
Communication avoiding algorithms
for LU and QR factorizations

Laura Grigori

INRIA Paris - LJLL, Sorbonne Université

November 2018

Page 2

Plan
•  Motivation

•  Communication complexity of linear algebra operations

•  Communication avoiding for dense linear algebra

•  LU, QR, Rank Revealing QR factorizations

•  Progressively implemented in ScaLAPACK, LAPACK

•  Algorithms for multicore processors

•  Conclusions

Page 3

Approaches for reducing communication

•  Tuning
•  Overlap communication and computation, at most a factor of 2 speedup

•  Same numerical algorithm,
 different schedule of the computation

•  Block algorithms for NLA
•  Barron and Swinnerton-Dyer, 1960
•  ScaLAPACK, Blackford et al 97

•  Cache oblivious algorithms for NLA
•  Gustavson 97, Toledo 97, Frens and
 Wise 03, Ahmed and Pingali 00

•  Same algebraic framework, different numerical algorithm
•  The approach used in CA algorithms
•  More opportunities for reducing communication, may affect stability

Page 4

Communication Complexity of
Dense Linear Algebra

•  Matrix multiply, using 2n3 flops (sequential or parallel)
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
•  Lower bound on Bandwidth = Ω (#flops / M1/2)
•  Lower bound on Latency = Ω (#flops / M3/2)

€

I −B
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

=

I
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟
.
I −B

I AB
I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

•  Same lower bounds apply to LU using reduction
•  Demmel, LG, Hoemmen, Langou 2008

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 5

Lower bounds for linear algebra
•  Computation modelled as an n-by-n-by-n set of lattice points
 (i,j,k) represents the operation c(i,j) += fij(gijk (a(i,k)*b(k,j))))
•  The computation is divided in S phases
•  Each phase contains exactly M (the fast memory size) load and store instructions
•  Determine how many flops the algorithm can compute in each phase, by applying

discrete Loomis-Whitney inequality:

€

w2 ≤ NANBNC

€

Algorithms in direct linear algebra :
for i, j,k =1: n
 c(i, j) = fij (gijk (a(i,k),b(k, j)))
endfor

-  set of points in R3, represent w arithmetics

-  orthogonal projections of the points onto coordinate
planes , represent values of A, B, C

C face

A face
B face €

NA ,NB ,NC

i

j

k

Page 6

Lower bounds for matrix multiplication (contd)

•  Discrete Loomis-Whitney inequality:

•  Since there are at most 2M elements of A, B, C in a phase, the bound is:

•  The number of phases S is #flops/w, and hence the lower bound on
communication is:

€

#messages(S) ≥ # flops
w

=Ω
flops
M 3 / 2

⎛

⎝
⎜

⎞

⎠
⎟

loads /stores ≥ Ω # flops
M1/ 2

⎛

⎝
⎜

⎞

⎠
⎟

€

w2 ≤ NANBNC

€

w ≤ 2 2M 3 / 2

Page 7

Matrix distributions

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

 Source slide: J. Demmel

Page 8

MatMul with 2D Layout
•  Consider processors in 2D grid (physical or logical)
•  Processors can communicate with 4 nearest neighbors

•  Broadcast along rows and columns

•  Assume p processors form square s x s grid, s = p1/2

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

 p(0,0) p(0,1) p(0,2)

 p(1,0) p(1,1) p(1,2)

 p(2,0) p(2,1) p(2,2)

= *

 Source slide: J. Demmel

Page 9

Cannon’s Algorithm
… C(i,j) = C(i,j) + Σ A(i,k)*B(k,j)
… assume s = sqrt(p) is an integer
 forall i=0 to s-1 … “skew” A
 left-circular-shift row i of A by i
 … so that A(i,j) overwritten by A(i,(j+i)mod s)
 forall i=0 to s-1 … “skew” B
 up-circular-shift column i of B by i
 … so that B(i,j) overwritten by B((i+j)mod s), j)
 for k=0 to s-1 … sequential
 forall i=0 to s-1 and j=0 to s-1 … all processors in parallel
 C(i,j) = C(i,j) + A(i,j)*B(i,j)
 left-circular-shift each row of A by 1
 up-circular-shift each column of B by 1

k

 Source slide: J. Demmel

Page 10

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

 Source slide: J. Demmel

Cost of Cannon’s Algorithm
 forall i=0 to s-1 … recall s = sqrt(p)
 left-circular-shift row i of A by i … cost ≤ s*(α + β*n2/p)
 forall i=0 to s-1
 up-circular-shift column i of B by i … cost ≤ s*(α + β*n2/p)
 for k=0 to s-1
 forall i=0 to s-1 and j=0 to s-1
 C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2
 left-circular-shift each row of A by 1 … cost = α + β*n2/p
 up-circular-shift each column of B by 1 … cost = α + β*n2/p

°  Total Time = 2*n3/p + 4* s*α + 4*β*n2/s - Optimal!
°  Parallel Efficiency = 2*n3 / (p * Total Time)
 = 1/(1 + α * 2*(s/n)3 + β * 2*(s/n))
 = 1/(1 + O(sqrt(p)/n))
°  Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows
°  Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

 Source slide: J. Demmel

Page 12

Sequential algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky

LU

QR

RRQR

•  Only several references shown for block algorithms (LAPACK),
 cache-oblivious algorithms and communication avoiding algorithms
•  CA algorithms exist also for SVD and eigenvalue computation

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

[Frens, Wise, 03], 3x flops
 [Demmel, LG, Hoemmen, Langou, 08]

[Ballard et al, 14]
[Demmel, LG, Gu, Xiang 11]

uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

Page 13

2D Parallel algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

•  Only several references shown, block algorithms (ScaLAPACK) and
 communication avoiding algorithms
•  CA algorithms exist also for SVD and eigenvalue computation

•  If memory per processor = n2 / P, the lower bounds become
 #words_moved ≥ Ω (n2 / P1/2), #messages ≥ Ω (P1/2)

L	

U	

A(ib)	

Q	

R	

A(ib)	

Page 14

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b
 A(ib)	 = A(ib:n, ib:n)

 (1) Compute panel factorization
 - find pivot in each column, swap rows

 (2) Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

L	

U	

A(ib)	

L	

U	

A(ib+b)	

L	

U	

A(ib)	

L	

U	

A(ib)	

)log(2 rPnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

#messages

Page 15

Block QR factorization

Block QR algebra:
1.  Compute panel factorization:

2.  Compute the compact representation:

3.  Update the trailing matrix:

4.  The algorithm continues recursively on the trailing matrix.

€

A =
A11 A12
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟ =Q1

R11 R12
A22

1

⎛

⎝
⎜

⎞

⎠
⎟

€

A11

A12

⎛

⎝
⎜

⎞

⎠
⎟ = Q1

R11⎛

⎝
⎜

⎞

⎠
⎟ , Q1 = H1H2...Hb

€

Q1 = I −Y1T1Y1
T

€

I −Y1T1
TY1

T() A12A22
⎛

⎝
⎜

⎞

⎠
⎟ =

A12
A22

⎛

⎝
⎜

⎞

⎠
⎟ −Y1 T1

T Y1
T A12
A22

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ =

R12
A22
1

⎛

⎝
⎜

⎞

⎠
⎟

	 T1	 Y1	 Y1T	 I	

Page 16

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	

•  QR decomposition of m x b matrix W, m >> b
•  P processors, block row layout

•  Classic Parallel Algorithm
•  Compute Householder vector for each column
•  Number of messages ∝ b log P

•  Communication Avoiding Algorithm
•  Reduction operation, with QR as operator
•  Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 17

Parallel TSQR

QR

	 R00	 V00`
	 W0

	

R10	 V10
	 W1

	

R20	 V20
	 W2

	

R30	 V30
	 W3

	

R00	

R10	
V01

	 R01	

R20	

R30	
V11

	 R11	

P0	

P1	

P2	

P3	

V02
	 R02	 R01	

R11	

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
 Becker, Patterson, 02

Page 18

Q is represented implicitly as a product
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}

€

W =

W0

W1

W2

W3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Q00R00
Q10R10
Q20R20
Q30R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Q00

Q10
Q20

Q30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

R00
R10
R20
R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

€

R00
R10
R20
R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
Q01R01
Q11R11

⎛

⎝
⎜

⎞

⎠
⎟ =

Q01

Q11

⎛

⎝
⎜

⎞

⎠
⎟ .
R01
R11

⎛

⎝
⎜

⎞

⎠
⎟ 0202

11

01 RQ
R
R

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

Page 19
Q is represented implicitly as a product

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

30

20

10

00

30

20

10

00

3

2

1

0

.

R
R
R
R

Q
Q

Q
Q

W
W
W
W

W

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11

01

11

01

30

20

10

00

.
R
R

Q
Q

R
R
R
R

0202
11

01 RQ
R
R

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Flexibility of TSQR and CAQR algorithms

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

W	 =	 	

W0	
W1	
W2	
W3	

R01	
R02	

R00	

R03	
Sequen8al:	

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R01	

R01	
R11	

R02	

R11	
R03	

Dual	 Core:	

Reduc8on	 tree	 will	 depend	 on	 the	 underlying	 architecture,	
could	 be	 chosen	 dynamically	

Page 20

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

CAQR

Page 21

QR for General Matrices
•  Cost of CAQR vs ScaLAPACK’s PDGEQRF

•  n x n matrix on P1/2 x P1/2 processor grid, block size b
•  Flops: (4/3)n3/P + (3/4)n2b log P/P1/2 vs (4/3)n3/P
•  Bandwidth: (3/4)n2 log P/P1/2 vs same
•  Latency: 2.5 n log P / b vs 1.5 n log P

•  Close to optimal (modulo log P factors)
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,
•  Choose b near n / P1/2 (its upper bound)
•  Bandwidth lower bound:
 Ω(n2 /P1/2) – just log(P) smaller
•  Latency lower bound:
 Ω(P1/2) – just polylog(P) smaller

Page 22

Performance of TSQR vs Sca/LAPACK

•  Parallel
•  Intel Xeon (two socket, quad core machine), 2010

•  Up to 5.3x speedup (8 cores, 105 x 200)
•  Pentium III cluster, Dolphin Interconnect, MPICH, 2008

•  Up to 6.7x speedup (16 procs, 100K x 200)
•  BlueGene/L, 2008

•  Up to 4x speedup (32 procs, 1M x 50)
•  Tesla C 2050 / Fermi (Anderson et al)

•  Up to 13x (110,592 x 100)
•  Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
•  QR computed locally using recursive algorithm (Elmroth-Gustavson) –

enabled by TSQR

•  Results from many papers, for some see [Demmel, LG, Hoemmen,
Langou, SISC 12], [Donfack, LG, IPDPS 10].

Page 23

Modeled Speedups of CAQR vs ScaLAPACK

Petascale	 	
	 	 	 	 	 	 up	 to	 22.9x	

IBM	 Power	 5	
	 	 	 	 	 	 up	 to	 9.7x	

“Grid”	
	 	 	 	 	 	 up	 to	 11x	

	 Petascale	 machine	 with	 8192	 procs,	 each	 at	 500	 GFlops/s,	 a	 bandwidth	 of	 4	 GB/s.	
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ

Page 24

Impact

•  TSQR/CAQR implemented in
•  Intel Data analytics library
•  GNU Scientific Library
•  ScaLAPACK
•  Spark for data mining

•  CALU implemented in
•  Cray’s libsci
•  To be implemented in lapack/scapalack

Page 25

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

P0	

P1	

P2	

P3	

TSQR-HR CAQR

Page 26

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

can be re-written as an LU factorization

€

W =QR = (I −YTY1
T)R

€

W − R =Y (−TY1
T)R

Q − I =Y (−TY1
T)

I	 Q	
-‐	 T	 Y	 Y1T	

Page 27

Reconstruct Householder vectors TSQR-HR

1.  Perform TSQR
2.  Form Q explicitly (tall-skinny orthonormal factor)
3.  Perform LU decomposition: Q - I = LU

4.  Set Y = L
5.  Set T = -U Y1

-T

€

I −YTYT = I −
Y1
Y2

⎡

⎣
⎢

⎤

⎦
⎥ T Y1

T Y2
T[]

	 T	 Y	 YT	 I	

I	 Q	
-‐	 T	 Y	 Y1T	

Page 28

Strong scaling

•  Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
•  Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
•  Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

 1x

7x

6x

1x

3.7x
2.7x

Page 29

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∏

∏

∏

∏

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Π

30

20

10

00

30

20

10

00

30

20

10

00

3

2

1

0

.

0

U
U
U
U

L
L

L
L

W
W
W
W

W

4444 34444 21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∏

∏
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Π

11

01

11

01

11

01

30

20

10

00

..

1

U
U

L
L

U
U
U
U

43421
{ 020202

11

01

2

UL
U
U

∏

∏=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Page 30

Obvious generalization of TSQR to LU

•  Block parallel pivoting:
•  uses a binary tree and is optimal in the parallel case

•  Block pairwise pivoting:
•  uses a flat tree and is optimal in the sequential case
•  introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
•  used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W	 =	 	

W0	
W1	
W2	
W3	

U00	
U10	
U20	
U30	

U01	

U11	

U02	

W=	 	

W0	
W1	
W2	
W3	

U01	
U02	

U00	

U03	

Page 31

Stability of the LU factorization
•  The backward stability of the LU factorization of a matrix A of size n-by-n

 depends on the growth factor

 where aij
k are the values at the k-th step.

•  gW ≤ 2n-1 , attained for Wilkinson matrix

 but in practice it is on the order of n2/3 -- n1/2

•  Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

 - the multipliers in L are small,

 - the correction introduced at each elimination step is of rank 1.

€

gW =
maxi, j ,k aij

k

maxi, j aij

€

ˆ L ⋅ ˆ U
∞
≤ (1+ 2(n2 − n)gw) A ∞

€

A = diag(±1)

1 0 0 L 0 1
−1 1 L 0 1
−1 −1 1 O 0 1
M M O O M M

−1 −1 L −1 1 1
−1 −1 L −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Page 32

Block parallel pivoting

•  Unstable for large number of processors P

•  When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 33

Block pairwise pivoting

•  Results shown for random matrices
•  Will become unstable for large matrices W=	 	

W0	
W1	
W2	
W3	

U01	
U02	

U00	

U03	

Page 34

Tournament pivoting - the overall idea

•  At each iteration of a block algorithm

 , where

•  Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

•  Permute the pivots to top, ie compute PA.
•  Compute LU with no pivoting of W, update trailing matrix.

€

W =
A11
A21

⎛

⎝
⎜

⎞

⎠
⎟

€

A =
A11 A12
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟

€

}
}

b
n − b

€

b n − b
} }

€

PA =
L11
L21 In−b

⎛

⎝
⎜

⎞

⎠
⎟
U11 U12

A22 − L21U12

⎛

⎝
⎜

⎞

⎠
⎟

Page 35

Tournament pivoting for a tall skinny matrix
1)  Compute GEPP factorization of each Wi., find permutation

2)  Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations

3)  Compute LU factorization with no pivoting of the permuted matrix:

€

W =

W0

W1

W2

W3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Π00L00U00

Π10L10U10

Π20L20U20

Π30L30U30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

€

A00
A10
A20
A30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∏01L01U01

∏11L11U11

⎛

⎝
⎜

⎞

⎠
⎟

€

A01
A11

⎛

⎝
⎜

⎞

⎠
⎟ =∏02

∏2

{L02U02

€

Π2
TΠ1

TΠ0
TW = LU

Pick b pivot rows, form A00

Same for A10

Same for A20

Same for A30

Pick b pivot rows, form A01

Same for A11

€

Π0

€

Π1,Π2

Page 36

Tournament pivoting

time

P0	

P1	

P2	

P3	

€

2 4
0 1
2 0
1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

2 0
0 0
4 1
1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π1L1U1

€

0 1
1 4
0 0
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U2

€

2 1
0 2
1 0
4 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π3L3U3

€

2 4
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

1 4
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

2 4
2 0
4 1
2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

1 4
0 2
4 2
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U 2

€

4 1
2 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 4
4 2
1 4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U 0

€

4 1
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

W0

€

Π0
TW0

€

W0

€

Π0
T
W 0

€

W 0

€

Π0
TW 0

€

W1

€

Π1
TW1

€

W2

€

Π2
TW2

€

W2

€

Π2
T
W 2

€

W3

€

Π3
TW3

Good pivots for
factorizing W

Page 37

Growth factor for binary tree based CALU

•  Random matrices from a normal distribution
•  Same behaviour for all matrices in our test, and |L| <= 4.2

Page 38

Stability of CALU (experimental results)

Summer School Lecture 4 38

•  Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

•  See [LG, Demmel, Xiang, SIMAX 2011] for details
•  BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 39

Our “proof of stability” for CALU
•  CALU as stable as GEPP in following sense:
 In exact arithmetic, CALU process on a matrix A is equivalent to GEPP

process on a larger matrix G whose entries are blocks of A and zeros.

•  Example of one step of tournament pivoting:

•  Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).

€

A =

A11 A12
A21 A22
A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

G =

A11 A12
A21 A21

−A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A11	
A21	
A31	

A11	

A21	
A11	

tournament pivoting:

Page 40

Outline of the proof of stability for CALU

•  Consider , and the result of TSLU as

•  After the factorization of first panel by CALU, As
32 (the Schur complement of A32) is not

bounded as in GEPP,

•  but As
32 can be obtained by GEPP on larger matrix G formed from blocks of A

•  GEPP on G does not permute and

€

A =

A11 A12
A21 A22
A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

G =

A11 A12
A21 A21

−A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

L11
A21U11

−1 L21
−L31 I

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

U11 U12

U21 −L21
−1A21U11

−1U12

A32
s

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

Π11 Π12

Π21 Π22

I

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A11 A12
A21 A22
A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

A11 A12
A21 A22
A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

L11
L21 I
L31 I

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

U11 U12

A22
s

A32
s

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A11	
A21	
A31	

A11	

A21	
A11	

€

L31L21
−1A21U11

−1U12 + A32
s = L31U21U11

−1U12 + A32
s = A31U11

−1U12 + A32
s = L31U12 + A32

s = A32

Page 41

LU factorization and low rank matrices
•  For low rank matrices, the factorization of A1 computed as following might not

be stable
 Compute PA=LU by using GEPP L(k+1:end,k) = A(k+1:end,k)/A(k,k)
 Permute the matrix A1=PA
 Compute LU with no pivoting A1=L1U1 L(k+1:end,k) = L(k+1:end,k)* (1/A(k,k))

•  Example A = randn(6,3)*randn(3,5), max(abs(L)) = 1, max(abs(L1)) = 1015

€

After 4 steps of factorization of A1 we obtain :

A1
4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 4.9e − 32
−0.3264 −0.7514 −0.4597 1.7778 −7.4e −17

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

€

After 4 steps of factorization of PA we obtain :

PA4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 2.3e −16
−0.3264 −0.7514 −0.4597 1.7778 8.3e −17

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

Schur complement after 4 elimination steps

Page 42

LU_PRRP: LU with panel rank revealing pivoting

•  Pivots are selected by using strong rank revealing QR on each panel
•  The factorization after one panel elimination is written as

 A21 A11
-1 is computed through strong rank revealing QR

 and max(|A21 A11
-1|)ij ≤ f

•  LU_PRRP and CALU_PRRP stable for pathological cases (Wilkinson
matrix) and matrices from two real applications (Voltera integral
equation - Foster, a boundary value problem - Wright) on which GEPP
fails.

A. Khabou, J. Demmel, LG, M. Gu, 2012

€

PA =
A11 A12
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟ =

Ib
A21A11

−1 In−b

⎛

⎝
⎜

⎞

⎠
⎟
A11 A12

A22 − A21A11
−1A12

⎛

⎝
⎜

⎞

⎠
⎟

Page 43

Growth factor in exact arithmetic
•  Matrix of size m-by-n, reduction tree of height H=log(P).
•  (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, SIMAX 2013)
•  “In practice” means observed/expected/conjectured values.

•  For a matrix of size 107-by-107 (using petabytes of memory)
 n1/2 = 103.5

Better bounds

CALU GEPP CALU_PRRP LU_PRRP

Upper bound 2n(log(P)+1)-1 2n-1 (1+2b)(n/b)log(P) (1+2b)(n/b)

In practice n2/3 -- n1/2 n2/3 -- n1/2 (n/b)2/3 -- (n/b)1/2 (n/b)2/3 -- (n/b)1/2

Page 44

CALU – a communication avoiding LU factorization
•  Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square

blocks of size b.

For ib = 1 to n-1 step b
 A(ib)	 = A(ib:n, ib:n)

 (1) Find permutation for current panel using TSLU

 (2) Apply all row permutations (pdlaswp)
 - broadcast pivot information along the rows of the grid

 (3) Compute panel factorization (dtrsm)

 (4) Compute block row of U (pdtrsm)
 - broadcast right diagonal part of L of current panel

 (5) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

L	

U	

A(ib)	

L	

U	

A(ib+b)	

L	

U	

A(ib)	

L	

U	

A(ib)	

)log/(2 rPbnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

Page 45

LU for General Matrices

•  Cost of CALU vs ScaLAPACK’s PDGETRF
•  n x n matrix on P1/2 x P1/2 processor grid, block size b
•  Flops: (2/3)n3/P + (3/2)n2b / P1/2 vs (2/3)n3/P + n2b/P1/2
•  Bandwidth: n2 log P/P1/2 vs same
•  Latency: 3 n log P / b vs 1.5 n log P+ 3.5n logP / b

•  Close to optimal (modulo log P factors)
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,
•  Choose b near n / P1/2 (its upper bound)
•  Bandwidth lower bound:
 Ω(n2 /P1/2) – just log(P) smaller
•  Latency lower bound:
 Ω(P1/2) – just polylog(P) smaller

Page 46

 Performance vs ScaLAPACK

•  Parallel TSLU (LU on tall-skinny matrix)
•  IBM Power 5

•  Up to 4.37x faster (16 procs, 1M x 150)
•  Cray XT4

•  Up to 5.52x faster (8 procs, 1M x 150)

•  Parallel CALU (LU on general matrices)
•  Intel Xeon (two socket, quad core)

•  Up to 2.3x faster (8 cores, 10^6 x 500)
•  IBM Power 5

•  Up to 2.29x faster (64 procs, 1000 x 1000)
•  Cray XT4

•  Up to 1.81x faster (64 procs, 1000 x 1000)

•  Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Page 47

CALU and its task dependency graph

•  The matrix is partitioned into blocks of size T x b.
•  The computation of each block is associated with a task.

Page 48

Scheduling CALU’s Task Dependency Graph
•  Static scheduling

+ Good locality of data - Ignores noise

•  Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality
 - Can have large dequeue overhead

Page 49

Lightweight scheduling

•  Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
•  One example is work stealing

•  Goal:
•  Design a tunable strategy that is able to provide a good trade-off between load

balance, data locality, and dequeue overhead.
•  Provide performance consistency

•  Approach: combine static and dynamic scheduling
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Data layout/scheduling Static Dynamic Static/(%dynamic)

Column Major Layout (CM) √

Block Cyclic Layout (BCL) √ √ √

2-level Block Layout (2l-BL) √ √ √

Design space

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Page 50

Lightweight scheduling

•  A self-adaptive strategy to provide
•  A good trade-off between load balance, data locality, and dequeue overhead.
•  Performance consistency
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
•  A thread executes in priority its

statically assigned tasks
•  When no task ready, it picks a

ready task from the dynamic part
•  The size of the dynamic part is

guided by a performance model

Page 51

Data layout and other optimizations
•  Three data distributions investigated

•  CM : Column major order for the entire matrix
•  BCL : Each thread stores contiguously (CM) the data on which it operates
•  2l-BL : Each thread stores in blocks the data on which it operates

•  And other optimizations
•  Updates (dgemm) performed on several blocks of columns (for BCL and CM
layouts)

Page 52

Impact of data layout

BCL : Each thread stores contiguously (CM) its data
2l-BL : Each thread stores in blocks its data

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).

Page 53

Best performance of CALU on multicore architectures

•  Reported performance for PLASMA uses LU
 with block pairwise pivoting.
•  GPU data courtesy of S. Donfack

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

