by
using GEPP. Then

(A + ∆A)x̂ = b, ‖∆A‖∞ ≤ n2γ3ngW (n)‖A‖∞,

where γn = nu/(1− nu), u is machine precision and assuming nu < 1.
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The growth factor

� The LU factorization is backward stable if the growth factor is small
(grows linearly with n).

� For partial pivoting, the growth factor g(n) ≤ 2n−1, and this bound is
attainable.

� In practice it is on the order of n2/3 – n1/2

Exponential growth factor for Wilkinson matrix

A = diag(±1)



1 0 0 · · · 0 1
−1 1 0 ... 0 1

−1 −1 1
. . .

...
...

...
...

. . .
. . . 0 1

−1 −1 · · · −1 1 1
−1 −1 · · · −1 −1 1
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Experimental results for special matrices

Several errror bounds for GEPP, the normwise backward error η and the
componentwise backward error w (r = b − Ax).

η =
||r ||1

||A||1 ||x ||1 + ||b||1
,

w = max
i

|ri |
(|A| |x |+ |b|)i

.

matrix cond(A,2) gW ||L||1 cond(U,1)
||PA−LU||F
||A||F

η wb

hadamard 1.0E+0 4.1E+3 4.1E+3 5.3E+5 0.0E+0 3.3E-16 4.6E-15
randsvd 6.7E+7 4.7E+0 9.9E+2 1.4E+10 5.6E-15 3.4E-16 2.0E-15
chebvand 3.8E+19 2.0E+2 2.2E+3 4.8E+22 5.1E-14 3.3E-17 2.6E-16
frank 1.7E+20 1.0E+0 2.0E+0 1.9E+30 2.2E-18 4.9E-27 1.2E-23
hilb 8.0E+21 1.0E+0 3.1E+3 2.2E+22 2.2E-16 5.5E-19 2.0E-17
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Block formulation of the LU factorization

Partitioning of matrix A of size n × n

A =

[
A11 A12

A21 A22

]
where A11 is of size b × b, A21 is of size (m − b)× b, A12 is of size
b × (n − b) and A22 is of size (m − b)× (n − b).

Block LU algebra
The first iteration computes the factorization:

PT
1 A =

[
Ā11 Ā12

Ā21 Ā22

]
=

[
L11

L21 In−b

]
·
[

U11 U12

A1

]
The algorithm continues recursively on the trailing matrix A1.
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Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block
column

P1

(
A11

A21

)
=

(
L11

L21

)
U11

2. Pivot by applying the permutation matrix PT
1 on the entire matrix,

Ā = PT
1 A.

3. Solve the triangular system

L11U12 = Ā12

4. Update the trailing matrix,

A1 = Ā22 − L21U12

5. Compute recursively the block LU factorization of A1.
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LU Factorization as in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� find pivot in each column, swap rows

2. Apply all row permutations
� broadcast pivot information along the rows
� swap rows at left and right

3. Compute block row of U
� broadcast right diagonal block of L of

current panel

4. Update trailing matrix
� broadcast right block column of L
� broadcast down block row of U
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Cost of LU Factorization in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� #messages = O(n log2 Pr )

2. Apply all row permutations
� #messages = O(n/b(log2 Pr + log2 Pc))

3. Compute block row of U
� #messages = O(n/b log2 Pc)

4. Update trailing matrix
� #messages = O(n/b(log2 Pr + log2 Pc)
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Cost of parallel block LU

Consider that we have a
√

P ×
√

P grid, block size b

γ ·
(

2/3n3

P
+

n2b√
P

)
+ β · n2 log P√

P
+

α ·
(

1.5n log P +
3.5n

b
log P

)
.
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The QR factorization

Given a matrix A ∈ Rm×n, m ≥ n, its QR factorization is

A = QR = (Q1 Q2)

(
R1

0

)
= Q1R1

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular.

If A has full rank, the factorization Q1R1 is essentialy unique (modulo signs
of diagonal elements of R).

� ATA = RT
1 R1 is a Cholesky factorization and A = AR−11 R1 is a QR

factorization.

� A = Q1D · DR1, D = diag(±1) is a QR factorization.
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Householder transformation

The Householder matrix

P = I − 2

vT v
vvT

has the following properties:

� is symmetric and orthogonal,
P2 = I ,

� is independent of the scaling of v ,

� it reflects x about the hyperplane
span(v)⊥

Px = x − 2vT x

vT v
v = x − αv

Presentation of Householder transformations and stability analysis from

[N.J.Higham, 2002].
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Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a
vector x , except first one.

Px = y , ‖x‖2 = ‖y‖2, y = σe1, σ = ±‖x‖2

With the choice of sign made to avoid cancellation when computing
v1 = x1 − σ (where v1, x1 are the first elements of vectors v , x respectively),
we have

v = x − y = x − σe1,

σ = −sign(x1)‖x‖2, v = x − σe1,

P = I − βvvT , β =
2

vT v
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Householder based QR factorization

A =

x x x
x x x
x x x



P1A =

x x x
0 x x
0 x x

 ,

(
1

P̃2

)
P1 =

x x x
0 x x
0 0 x

 = R

So we have

QTA = PnPn−1 . . .P1A = R,

Q = (I − β1v1vT
1 ) . . . (I − βn−1vn−1vT

n−1)(I − βnvnvT
n )

#flops = 2n2(m − n/3)
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Error analysis of the QR factorization

The following result follows

Theorem ([N.J.Higham, 2002])
Let R̂ ∈ Rm×n be the computed factor of A ∈ Rm×n obtained by using
Householder transformations. Then there is an orthogonal Q ∈ Rm×m such
that

A + ∆A = QR̂, where ‖∆aj‖2 ≤ γ̃mn‖aj‖2, j = 1 : n,

where γ̃mn = cmnu/(1− cmnu), c is a constant, u is machine precision,
mnu < 1, aj denotes the j-th column of A.
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Householder-QR factorization

Require: A ∈ Rm×n

1: Let R ∈ Rn×n be initialized with zero matrix
2: for k = 1 to n do
3: . Compute Householder matrix Pk = I − βkvkvT

k s.t.
PkA(k : m, k) = ±‖A(k : m, k)‖2e1. Store vk in Y () and βk in
T (k)

4: R(k, k) = −sgn(A(k , k)) · ‖A(k : m, k)‖2
5: T (k) = R(k,k)−A(k,k)

R(k,k)

6: Y (k + 1 : m, k) = 1
R(k,k)−A(k,k) · A(k + 1 : m, k)

7: . Update trailing matrix
8: A(k : m, k + 1 : n) = (I − Y (k + 1 : m, k)T (k)Y (k + 1 :

m, k)T ) · A(k : m, k + 1 : n)
9: R(k, k + 1 : n) = A(k , k + 1 : n)

10: end for
Assert: A = QR, where Q = P1 . . .Pn = (I − β1v1vT

1 ) . . . (I − βnvnvT
n ), the

Householder vectors vk are stored in Y and T is an array of size n.
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Computational complexity

� Flops per iterations
� Dot product w = vT

k A(k : m, k + 1 : n) : 2(m − k)(n − k)
� Outer product vkw : (m − k)(n − k)
� Subtraction A(k : m, k + 1 : n)− . . . : (m − k)(n − k)

� Flops of Householder-QR

n∑
k=1

4(m − k)(n − k) = 4
n∑

k=1

(mn − k(m + n) + k2)

≈ 4mn2 − 4(m + n)n2/2 + 4n3/3 = 2mn2 − 2n3/3
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Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]

Q = Q1Q2 . . .Qk = (I − β1v1vT
1 ) . . . (I − βkvkvT

k ) = I − YTY T

Example for k = 2

Y = (v1|v2), T =

(
β1 −β1vT

1 v2β2
0 β2

)

Example for combining two compact representations

Q = (I − Y1T1Y T
1 )(I − Y2T2Y T

2 )

T =

(
T1 −T1Y T

1 Y2T2

0 T2

)
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Block algorithm for computing the QR factorization

Partitioning of matrix A of size m × n

A =

[
A11 A12

A21 A22

]
where A11 is of size b × b, A21 is of size (m − b)× b, A12 is of size
b × (n − b) and A22 is of size (m − b)× (n − b).

Block QR algebra
The first step of the block QR factorization algorithm computes:

QT
1 A =

(
R11 R12

A1

)
The algorithm continues recursively on the trailing matrix A1.
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Algebra of block QR factorization

A =

(
A11 A12

A21 A22

)
= Q1

(
R11 R12

A1

)

Block QR algebra

1. Compute the factorization (
A11

A12

)
= Q1R11

2. Compute the compact representation Q1 = I − YTY T

3. Apply QT
1 on the trailing matrix

(I − YTTY T )

(
A12

A22

)
=

(
A12

A22

)
− Y

(
TT

(
Y T

(
A12

A22

)))
4. The algorithm continues recursively on the trailing matrix A1.
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Parallel implementation of the QR factorization

QR factorization on a P = Pr × Pc grid of processors
For ib = 1 to n-1 step b
1. Compute panel factorization on Pr processors(

A11

A12

)
= Q1R11 = (I − YTY T )R11

2. The Pr processors broadcast along the rows their parts of Y and T
3. Apply QT

1 on the trailing matrix:
� All processors compute their local part of

Wl = Y T
l (A12l ;A22l)

� The processors owning block row ib compute the sum over Wl , that is

W = Y T (A12;A22)

and then compute W ′ = TTW
� The processors owning block row ib broadcast along the columns their part

of W ′

4. All processors compute

(A1
12; A1

22) = (A12; A22)− Y ∗W ′
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Cost of parallel QR factorization

γ ·
(

6mnb − 3n2b

2pr
+

n2b

2pc
+

2mn2 − 2n3/3

p

)
+ β ·

(
nb log pr +

2mn − n2

pr
+

n2

pc

)
+ α ·

(
2n log pr +

2n

b
log pc

)
.
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Solving least squares problems

Given matrix A ∈ Rm×n, rank(A) = n, vector b ∈ Rm×1,
the unique solution to minx ‖Ax − b‖2 is

x = A+b, A+ = (ATA)−1AT

Using the QR factorization of A

A = QR =
(
Q1 Q2

)(R1

0

)
(3)

We obtain

||r ||22 = ||b − Ax ||22 = ||b −
(
Q1 Q2

)(R1

0

)
x ||22

= ||
(
QT

1

QT
2

)
b −

(
R1

0

)
x ||22 = ||

(
QT

1 b − R1x
QT

2 b

)
||22

= ||QT
1 b − R1x ||22 + ||QT

2 b||22

Solve R1x = QT
1 b to minimize ||r ||2.
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