Dense LU and QR factorizations

Laura Grigori

INRIA and LJLL, Sorbonne Université

October 2020

European Research Council Istablished by the European Commission

Direct methods of factorization

LU factorization Block LU factorization QR factorization Block QR factorization

Norms and other notations

$$\|A\|_{F} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} \\ \|A\|_{2} = \sigma_{max}(A) \\ \|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \\ \|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$

Inequalities $|x| \leq |y|$ and $|A| \leq |B|$ hold componentwise.

Direct methods of factorization

LU factorization Block LU factorization QR factorization Block QR factorization

Algebra of the LU factorization

LU factorization Compute the factorization PA = LU

Example

Given the matrix

$$A = \begin{pmatrix} 3 & 1 & 3 \\ 6 & 7 & 3 \\ 9 & 12 & 3 \end{pmatrix}$$

Let

$$M_1 = egin{pmatrix} 1 & & \ -2 & 1 & \ -3 & & 1 \end{pmatrix}, \quad M_1 A = egin{pmatrix} 3 & 1 & 3 \ 0 & 5 & -3 \ 0 & 9 & -6 \end{pmatrix}$$

Algebra of the LU factorization

In general

$$A^{(k+1)} = M_k A^{(k)} := \begin{pmatrix} I_{k-1} & & & \\ & 1 & & & \\ & -m_{k+1,k} & 1 & & \\ & \dots & & \ddots & \\ & -m_{n,k} & & & 1 \end{pmatrix} A^{(k)}, \text{ where}$$
$$M_k = I - m_k e_k^T, \quad M_k^{-1} = I + m_k e_k^T$$

where e_k is the k-th unit vector, $m_k = (0, \ldots, 0, 1, m_{k+1,k}, \ldots, m_{n,k})^T$, $e_i^T m_k = 0, \forall i \leq k$

The factorization can be written as

$$M_{n-1}\ldots M_1A=A^{(n)}=U$$

Algebra of the LU factorization

We obtain

$$A = M_1^{-1} \dots M_{n-1}^{-1} U$$

= $(I + m_1 e_1^T) \dots (I + m_{n-1} e_{n-1}^T) U$
= $\left(I + \sum_{i=1}^{n-1} m_i e_i^T\right) U$
= $\begin{pmatrix} 1 \\ m_{21} & 1 \\ \vdots & \vdots & \ddots \\ m_{n1} & m_{n2} & \dots & 1 \end{pmatrix} U = LU$

The need for pivoting

- For stability, avoid division by small diagonal elements
- For example

$$A = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 1 & 3 \\ 6 & 2 & 3 \end{pmatrix}$$
(1)

has an LU factorization if we permute the rows of matrix A

$$PA = \begin{pmatrix} 6 & 2 & 3 \\ 0 & 3 & 3 \\ 3 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & 1 & \\ 0.5 & & 1 \end{pmatrix} \cdot \begin{pmatrix} 6 & 2 & 3 \\ & 3 & 3 \\ & & 1.5 \end{pmatrix}$$
(2)

Partial pivoting allows to bound the multipliers $m_{ik} \leq 1$ and hence $|L| \leq 1$

Theorem

Given a full rank matrix A of size $m \times n$, $m \ge n$, the matrix A can be decomposed as A = PLU where P is a permutation matrix of size $m \times m$, L is a unit lower triangular matrix of size $m \times n$ and U is a nonsingular upper triangular matrix of size $n \times n$.

Proof: simpler proof for the square case. Since A is full rank, there is a permutation P_1 such that P_1a_{11} is nonzero. Write the factorization as

$$P_1 A = \begin{pmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ A_{21}/a_{11} & I \end{pmatrix} \begin{pmatrix} a_{11} & A_{12} \\ 0 & A_{22} - a_{11}^{-1}A_{21}A_{12} \end{pmatrix},$$

where $S = A_{22} - a_{11}^{-1}A_{21}A_{12}$. Since $det(A) \neq 0$, then $det(S) \neq 0$. Continue the proof by induction on *S*. Composed of 4 steps

- 1. Factor A = PLU, $(2/3)n^3$ flops
- 2. Compute $P^T b$ to solve $LUx = P^T b$
- 3. Forward substitution: solve $Ly = P^T * b$, n^2 flops
- 4. Backward substitution: solve Ux = y, n^2 flops

Algorithm to compute the LU factorization

- Algorithm for computing the in place LU factorization of a matrix of size $n \times n$.
- $\# flops = 2n^3/3$
- 1: for k = 1:n-1 do
- 2: Let a_{ik} be the element of maximum magnitude in A(k : n, k)
- 3: Permute row i and row k
- 4: $A(k+1:n,k) = A(k+1:n,k)/a_{kk}$
- 5: **for** i = k + 1 : n **do**
- 6: **for** j = k + 1 : n **do**
- 7: $a_{ij} = a_{ij} a_{ik}a_{kj}$
- 8: end for
- 9: end for
- 10: end for

Wilkinson's backward error stability result

Growth factor g_W defined as

$$g_W = rac{\max_{i,j,k} |a_{ij}^k|}{\max_{i,j} |a_{ij}|}$$

Note that

$$|u_{ij}| = |a_{ij}^i| \le g_W \max_{i,j} |a_{ij}|$$

Theorem (Wilkinson's backward error stability result, see also [N.J.Higham, 2002] for more details)

Let $A \in \mathbb{R}^{n \times n}$ and let \hat{x} be the computed solution of Ax = b obtained by using GEPP. Then

$$(A + \Delta A)\hat{x} = b, \qquad \|\Delta A\|_{\infty} \leq n^2 \gamma_{3n} g_W(n) \|A\|_{\infty},$$

where $\gamma_n = nu/(1 - nu)$, u is machine precision and assuming nu < 1.

The growth factor

- The LU factorization is backward stable if the growth factor is small (grows linearly with n).
- For partial pivoting, the growth factor $g(n) \le 2^{n-1}$, and this bound is attainable.
- In practice it is on the order of $n^{2/3} n^{1/2}$

Exponential growth factor for Wilkinson matrix

$$A = diag(\pm 1) \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ -1 & 1 & 0 & \dots & 0 & 1 \\ -1 & -1 & 1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & 1 \\ -1 & -1 & \cdots & -1 & 1 & 1 \\ -1 & -1 & \cdots & -1 & -1 & 1 \end{bmatrix}$$

Several error bounds for GEPP, the normwise backward error η and the componentwise backward error w (r = b - Ax).

$$\eta = \frac{||r||_1}{||A||_1 ||x||_1 + ||b||_1},$$

$$w = \max_i \frac{|r_i|}{(|A| |x| + |b|)_i}.$$

matrix	cond(A,2)	g _W	L 1	cond(U,1)	$\frac{ PA-LU _{F}}{ A _{F}}$	η	wb
hadamard	1.0E+0	4.1E+3	4.1E+3	5.3E+5	0.0E+0	3.3E-16	4.6E-15
randsvd	6.7E+7	4.7E+0	9.9E+2	1.4E+10	5.6E-15	3.4E-16	2.0E-15
chebvand	3.8E+19	2.0E+2	2.2E+3	4.8E+22	5.1E-14	3.3E-17	2.6E-16
frank	1.7E+20	1.0E+0	2.0E+0	1.9E+30	2.2E-18	4.9E-27	1.2E-23
hilb	8.0E+21	1.0E+0	3.1E+3	2.2E+22	2.2E-16	5.5E-19	2.0E-17

Partitioning of matrix A of size $n \times n$

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

where A_{11} is of size $b \times b$, A_{21} is of size $(m - b) \times b$, A_{12} is of size $b \times (n - b)$ and A_{22} is of size $(m - b) \times (n - b)$.

Block LU algebra

The first iteration computes the factorization:

$$P_1^{\mathsf{T}} A = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} & I_{n-b} \end{bmatrix} \cdot \begin{bmatrix} U_{11} & U_{12} \\ & A^1 \end{bmatrix}$$

The algorithm continues recursively on the trailing matrix A^1 .

Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block column

$$P_1\begin{pmatrix}A_{11}\\A_{21}\end{pmatrix} = \begin{pmatrix}L_{11}\\L_{21}\end{pmatrix}U_{11}$$

2. Pivot by applying the permutation matrix P_1^T on the entire matrix,

$$\bar{A} = P_1^T A$$

3. Solve the triangular system

$$L_{11}U_{12} = \bar{A}_{12}$$

4. Update the trailing matrix,

$$A^1 = \bar{A}_{22} - L_{21}U_{12}$$

5. Compute recursively the block LU factorization of A^1 .

LU Factorization as in ScaLAPACK

LU factorization on a $P = Pr \times Pc$ grid of processors For ib = 1 to n-1 step b

A(ib) = A(ib:n, ib:n)

- 1. Compute panel factorization
 - □ find pivot in each column, swap rows
- 2. Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right
- 3. Compute block row of U
 - broadcast right diagonal block of L of current panel
- 4. Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

Cost of LU Factorization in ScaLAPACK

LU factorization on a P = Pr x Pc grid of processors For ib = 1 to n-1 step b A(ib) = A(ib : n, ib : n)1. Compute panel factorization \Box #messages = $O(n \log_2 P_r)$ 2. Apply all row permutations \Box #messages = $O(n/b(\log_2 P_r + \log_2 P_c))$

- 3. Compute block row of U
 - $\square \#messages = O(n/b \log_2 P_c)$
- 4. Update trailing matrix

$$= #messages = O(n/b(\log_2 P_r + \log_2 P_c))$$

Consider that we have a $\sqrt{P} \times \sqrt{P}$ grid, block size b

$$\gamma \cdot \left(\frac{2/3n^3}{P} + \frac{n^2b}{\sqrt{P}}\right) + \beta \cdot \frac{n^2 \log P}{\sqrt{P}} + \alpha \cdot \left(1.5n \log P + \frac{3.5n}{b} \log P\right).$$

Given a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, its QR factorization is

$$A = QR = (Q_1 \quad Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = Q_1 R_1$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

If A has full rank, the factorization Q_1R_1 is essentialy unique (modulo signs of diagonal elements of R).

- $A^T A = R_1^T R_1$ is a Cholesky factorization and $A = A R_1^{-1} R_1$ is a QR factorization.
- $A = Q_1 D \cdot DR_1$, $D = diag(\pm 1)$ is a QR factorization.

Householder transformation

The Householder matrix

$$P = I - \frac{2}{v^T v} v v^T$$

has the following properties:

- is symmetric and orthogonal,
 P² = I,
- is independent of the scaling of v,
- it reflects x about the hyperplane span(v)[⊥]

~ T

$$v$$
 span(v)^L

$$Px = x - \frac{2v^{2}x}{v^{2}v}v = x - \alpha v$$

resentation of Householder transformations and

Presentation of Householder transformations and stability analysis from [N.J.Higham, 2002].

We look for a Householder matrix that allows to annihilate the elements of a vector x, except first one.

$$Px = y$$
, $||x||_2 = ||y||_2$, $y = \sigma e_1$, $\sigma = \pm ||x||_2$

With the choice of sign made to avoid cancellation when computing $v_1 = x_1 - \sigma$ (where v_1, x_1 are the first elements of vectors v, x respectively), we have

$$v = x - y = x - \sigma e_1,$$

$$\sigma = -sign(x_1) ||x||_2, v = x - \sigma e_1,$$

$$P = I - \beta v v^T, \beta = \frac{2}{v^T v}$$

Householder based QR factorization

$$A = \begin{pmatrix} x & x & x \\ x & x & x \\ x & x & x \end{pmatrix}$$

$$P_1 A = \begin{pmatrix} x & x & x \\ 0 & x & x \\ 0 & x & x \end{pmatrix}, \begin{pmatrix} 1 \\ \tilde{P}_2 \end{pmatrix} P_1 = \begin{pmatrix} x & x & x \\ 0 & x & x \\ 0 & 0 & x \end{pmatrix} = R$$

So we have

$$Q^{T}A = P_{n}P_{n-1}\dots P_{1}A = R, Q = (I - \beta_{1}v_{1}v_{1}^{T})\dots(I - \beta_{n-1}v_{n-1}v_{n-1}^{T})(I - \beta_{n}v_{n}v_{n}^{T})$$

 $\#flops = 2n^2(m - n/3)$

The following result follows

Theorem ([N.J.Higham, 2002])

Let $\hat{R} \in \mathbb{R}^{m \times n}$ be the computed factor of $A \in \mathbb{R}^{m \times n}$ obtained by using Householder transformations. Then there is an orthogonal $Q \in \mathbb{R}^{m \times m}$ such that

$$A + \Delta A = Q\hat{R}$$
, where $\|\Delta a_j\|_2 \le \tilde{\gamma}_{mn} \|a_j\|_2$, $j = 1: n$,

where $\tilde{\gamma}_{mn} = cmnu/(1 - cmnu)$, c is a constant, u is machine precision, mnu < 1, a_j denotes the j-th column of A.

Householder-QR factorization

Require:
$$A \in \mathbb{R}^{m \times n}$$

1: Let $R \in \mathbb{R}^{n \times n}$ be initialized with zero matrix
2: for $k = 1$ to n do
3:
 $P_k A(k : m, k) = \pm ||A(k : m, k)||_2 e_1$. Store v_k in $Y()$ and β_k in
 $T(k)$
4: $R(k, k) = -sgn(A(k, k)) \cdot ||A(k : m, k)||_2$
5: $T(k) = \frac{R(k,k) - A(k,k)}{R(k,k)}$
6: $Y(k + 1 : m, k) = \frac{1}{R(k,k) - A(k,k)} \cdot A(k + 1 : m, k)$
7:
 $P(k + 1 : m, k) = (I - Y(k + 1 : m, k)T(k)Y(k + 1 : m, k)T(k)Y(k + 1 : m, k)T(k)Y(k + 1 : m, k)T(k) + A(k : m, k + 1 : n)$
9: $R(k, k + 1 : n) = A(k, k + 1 : n)$
10: end for
Assert: $A = QR$, where $Q = P_1 \dots P_n = (I - \beta_1 v_1 v_1^T) \dots (I - \beta_n v_n v_n^T)$, the

Householder vectors v_k are stored in Y and T is an array of size n.

Computational complexity

Flops per iterations

- Dot product $w = v_k^T A(k:m,k+1:n): 2(m-k)(n-k)$
- Outer product $v_k w$: (m-k)(n-k)
- □ Subtraction A(k:m,k+1:n) ...: (m-k)(n-k)
- Flops of Householder-QR

$$\sum_{k=1}^{n} 4(m-k)(n-k) = 4 \sum_{k=1}^{n} (mn-k(m+n)+k^2)$$

$$\approx 4mn^2 - 4(m+n)n^2/2 + 4n^3/3 = 2mn^2 - 2n^3/3$$

Algebra of block QR

Storage efficient representation for Q [Schreiber and Loan, 1989]

$$Q = Q_1 Q_2 \dots Q_k = (I - \beta_1 v_1 v_1^T) \dots (I - \beta_k v_k v_k^T) = I - YTY^T$$

Example for k = 2

$$Y = (v_1|v_2), \quad T = \begin{pmatrix} \beta_1 & -\beta_1 v_1^T v_2 \beta_2 \\ 0 & \beta_2 \end{pmatrix}$$

Example for combining two compact representations

$$Q = (I - Y_1 T_1 Y_1^T)(I - Y_2 T_2 Y_2^T) T = \begin{pmatrix} T_1 & -T_1 Y_1^T Y_2 T_2 \\ 0 & T_2 \end{pmatrix}$$

Partitioning of matrix A of size $m \times n$

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

where A_{11} is of size $b \times b$, A_{21} is of size $(m - b) \times b$, A_{12} is of size $b \times (n - b)$ and A_{22} is of size $(m - b) \times (n - b)$.

Block QR algebra

The first step of the block QR factorization algorithm computes:

$$Q_1^T A = \begin{pmatrix} R_{11} & R_{12} \\ & A^1 \end{pmatrix}$$

The algorithm continues recursively on the trailing matrix A^1 .

Algebra of block QR factorization

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) = Q_1 \left(\begin{array}{cc} R_{11} & R_{12} \\ & A^1 \end{array}\right)$$

Block QR algebra

1. Compute the factorization

$$\begin{pmatrix} A_{11} \\ A_{12} \end{pmatrix} = Q_1 R_{11}$$

- 2. Compute the compact representation $Q_1 = I YTY^T$
- 3. Apply Q_1^T on the trailing matrix

$$(I - YT^{T}Y^{T}) \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y \begin{pmatrix} T^{T} \begin{pmatrix} Y^{T} \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

4. The algorithm continues recursively on the trailing matrix A^1 .

Parallel implementation of the QR factorization

QR factorization on a $P = P_r \times P_c$ grid of processors For ib = 1 to n-1 step b

1. Compute panel factorization on P_r processors

$$\begin{pmatrix} A_{11} \\ A_{12} \end{pmatrix} = Q_1 R_{11} = (I - YTY^T) R_{11}$$

2. The P_r processors broadcast along the rows their parts of Y and T 3. Apply Q_1^T on the trailing matrix:

All processors compute their local part of

$$W_l = Y_l^T (A_{12l}; A_{22l})$$

 \Box The processors owning block row *ib* compute the sum over W_l , that is

$$W = Y^T(A_{12}; A_{22})$$

and then compute $W' = T^T W$

- $\hfill The processors owning block row <math display="inline">ib$ broadcast along the columns their part of W'
- 4. All processors compute

$$(A_{12}^1; A_{22}^1) = (A_{12}; A_{22}) - Y * W'$$

Cost of parallel QR factorization

$$\gamma \cdot \left(\frac{6mnb - 3n^2b}{2p_r} + \frac{n^2b}{2p_c} + \frac{2mn^2 - 2n^3/3}{p}\right)$$
$$+ \beta \cdot \left(nb\log p_r + \frac{2mn - n^2}{p_r} + \frac{n^2}{p_c}\right)$$
$$+ \alpha \cdot \left(2n\log p_r + \frac{2n}{b}\log p_c\right).$$

Solving least squares problems

Given matrix $A \in \mathbb{R}^{m \times n}$, rank(A) = n, vector $b \in \mathbb{R}^{m \times 1}$, the unique solution to min_x $||Ax - b||_2$ is

$$x = A^+ b$$
, $A^+ = (A^T A)^{-1} A^T$

Using the QR factorization of A

$$A = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$$
(3)

We obtain

$$\begin{aligned} ||r||_{2}^{2} &= ||b - Ax||_{2}^{2} = ||b - (Q_{1} \quad Q_{2}) \begin{pmatrix} R_{1} \\ 0 \end{pmatrix} x||_{2}^{2} \\ &= ||\begin{pmatrix} Q_{1}^{T} \\ Q_{2}^{T} \end{pmatrix} b - \begin{pmatrix} R_{1} \\ 0 \end{pmatrix} x||_{2}^{2} = ||\begin{pmatrix} Q_{1}^{T} b - R_{1} x \\ Q_{2}^{T} b \end{pmatrix} ||_{2}^{2} \\ &= ||Q_{1}^{T} b - R_{1} x||_{2}^{2} + ||Q_{2}^{T} b||_{2}^{2} \end{aligned}$$

Solve $R_1 x = Q_1^T b$ to minimize $||r||_2$.

Some of the examples taken from [Golub and Van Loan, 1996]

References (1)

Golub, G. H. and Van Loan, C. F. (1996). <i>Matrix Computations (3rd Ed.).</i> Johns Hopkins University Press, Baltimore, MD, USA.
N.J.Higham (2002). Accuracy and Stability of Numerical Algorithms. SIAM, second edition.
Schreiber, R. and Loan, C. V. (1989). A storage efficient <i>WY</i> representation for products of Householder transformations. <i>SIAM J. Sci. Stat. Comput.</i> , 10(1):53–57.
Thakur, R., Rabenseifner, R., and Gropp, W. (2005). Optimization of collective communication operations in mpich. <i>International Journal of High Performance Computing Applications</i> , 19(1):49–66.