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Plan 
•  Motivation 

•  Communication complexity of linear algebra operations 

•  Communication avoiding for dense linear algebra  

•  LU, QR, Rank Revealing QR factorizations 

•  Progressively implemented in ScaLAPACK, LAPACK 

•  Algorithms for multicore processors 

•  Conclusions 
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Approaches for reducing communication 

•  Tuning 
•  Overlap communication and computation, at most a factor of 2 speedup 

•  Same numerical algorithm,  
  different schedule of the computation 

•  Block algorithms for NLA 
•  Barron and Swinnerton-Dyer, 1960 
•  ScaLAPACK, Blackford et al 97 

•  Cache oblivious algorithms for NLA 
•  Gustavson 97, Toledo 97, Frens and  
      Wise 03, Ahmed and Pingali 00 

•  Same algebraic framework, different numerical algorithm   
•  The approach used in CA algorithms 
•  More opportunities for reducing communication, may affect stability 
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Communication Complexity of  
Dense Linear Algebra 

•  Matrix multiply,  using 2n3 flops (sequential or parallel)  
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004) 
•  Lower bound on Bandwidth = Ω (#flops / M1/2 ) 
•  Lower bound on Latency     = Ω (#flops / M3/2 ) 
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•  Same lower bounds apply to LU using reduction 
•  Demmel, LG, Hoemmen, Langou 2008  

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz, 
Schwartz, 09] 
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Lower bounds for linear algebra  
•  Computation modelled as an n-by-n-by-n set of lattice points 
      (i,j,k) represents the operation c(i,j) += fij( gijk ( a(i,k)*b(k,j)) ) )  
•  The computation is divided in S phases  
•  Each phase contains exactly M (the fast memory size) load and store instructions 
•  Determine how many flops the algorithm can compute in each phase, by applying 

discrete Loomis-Whitney inequality: 

€ 

w2 ≤ NANBNC

€ 

Algorithms in direct linear algebra :
for i, j,k =1: n
    c(i, j) = fij (gijk (a(i,k),b(k, j)))
endfor

-  set of points in R3, represent w arithmetics  

-  orthogonal projections of the points onto coordinate 
planes                  , represent values of A, B, C 
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Lower bounds for matrix multiplication (contd) 

•  Discrete Loomis-Whitney inequality: 

•  Since there are at most 2M elements of A, B, C in a phase, the bound is: 

•  The number of phases S is #flops/w, and hence the lower bound on 
communication is: 
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Matrix distributions 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 

   Source slide: J. Demmel 
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MatMul with 2D Layout 
•  Consider processors in 2D grid (physical or logical) 
•  Processors can communicate with 4 nearest neighbors 

•  Broadcast along rows and columns  

•  Assume p processors form square s x s grid,  s = p1/2 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

 p(0,0)        p(0,1)       p(0,2) 

 p(1,0)        p(1,1)       p(1,2) 

 p(2,0)        p(2,1)       p(2,2) 

= *

   Source slide: J. Demmel 
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Cannon’s Algorithm 
… C(i,j) = C(i,j) + Σ  A(i,k)*B(k,j) 
…  assume s = sqrt(p) is an integer 
   forall  i=0 to s-1              …  “skew” A 
         left-circular-shift row i of A by i 
         … so that A(i,j) overwritten by A(i,(j+i)mod s) 
   forall  i=0 to s-1               …  “skew” B 
         up-circular-shift column i of B by i 
          … so that B(i,j) overwritten by B((i+j)mod s), j) 
   for k=0 to s-1        … sequential 
          forall i=0 to s-1 and j=0 to s-1    … all processors in parallel 
               C(i,j) = C(i,j) + A(i,j)*B(i,j) 
               left-circular-shift each row of A by 1 
               up-circular-shift each column of B by 1  

k 

   Source slide: J. Demmel 
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C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2) 

Cannon’s Matrix Multiplication 

   Source slide: J. Demmel 



Cost of Cannon’s Algorithm 
  forall  i=0 to s-1              …  recall s = sqrt(p) 
         left-circular-shift row i of A by i    … cost ≤ s*(α + β*n2/p) 
   forall  i=0 to s-1 
         up-circular-shift column i of B by i … cost ≤ s*(α + β*n2/p) 
   for k=0 to s-1 
          forall  i=0 to s-1 and j=0 to s-1 
               C(i,j) = C(i,j) + A(i,j)*B(i,j)   … cost = 2*(n/s)3 = 2*n3/p3/2 
               left-circular-shift each row of A by 1   … cost = α + β*n2/p 
               up-circular-shift each column of B by 1     … cost = α + β*n2/p 

°  Total Time = 2*n3/p +  4* s*α + 4*β*n2/s  -  Optimal!   
°  Parallel Efficiency = 2*n3 / (p * Total Time) 
                                  = 1/( 1 + α * 2*(s/n)3 + β * 2*(s/n) ) 
                                  = 1/(1 + O(sqrt(p)/n))  
°  Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows 
°  Better than 1D layout, which had Efficiency = 1/(1 + O(p/n)) 

   Source slide: J. Demmel 
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Sequential algorithms and communication bounds 

Algorithm Minimizing 
 #words (not #messages) 

Minimizing  
#words and #messages 

Cholesky 

LU 

QR 

RRQR 

•   Only several references shown for block algorithms (LAPACK), 
   cache-oblivious algorithms and communication avoiding algorithms 
•   CA algorithms exist also for SVD and eigenvalue computation 

[Gustavson, 97]  
[Ahmed, Pingali, 00]  

[LG, Demmel, Xiang, 08] 
[Khabou, Demmel, LG, Gu, 12] 

uses tournament pivoting 

[Frens, Wise, 03], 3x flops 
 [Demmel, LG, Hoemmen, Langou, 08]  

[Ballard et al, 14] 
[Demmel, LG, Gu, Xiang 11] 

uses tournament pivoting, 3x flops  

LAPACK  

LAPACK (few cases) 
[Toledo,97], [Gustavson, 97] 

both use partial pivoting 

LAPACK (few cases) 
[Elmroth,Gustavson,98] 
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2D Parallel algorithms and communication bounds 

Algorithm Minimizing 
 #words (not #messages) 

Minimizing  
#words and #messages 

Cholesky ScaLAPACK  ScaLAPACK 

LU ScaLAPACK 
uses partial pivoting 

 [LG, Demmel, Xiang, 08] 
[Khabou, Demmel, LG, Gu, 12] 

uses tournament pivoting 

QR ScaLAPACK  [Demmel, LG, Hoemmen, Langou, 08]  
[Ballard et al, 14] 

RRQR  ScaLAPACK [Demmel, LG, Gu, Xiang 13] 
uses tournament pivoting, 3x flops  

•   Only several references shown, block algorithms (ScaLAPACK) and  
   communication avoiding algorithms 
•   CA algorithms exist also for SVD and eigenvalue computation 

•   If memory per processor = n2 / P, the lower bounds become 
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )  

L	  

U	  

A(ib)	  

Q	  

R	  

A(ib)	  
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LU factorization (as in ScaLAPACK pdgetrf) 
LU factorization on a P = Pr x Pc grid of processors 
For ib = 1 to n-1 step b 
     A(ib)	   = A(ib:n, ib:n) 

 (1) Compute panel factorization 
        - find pivot in each column, swap rows 

 (2) Apply all row permutations 
       - broadcast pivot information along the rows 
        - swap rows at left and right 

(3) Compute block row of U  
      - broadcast right diagonal block of L of current panel 

 (4) Update trailing matrix  
       - broadcast right block column of L 
        - broadcast down block row of U 

L	  

U	  

A(ib)	  

L	  

U	  

A(ib+b)	  

L	  

U	  

A(ib)	  

L	  

U	  

A(ib)	  

)log( 2 rPnO

)log/( 2 cPbnO

))log(log/( 22 rc PPbnO +

))log(log/( 22 rc PPbnO +

#messages 
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Block QR factorization 

Block QR algebra: 
1.  Compute panel factorization: 

2.  Compute the compact representation: 

3.  Update the trailing matrix: 

4.  The algorithm continues recursively on the trailing matrix. 
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TSQR: QR factorization of a tall skinny matrix 
using Householder transformations 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  

•   QR decomposition of m x b matrix W,  m >> b 
•  P processors, block row layout 

•   Classic Parallel Algorithm 
•  Compute Householder vector for each column 
•  Number of messages ∝ b log P 

•  Communication Avoiding Algorithm 
•  Reduction operation, with QR as operator 
•  Number of messages ∝ log P 

J. Demmel, LG, M. Hoemmen, J. Langou, 08 
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Parallel TSQR 

QR 

	  R00	  V00`
	  W0

	  

R10	  V10
	  W1

	  

R20	  V20
	  W2

	  

R30	  V30
	  W3

	  

R00	  

R10	  
V01

	   R01	  

R20	  

R30	  
V11

	   R11	  

P0	  

P1	  

P2	  

P3	  

V02
	   R02	  R01	  

R11	  

QR 

QR 

QR 

QR 

QR 

QR 

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,  
                    Becker, Patterson, 02  
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Q is represented implicitly as a product 
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}   
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Algebra of TSQR 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  
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Q is represented implicitly as a product  
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Flexibility of TSQR and CAQR algorithms 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R01	  
R02	  

R00	  

R03	  
Sequen8al:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R01	  

R01	  
R11	  

R02	  

R11	  
R03	  

Dual	  Core:	  

Reduc8on	  tree	  will	  depend	  on	  the	  underlying	  architecture,	  
could	  be	  chosen	  dynamically	  
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Algebra of TSQR 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  

CAQR 
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QR for General Matrices 
•  Cost of CAQR   vs   ScaLAPACK’s PDGEQRF 

•  n x n matrix on P1/2 x P1/2 processor grid, block size b 
•  Flops:           (4/3)n3/P + (3/4)n2b log P/P1/2     vs     (4/3)n3/P  
•  Bandwidth:   (3/4)n2 log P/P1/2                       vs     same 
•  Latency:        2.5 n log P / b                            vs     1.5 n log  P 

•  Close to optimal (modulo log P factors) 
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,   
•  Choose b near  n / P1/2  (its upper bound) 
•  Bandwidth lower bound:  
          Ω(n2 /P1/2) – just log(P) smaller 
•  Latency lower bound:  
          Ω(P1/2) – just polylog(P) smaller 
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Performance of TSQR vs Sca/LAPACK 

•  Parallel 
•  Intel Xeon (two socket, quad core machine), 2010 

•  Up to 5.3x speedup (8 cores, 105 x 200) 
•  Pentium III cluster, Dolphin Interconnect, MPICH, 2008 

•  Up to 6.7x speedup (16 procs, 100K x 200) 
•  BlueGene/L, 2008 

•  Up to 4x speedup (32 procs, 1M x 50) 
•  Tesla C 2050 / Fermi (Anderson et al) 

•  Up to 13x (110,592 x 100) 
•  Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al) 
•  QR computed locally using recursive algorithm (Elmroth-Gustavson)  – 

enabled by TSQR 

•  Results from many papers, for some see [Demmel, LG, Hoemmen, 
Langou, SISC 12], [Donfack, LG, IPDPS 10]. 
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Modeled Speedups of CAQR vs ScaLAPACK 

Petascale	  	  
	  	  	  	  	  	  up	  to	  22.9x	  

IBM	  Power	  5	  
	  	  	  	  	  	  up	  to	  9.7x	  

“Grid”	  
	  	  	  	  	  	  up	  to	  11x	  

	  Petascale	  machine	  with	  8192	  procs,	  each	  at	  500	  GFlops/s,	  a	  bandwidth	  of	  4	  GB/s.	  
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ
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Impact 

•  TSQR/CAQR implemented in 
•  Intel Data analytics library 
•  GNU Scientific Library 
•  ScaLAPACK 
•  Spark for data mining 

•  CALU implemented in 
•  Cray’s libsci 
•  To be implemented in lapack/scapalack 
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Algebra of TSQR 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  

P0	  

P1	  

P2	  

P3	  

TSQR-HR CAQR 
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Reconstruct Householder vectors from TSQR 

The QR factorization using Householder vectors 

can be re-written as an LU factorization 

€ 

W =QR = (I −YTY1
T )R

€ 

W − R =Y (−TY1
T )R

Q − I =Y (−TY1
T )

I	  Q	  
-‐	  T	  Y	   Y1T	  
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Reconstruct Householder vectors TSQR-HR 

1.  Perform TSQR 
2.  Form Q explicitly (tall-skinny orthonormal factor) 
3.  Perform LU decomposition: Q - I = LU 

4.  Set Y = L 
5.  Set T = -U Y1

-T 

€ 

I −YTYT = I −
Y1
Y2
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⎣ 
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⎥ T Y1

T Y2
T[ ]

	  T	  Y	   YT	  I	  

I	  Q	  
-‐	  T	  Y	   Y1T	  
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Strong scaling 

•  Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz) 
•  Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz) 
•  Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime 
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015. 

 1x

7x

6x

1x

3.7x
2.7x
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The LU factorization of a tall skinny matrix 

First try the obvious generalization of TSQR. 
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Obvious generalization of TSQR to LU 

•  Block parallel pivoting:  
•  uses a binary tree and is optimal in the parallel case 

•  Block pairwise pivoting:  
•  uses a flat tree and is optimal in the sequential case 
•  introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a 

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape 
•  used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and 

for multicore architectures 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

U00	  
U10	  
U20	  
U30	  

U01	  

U11	  

U02	  

W=	  	  

W0	  
W1	  
W2	  
W3	  

U01	  
U02	  

U00	  

U03	  



Page 31 

Stability of the LU factorization 
•  The backward stability of the LU factorization of a matrix A of size n-by-n  

      depends on the growth factor 

                                              where aij
k are the values at the k-th step. 

•   gW ≤ 2n-1 , attained for Wilkinson matrix 

       but in practice it is on the order of n2/3 -- n1/2  

•  Two reasons considered to be important for the average case stability [Trefethen and 
Schreiber, 90] : 

     - the multipliers in L are small, 

     - the correction introduced at each elimination step is of rank 1. 

€ 

gW =
maxi, j ,k aij

k

maxi, j aij

€ 

ˆ L ⋅ ˆ U 
∞
≤ (1+ 2(n2 − n)gw ) A ∞

  

€ 

A = diag(±1)

1 0 0 L 0 1
−1 1 L 0 1
−1 −1 1 O 0 1
M M O O M M

−1 −1 L −1 1 1
−1 −1 L −1 −1 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
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Block parallel pivoting 

•  Unstable for large number of processors P 

•  When P=number rows, it corresponds to parallel pivoting, known to be unstable 
(Trefethen and Schreiber, 90) 
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Block pairwise pivoting 

•  Results shown for random matrices 
•  Will become unstable for large matrices W=	  	  

W0	  
W1	  
W2	  
W3	  

U01	  
U02	  

U00	  

U03	  
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Tournament pivoting - the overall idea 

•  At each iteration of a block algorithm 

                                   , where 

•  Preprocess W to find at low communication cost good pivots for the LU 
factorization of W, return a permutation matrix P. 

•  Permute the pivots to top, ie compute PA. 
•  Compute LU with no pivoting of W, update trailing matrix. 

€ 

W =
A11
A21

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

A =
A11 A12
A21 A22

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

}
}

b
n − b

  

€ 

b n − b
} }

€ 

PA =
L11
L21 In−b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
U11 U12

A22 − L21U12

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Tournament pivoting for a tall skinny matrix 
1)  Compute GEPP factorization of each Wi., find permutation  

2)  Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations                                

3)  Compute LU factorization with no pivoting of the permuted matrix: 

€ 

W =

W0

W1

W2

W3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

Π00L00U00

Π10L10U10

Π20L20U20

Π30L30U30

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

,

€ 

A00
A10
A20
A30

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
∏01L01U01

∏11L11U11

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

A01
A11

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =∏02

∏2

{L02U02

€ 

Π2
TΠ1

TΠ0
TW = LU

Pick b pivot rows, form A00 

Same for A10 

Same for A20 

Same for A30 

Pick b pivot rows, form A01 

Same for A11 

€ 

Π0

€ 

Π1,Π2
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Tournament pivoting 

time 

P0	  

P1	  

P2	  

P3	  

€ 

2 4
0 1
2 0
1 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π0L0U0

€ 

2 0
0 0
4 1
1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π1L1U1

€ 

0 1
1 4
0 0
0 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π2L2U2

€ 

2 1
0 2
1 0
4 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π3L3U3

€ 

2 4
2 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

4 1
2 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

1 4
0 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

4 2
0 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

2 4
2 0
4 1
2 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π0L0U0

€ 

1 4
0 2
4 2
0 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π2L2U 2

€ 

4 1
2 4
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

4 2
1 4
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

4 1
2 4
4 2
1 4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=Π0L0U 0

€ 

4 1
1 4
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

W0

€ 

Π0
TW0

€ 

W0

€ 

Π0
T
W 0

€ 

W 0

€ 

Π0
TW 0

€ 

W1

€ 

Π1
TW1

€ 

W2

€ 

Π2
TW2

€ 

W2

€ 

Π2
T
W 2

€ 

W3

€ 

Π3
TW3

Good pivots for 
factorizing W 
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Growth factor for binary tree based CALU 

•  Random matrices from a normal distribution   
•  Same behaviour for all matrices in our test, and  |L| <= 4.2 
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Stability of CALU (experimental results)  

Summer School Lecture 4 38 

•  Results show ||PA-LU||/||A||, normwise and componentwise backward 
errors, for random matrices and special ones 

•  See [LG, Demmel, Xiang, SIMAX 2011] for details 
•  BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU 
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Our “proof of stability” for CALU 
•  CALU as stable as GEPP in following sense:   
   In exact arithmetic, CALU process on a matrix A is equivalent to GEPP 

process on a larger matrix G whose entries are blocks of A and zeros. 

•  Example of one step of tournament pivoting: 

•  Proof possible by using original rows of A during tournament pivoting (not the 
computed rows of U). 

€ 

A =

A11 A12
A21 A22
A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

G =

A11 A12
A21 A21

−A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

A11	  
A21	  
A31	  

A11	  

A21	  
A11	  

tournament pivoting: 
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Outline of the proof of stability for CALU 

•  Consider                                 , and the result of TSLU as 

•  After the factorization of first panel by CALU, As
32 (the Schur complement of A32) is not 

bounded as in GEPP, 

•  but As
32 can be obtained by GEPP on larger matrix G formed from blocks of A 

•  GEPP on G does not permute and 

€ 

A =

A11 A12
A21 A22
A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

G =

A11 A12
A21 A21

−A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

L11
A21U11

−1 L21
−L31 I

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

U11 U12

U21 −L21
−1A21U11

−1U12

A32
s

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

Π11 Π12

Π21 Π22

I

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

A11 A12
A21 A22
A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

A11 A12
A21 A22
A31 A32

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

L11
L21 I
L31 I

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

U11 U12

A22
s

A32
s

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

A11	  
A21	  
A31	  

A11	  

A21	  
A11	  

€ 

L31L21
−1A21U11

−1U12 + A32
s = L31U21U11

−1U12 + A32
s = A31U11

−1U12 + A32
s = L31U12 + A32

s = A32
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LU factorization and low rank matrices 
•  For low rank matrices, the factorization of A1 computed as following might not 

be stable 
        Compute PA=LU by using GEPP                     L(k+1:end,k) = A(k+1:end,k)/A(k,k) 
          Permute the matrix A1=PA 
          Compute LU with no pivoting A1=L1U1                    L(k+1:end,k) = L(k+1:end,k)* (1/A(k,k))  

•  Example A = randn(6,3)*randn(3,5), max(abs(L)) = 1, max(abs(L1)) = 1015 

€ 

After 4 steps of factorization of A1 we obtain :

A1
4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 4.9e − 32
−0.3264 −0.7514 −0.4597 1.7778 −7.4e −17

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

€ 

After 4 steps of factorization of PA we obtain :

PA4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 2.3e −16
−0.3264 −0.7514 −0.4597 1.7778 8.3e −17

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

Schur complement after 4 elimination steps 
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LU_PRRP: LU with panel rank revealing pivoting 

•  Pivots are selected by using strong rank revealing QR on each panel  
•  The factorization after one panel elimination is written as  

     A21 A11
-1 is computed through strong rank revealing QR 

     and max(|A21 A11
-1|)ij ≤ f 

•  LU_PRRP and CALU_PRRP stable for pathological cases (Wilkinson 
matrix) and matrices from two real applications (Voltera integral 
equation - Foster, a boundary value problem - Wright) on which GEPP 
fails. 

A. Khabou, J. Demmel, LG, M. Gu, 2012 

€ 

PA =
A11 A12
A21 A22

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Ib
A21A11

−1 In−b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
A11 A12

A22 − A21A11
−1A12

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Page 43 

Growth factor in exact arithmetic 
•  Matrix of size m-by-n, reduction tree of height H=log(P). 
•  (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. 

Demmel, LG, M. Gu, SIMAX 2013) 
•  “In practice” means observed/expected/conjectured values. 

•  For a matrix of size 107-by-107 (using petabytes of memory) 
  n1/2 = 103.5 

Better bounds 

CALU GEPP CALU_PRRP LU_PRRP 

Upper bound 2n(log(P)+1)-1 2n-1 (1+2b)(n/b)log(P) (1+2b)(n/b) 

In practice n2/3 -- n1/2  n2/3 -- n1/2  (n/b)2/3 -- (n/b)1/2 (n/b)2/3 -- (n/b)1/2 
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CALU – a communication avoiding LU factorization 
•  Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square 

blocks of size b. 

For ib = 1 to n-1 step b 
     A(ib)	   = A(ib:n, ib:n) 

 (1) Find permutation for current panel using TSLU            

 (2) Apply all row permutations (pdlaswp) 
        - broadcast pivot information along the rows of the grid 

  (3) Compute panel factorization (dtrsm) 

 (4) Compute block row of U (pdtrsm) 
         - broadcast right diagonal part of L of current panel 

 (5) Update trailing matrix (pdgemm) 
        - broadcast right block column of L 
          - broadcast down block row of U 

L	  

U	  

A(ib)	  

L	  

U	  

A(ib+b)	  

L	  

U	  

A(ib)	  

L	  

U	  

A(ib)	  

)log/( 2 rPbnO

)log/( 2 cPbnO

))log(log/( 22 rc PPbnO +

))log(log/( 22 rc PPbnO +
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LU for General Matrices 

•  Cost of CALU   vs   ScaLAPACK’s PDGETRF 
•  n x n matrix on P1/2 x P1/2 processor grid, block size b 
•  Flops:      (2/3)n3/P + (3/2)n2b / P1/2  vs (2/3)n3/P + n2b/P1/2  
•  Bandwidth: n2 log P/P1/2                   vs     same 
•  Latency:        3 n log P / b       vs 1.5 n log P+ 3.5n logP / b 

•  Close to optimal (modulo log P factors) 
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,   
•  Choose b near  n / P1/2  (its upper bound) 
•  Bandwidth lower bound:  
        Ω(n2 /P1/2) – just log(P) smaller 
•  Latency lower bound:  
        Ω(P1/2) – just polylog(P) smaller 
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 Performance vs ScaLAPACK 

•  Parallel TSLU (LU on tall-skinny matrix) 
•  IBM Power 5   

•  Up to 4.37x faster (16 procs, 1M x 150) 
•  Cray XT4 

•  Up to 5.52x faster (8 procs, 1M x 150) 

•  Parallel CALU (LU on general matrices) 
•  Intel Xeon (two socket, quad core)

•  Up to 2.3x faster (8 cores, 10^6 x 500) 
•  IBM Power 5 

•  Up to 2.29x faster (64 procs, 1000 x 1000) 
•  Cray XT4 

•  Up to 1.81x faster (64 procs, 1000 x 1000) 

•  Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG). 
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CALU and its task dependency graph 

•  The matrix is partitioned into blocks of size T x b. 
•  The computation of each block is associated with a task.  
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Scheduling CALU’s Task Dependency Graph 
•  Static scheduling 

+   Good locality of data              -    Ignores noise  

•  Dynamic scheduling 
+   Keeps cores busy                  -    Poor usage of data locality 
                                                    -    Can have large dequeue overhead 
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Lightweight scheduling 

•  Emerging complexities of multi- and mani-core processors suggest a 
need for self-adaptive strategies 
•  One example is work stealing 

•  Goal:  
•  Design a tunable strategy that is able to provide a good trade-off between load 

balance, data locality, and dequeue overhead. 
•  Provide performance consistency 

•  Approach: combine static and dynamic scheduling 
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]  

Data layout/scheduling Static Dynamic Static/(%dynamic) 

Column Major Layout (CM) √ 

Block Cyclic Layout (BCL) √ √ √ 

2-level Block Layout (2l-BL) √ √ √ 

Design space 

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012 
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Lightweight scheduling 

•  A self-adaptive strategy to provide  
•  A good trade-off between load balance, data locality, and dequeue overhead. 
•  Performance consistency 
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]  

S. Donfack, LG, B. Gropp, V. Kale, 2012 

Combined static/dynamic scheduling: 
•  A thread executes in priority its 

statically assigned tasks 
•  When no task ready, it picks a 

ready task from the dynamic part 
•  The size of the dynamic part is 

guided by a performance model 
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Data layout and other optimizations 
•   Three data distributions investigated 

•   CM   : Column major order for the entire matrix 
•   BCL  : Each thread stores contiguously (CM) the data on which it operates 
•   2l-BL : Each thread stores in blocks the data on which it operates 

•   And other optimizations 
•   Updates (dgemm) performed on several blocks of columns (for BCL and CM 
layouts)  
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Impact of data layout 

BCL   : Each thread stores contiguously (CM) its data 
2l-BL  : Each thread stores in blocks its data  

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee). 
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Best performance of CALU on multicore architectures 

•    Reported performance for PLASMA uses LU  
     with block pairwise pivoting. 
•    GPU data courtesy of S. Donfack 

Static scheduling 

time 

Static + 10% dynamic scheduling 

100% dynamic scheduling 


