
Communication avoiding algorithms
for LU and QR factorizations

Laura Grigori

INRIA Paris - LJLL, Sorbonne Université

October 2020



Page 2

Plan
• Motivation

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, QR, Rank Revealing QR factorizations

• Progressively implemented in ScaLAPACK, LAPACK

• Algorithms for multicore processors

• Conclusions



Page 3

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time 



Page 4

Motivation - the communication wall
• Runtime of an algorithm is the sum of:

• #flops x time_per_flop
• #words_moved / bandwidth
• #messages x latency

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time 

• Performance of an application is less than 10% of the peak performance

“We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%
DRAM 23% 5%

0.1

1

10

102

104

2000 2004

Te
ra
flo
ps

1996

Peak Performance

Real Performance

103

2008 2012
Adapted from J. Demmel



Page 5

Compelling numbers

DRAM latency:                                                                 
• DDR2 (2007) ~ 120 ns                                                          1x
• DDR4 (2014) ~ 45 ns                                                         2.6x in 7 yrs
• Stacked memory ~ similar to DDR4

Time/flop
• 2008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket)  1x
• 2017 Intel Skylake XP 2.1GHz×28 cores (1.8 TFlops/socket) 35x in 9 yrs

Network latency
• Interconnect (example one machine today): 0.25μs to 3.7μs MPI latency

Source: G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)



Page 6
Ghost data on P0

Selected past work on reducing communication 

• Only few examples shown, many references available

A. Tuning
• Overlap communication and computation, at most a factor of 2 speedup

B. Ghosting 
• Standard approach in explicit methods
• Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE
ut = a Du

with a finite difference,
the solution at a grid point is:

ui,j+1 = u(xi, tj+1)
= f(ui-1,j, uij, ui+1,j ) t0

t1

t2

t3

t4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

u13

Initial data on P0



Page 7

Selected past work on reducing communication 

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra
• Barron and Swinnerton-Dyer, 1960

• LU factorization used to solve a system with 31 equations - first 
subroutine written for EDSAC 2

• Block LU factorization used to solve a system with 100 equations using 
an auxiliary magnetic-tape

• The basis of the algorithm used in LAPACK

Cache oblivious algorithms 
• recursive Cholesky, LU, QR 
(Gustavson ‘97, Toledo ‘97, 
Elmroth and Gustavson ‘98, 
Frens and Wise ’03, 
Ahmed and Pingali ‘00)



Page 8

Selected past work on reducing communication 

D. Same algebraic framework, different numerical algorithm
More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)
• LU-like factorization based on pairwise pivoting and its block version 

PA = L1 L2 …Ln U
• With small modifications, minimizes communication between two levels of 

fast-slow memory
• Stable for small matrices, unstable for nowadays matrices



Page 9

Communication in CMB data analysis
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise N−1

• Solve generalized least squares problem involving sparse matrices of size 1012-by-107

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• Computation over rows of a 2D object (summation of spherical harmonics)
• Communication to transpose the 2D object
• Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer

Computation

Communication

Overall runtime



Page 10

Motivation 

• The communication problem needs to be taken into account 
higher in the computing stack

• A paradigm shift in the way the numerical algorithms are 
devised is required

• Communication avoiding algorithms - a novel perspective for 
numerical linear algebra
• Minimize volume of communication
• Minimize number of messages
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)



Page 11

Evolution of numerical libraries
LINPACK (70’s)

• vector operations, use BLAS1
• HPL benchmark based on Linpack LU 

factorization

LAPACK (80’s)
• Block versions of the algorithms used in 

LINPACK
• Uses BLAS3

ScaLAPACK (90’s)
• Targets distributed memories
• 2D block cyclic distribution of data
• PBLAS based on message passing

PLASMA (2008): new algorithms
• Targets many-core
• Block data layout
• Low granularity, high asynchronicity

L

U

A(ib)L

U

A(ib)

L A(ib)

U

Project developed by U Tennessee Knoxville, UC Berkeley, other collaborators.
Source: inspired from J. Dongarra, UTK, J. Langou, CU Denver

L

U



Page 12

Communication Complexity of 
Dense Linear Algebra

• Matrix multiply,  using 2n3 flops (sequential or parallel) 
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = W (#flops / M1/2 )
• Lower bound on Latency = W (#flops / M3/2 )

• Same lower bounds apply to LU using reduction
• Demmel, LG, Hoemmen, Langou 2008 

• And to almost all direct linear algebra [Ballard, Demmel, Holtz, 
Schwartz, 09]



Page 13

Lower bounds for linear algebra 
• Computation modelled as an n-by-n-by-n set of lattice points

(i,j,k) represents the operation c(i,j) += fij( gijk ( a(i,k)*b(k,j)) ) )
• The computation is divided in S phases 
• Each phase contains exactly M (the fast memory size) load and store instructions
• Determine how many flops the algorithm can compute in each phase, by applying 

discrete Loomis-Whitney inequality:

- set of points in R3, represent w arithmetics 

- orthogonal projections of the points onto coordinate
planes                  , represent values of A, B, C

C face

A face
B face

i

j

k



Page 14

Lower bounds for matrix multiplication (contd)

• Discrete Loomis-Whitney inequality:

• Since there are at most 2M elements of A, B, C in a phase, the bound is:

• The number of phases S is #flops/w, and hence the lower bound on 
communication is:



Page 15

Matrix distributions

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Source slide: J. Demmel



Page 16

MatMul with 2D Layout
• Consider processors in 2D grid (physical or logical)
• Processors can communicate with 4 nearest neighbors

• Broadcast along rows and columns 

• Assume p processors form square s x s grid,  s = p1/2

p(0,0)        p(0,1)       p(0,2)

p(1,0)        p(1,1)       p(1,2)

p(2,0)        p(2,1)       p(2,2)

p(0,0)        p(0,1)       p(0,2)

p(1,0)        p(1,1)       p(1,2)

p(2,0)        p(2,1)       p(2,2)

p(0,0)        p(0,1)       p(0,2)

p(1,0)        p(1,1)       p(1,2)

p(2,0)        p(2,1)       p(2,2)

= *

Source slide: J. Demmel



Page 17

Cannon’s Algorithm
… C(i,j) = C(i,j) + S A(i,k)*B(k,j)
…  assume s = sqrt(p) is an integer

forall  i=0 to s-1              …  “skew” A
left-circular-shift row i of A by i
… so that A(i,j) overwritten by A(i,(j+i)mod s)

forall  i=0 to s-1              …  “skew” B
up-circular-shift column i of B by i
… so that B(i,j) overwritten by B((i+j)mod s), j)

for k=0 to s-1        … sequential
forall i=0 to s-1 and j=0 to s-1    … all processors in parallel

C(i,j) = C(i,j) + A(i,j)*B(i,j)
left-circular-shift each row of A by 1
up-circular-shift each column of B by 1 

k

Source slide: J. Demmel



Page 18

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

Source slide: J. Demmel



Cost of Cannon’s Algorithm
forall  i=0 to s-1              …  recall s = sqrt(p)

left-circular-shift row i of A by i    … cost ≤ s*(a + b*n2/p)
forall  i=0 to s-1

up-circular-shift column i of B by i … cost ≤ s*(a + b*n2/p)
for k=0 to s-1

forall  i=0 to s-1 and j=0 to s-1
C(i,j) = C(i,j) + A(i,j)*B(i,j)   … cost = 2*(n/s)3 = 2*n3/p3/2

left-circular-shift each row of A by 1   … cost = a + b*n2/p
up-circular-shift each column of B by 1     … cost = a + b*n2/p

° Total Time = 2*n3/p +  4*s*a + 4*b*n2/s  - Optimal!  
° Parallel Efficiency = 2*n3 / (p * Total Time)

= 1/( 1 + a * 2*(s/n)3 + b * 2*(s/n) )
= 1/(1 + O(sqrt(p)/n)) 

° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows

Source slide: J. Demmel



Page 20

Sequential algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing 
#words and #messages

Cholesky

LU

QR

RRQR

• Only several references shown for block algorithms (LAPACK),
cache-oblivious algorithms and communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

[Gustavson, 97] 
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting
[Frens, Wise, 03], 3x flops

[Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

[Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases) 
[Elmroth,Gustavson,98]



Page 21

2D Parallel algorithms and communication bounds

Algorithm Minimizing
#words (not #messages)

Minimizing 
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

• Only several references shown, block algorithms (ScaLAPACK) and 
communication avoiding algorithms

• CA algorithms exist also for SVD and eigenvalue computation

• If memory per processor = n2 / P, the lower bounds become
#words_moved ≥ W ( n2 / P1/2 ),    #messages ≥ W ( P1/2 )

L

U

A(ib)

Q

R

A(ib)



Page 22

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b

A(ib) = A(ib:n, ib:n)

(1) Compute panel factorization
- find pivot in each column, swap rows

(2) Apply all row permutations
- broadcast pivot information along the rows
- swap rows at left and right

(3) Compute block row of U 
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix 
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

#messages



Page 23

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W = 
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x b matrix W,  m >> b
• P processors, block row layout

• Classic Parallel Algorithm
• Compute Householder vector for each column
• Number of messages µ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages µ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08



Page 24

Parallel TSQR

QR

R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, 
Becker, Patterson, 02 



Page 25

Q is represented implicitly as a product
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}  

Algebra of TSQR

W = 
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:



Page 26
Q is represented implicitly as a product 

Flexibility of TSQR and CAQR algorithms

W = 
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W = 
W0
W1
W2
W3

R01
R02

R00

R03
Sequential:

W = 
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically



Page 27

Algebra of TSQR

W = 
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

CAQR



Page 28

QR for General Matrices
• Cost of CAQR  vs   ScaLAPACK’s PDGEQRF

• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops:           (4/3)n3/P + (3/4)n2b log P/P1/2   vs     (4/3)n3/P 
• Bandwidth:   (3/4)n2 log P/P1/2 vs     same
• Latency:        2.5 n log P / b vs     1.5 n log  P

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,  
• Choose b near  n / P1/2  (its upper bound)
• Bandwidth lower bound: 

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound: 

W(P1/2) – just polylog(P) smaller



Page 29

Performance of TSQR vs Sca/LAPACK

• Parallel
• Intel Xeon (two socket, quad core machine), 2010

• Up to 5.3x speedup (8 cores, 105 x 200)
• Pentium III cluster, Dolphin Interconnect, MPICH, 2008

• Up to 6.7x speedup (16 procs, 100K x 200)
• BlueGene/L, 2008

• Up to 4x speedup (32 procs, 1M x 50)
• Tesla C 2050 / Fermi (Anderson et al)

• Up to 13x (110,592 x 100)
• Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
• QR computed locally using recursive algorithm (Elmroth-Gustavson)  –

enabled by TSQR

• Results from many papers, for some see [Demmel, LG, Hoemmen, 
Langou, SISC 12], [Donfack, LG, IPDPS 10].



Page 30

Modeled Speedups of CAQR vs ScaLAPACK

Petascale 
up to 22.9x

IBM Power 5
up to 9.7x

“Grid”
up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.



Page 31

Impact

• TSQR/CAQR implemented in
• Intel Data analytics library
• GNU Scientific Library
• ScaLAPACK
• Spark for data mining

• CALU implemented in
• Cray’s libsci
• To be implemented in lapack/scapalack



Page 32

Algebra of TSQR

W = 
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

P0

P1

P2

P3

TSQR-HR CAQR



Page 33

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

can be re-written as an LU factorization

IQ - TY Y1T



Page 34

Reconstruct Householder vectors TSQR-HR

1. Perform TSQR
2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: Q - I = LU

4. Set Y = L
5. Set T = -U Y1-T

TY YTI

IQ - TY Y1T



Page 35

Strong scaling

• Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
• Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
• Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

1x

7
x

6
x

1
x

3.7x
2.7x



Page 36

The LU factorization of a tall skinny matrix
First try the obvious generalization of TSQR.



Page 37

Obvious generalization of TSQR to LU

• Block parallel pivoting: 
• uses a binary tree and is optimal in the parallel case

• Block pairwise pivoting: 
• uses a flat tree and is optimal in the sequential case
• introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a 

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
• used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and 

for multicore architectures

W = 
W0
W1
W2
W3

U00
U10
U20
U30

U01

U11

U02

W= 
W0
W1
W2
W3

U01
U02

U00

U03



Page 38

Stability of the LU factorization
• The backward stability of the LU factorization of a matrix A of size n-by-n 

depends on the growth factor

where aijk are the values at the k-th step.

• gW ≤ 2n-1 , attained for Wilkinson matrix

but in practice it is on the order of n2/3 -- n1/2 

• Two reasons considered to be important for the average case stability [Trefethen and 
Schreiber, 90] :

- the multipliers in L are small,

- the correction introduced at each elimination step is of rank 1.



Page 39

Block parallel pivoting

• Unstable for large number of processors P

• When P=number rows, it corresponds to parallel pivoting, known to be unstable 
(Trefethen and Schreiber, 90)



Page 40

Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices W= 

W0
W1
W2
W3

U01
U02

U00

U03



Page 41

Tournament pivoting - the overall idea

• At each iteration of a block algorithm

, where

• Preprocess W to find at low communication cost good pivots for the LU 
factorization of W, return a permutation matrix P.

• Permute the pivots to top, ie compute PA.
• Compute LU with no pivoting of W, update trailing matrix.



Page 42

Tournament pivoting for a tall skinny matrix
1) Compute GEPP factorization of each Wi., find permutation 

2) Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations                               

3) Compute LU factorization with no pivoting of the permuted matrix:

Pick b pivot rows, form A00

Same for A10

Same for A20

Same for A30

Pick b pivot rows, form A01

Same for A11



Page 43

Tournament pivoting

time

P0

P1

P2

P3

Good pivots for 
factorizing W



Page 44

Growth factor for binary tree based CALU

• Random matrices from a normal distribution  
• Same behaviour for all matrices in our test, and  |L| <= 4.2



Page 45

Our “proof of stability” for CALU
• CALU as stable as GEPP in following sense:  

In exact arithmetic, CALU process on a matrix A is equivalent to GEPP 
process on a larger matrix G whose entries are blocks of A and zeros.

• Example of one step of tournament pivoting:

• Proof possible by using original rows of A during tournament pivoting (not the 
computed rows of U).

A11
A21
A31

A11

A21

A11

tournament pivoting:



Page 46

Outline of the proof of stability for CALU

• Consider                                 , and the result of TSLU as

• After the factorization of first panel by CALU, As
32 (the Schur complement of A32) is not 

bounded as in GEPP,

• but As
32 can be obtained by GEPP on larger matrix G formed from blocks of A

• GEPP on G does not permute and

A11
A21
A31

A11

A21

A11



Page 47

Growth factor in exact arithmetic
• Matrix of size m-by-n, reduction tree of height H=log(P).
• (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. 

Demmel, LG, M. Gu, SIMAX 2013)
• “In practice” means observed/expected/conjectured values.

Better bounds

CALU GEPP

Upper bound 2n(log(P)+1)-1 2n-1

In practice n2/3 -- n1/2 n2/3 -- n1/2 



Page 48

CALU – a communication avoiding LU factorization
• Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square 

blocks of size b.

For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

(1) Find permutation for current panel using TSLU

(2) Apply all row permutations (pdlaswp)
- broadcast pivot information along the rows of the grid

(3) Compute panel factorization (dtrsm)

(4) Compute block row of U (pdtrsm)
- broadcast right diagonal part of L of current panel

(5) Update trailing matrix (pdgemm)
- broadcast right block column of L
- broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)



Page 49

LU for General Matrices

• Cost of CALU  vs   ScaLAPACK’s PDGETRF
• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops:      (2/3)n3/P + (3/2)n2b / P1/2  vs (2/3)n3/P + n2b/P1/2 

• Bandwidth: n2 log P/P1/2 vs     same
• Latency:        3 n log P / b  vs 1.5 n log P+ 3.5n logP / b

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,  
• Choose b near  n / P1/2  (its upper bound)
• Bandwidth lower bound: 

W(n2 /P1/2) – just log(P) smaller
• Latency lower bound: 

W(P1/2) – just polylog(P) smaller



Page 50

Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
• IBM Power 5  

• Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
• Intel Xeon (two socket, quad core)

• Up to 2.3x faster (8 cores, 10^6 x 500)
• IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).



Page 51

CALU and its task dependency graph

• The matrix is partitioned into blocks of size T x b.
• The computation of each block is associated with a task. 



Page 52

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+   Good locality of data              - Ignores noise 

• Dynamic scheduling
+   Keeps cores busy                  - Poor usage of data locality

- Can have large dequeue overhead



Page 53

Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a 
need for self-adaptive strategies
• One example is work stealing

• Goal:
• Design a tunable strategy that is able to provide a good trade-off between load 

balance, data locality, and dequeue overhead.
• Provide performance consistency

• Approach: combine static and dynamic scheduling
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale] 

Data layout/scheduling Static Dynamic Static/(%dynamic)

Column Major Layout (CM) Ö

Block Cyclic Layout (BCL) Ö Ö Ö

2-level Block Layout (2l-BL) Ö Ö Ö

Design space

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012



Page 54

Lightweight scheduling

• A self-adaptive strategy to provide 
• A good trade-off between load balance, data locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale] 

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
• A thread executes in priority its 

statically assigned tasks
• When no task ready, it picks a 

ready task from the dynamic 
part

• The size of the dynamic part is 
guided by a performance model



Page 55

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU 
with block pairwise pivoting.

• GPU data courtesy of S. Donfack

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling


