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Lower bounds on communication for sparse LA

� More difficult than the dense case
� For example computing the product of two (block) diagonal matrices

involves no communication in parallel

� Lower bound on communication from dense linear algebra is loose

� Very few existing results:
� Lower bounds for parallel multiplication of sparse random matrices

[Ballard et al., 2013]
� Lower bounds for Cholesky factorization of model problems

[Grigori et al., 2010]
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Sparse matrix multiplication (SpGEMM)

Cij =
∑

k

AikBkj

Slides with help from G. Ballard, A. Buluc, O. Schwartz. Results from B. Lipshitz thesis
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Sequential sparse matrix multiplication

� Column-wise formulation by Gustavson, implemented in Matlab.

� Input matrices of size n × n, stored in compressed sparse column.

� Complexity: O(flops(A · B) + nnz + n), optimal when
flops(A · B) > nnz + n.

Input: A,B,C
for j = 1 to n do

for k where bk,j 6= 0 do
C(:, j) := C(:, j) + A(:, k) · bkj

end for

end for
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Sparse Matrix Multiplication

� Consider matrices with random sparsity: the adjacency matrices of Erdős
- Rényi(n,d) graphs - ER(n,d).

� Let A and B be n × n ER(n,d) matrices. We assume d � n. Then:
� Each entry in A and B is nonzero with probability d/n.
� The expected number of nonzeros in A and B is dn.
� The expected number of scalar multiplications in AB is (d2/n2) · n3 = d2n.
� The expected number of nonzeros in C is d2n(1− o(1)).

Results:

� Lower bounds on communication, improved (higher) with respect to ones
derived from dense linear algebra

� Optimal algorithms
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Communication bounds for matrix multiplication

Given: A,B of size n × n, local memory of size M, P processors, the lower
bound on volume of communication for computing A · B on P processors is:

Dense Classic (cubic flops)
Memory dependent

Ω

(
n3

M3/2
· M

P

) Memory independent

Ω

(
n2

P2/3

)
Erdős - Rényi(n,d)
Extension of lower bound for dense matrices to sparse matrices

Ω

(
#flops

M3/2
· M

P

)
= Ω

(
d2n

P
√

M

)
≤ Ω

(√
d2n

P

)

No algorithm attains this bound.
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Communication bounds for Erdős - Rényi(n,d)

Extension of lower bound for dense matrices to sparse matrices

Ω

(
#flops

M3/2
· M

P

)
= Ω

(
d2n

P
√

M

)
≤ Ω

(√
d2n

P

)

No algorithm attains this bound.

New bound from [Ballard et al., 2013]

Ω

(
min

(
dn√

P
,

d2n

P

))
= Ω

(
dn√

P
min

(
1,

d√
P

))
� With some assumptions. Which bound applies depends on ratio d/

√
P.

� Improvement factor of
√
M ·max{1,

√
P/d} with respect to previous bound

� Two algorithms attain this bound: recursive and 3D iterative.
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Geometric view of the computation

Computation cube for matrix multiply, with a specified subset of voxels:

� A face for each input/output matrix.

� Voxel (i , j , k) corresponds to the multiplication aik · bkj .

� Loomis & Whitney (1949): Volume of 3D set V satisfies:

V ≤ (area (A shadow) · area(B shadow) · area(C shadow))1/2

Source figure: G. Ballard
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Communication bounds for Erdős-Rényi(n,d)

Assumptions:

� Sparsity independent algorithms

� Input and output are sparse: d ≤
√

n

� The algorithm is load balanced

Sparsity independent algorithms:

� Assignement of entries of A,B,C to processors is independent of sparsity
pattern of input/output matrices.

� Assignement of computation voxels to processors is independent of
sparsity pattern of input/output matrices.

� All known algorithms are sparsity-independent
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Lower bound - intuition of the proof

Idea: how many useful flops can be performed by using S inputs/outputs
(similar to the dense case).

C(i,j)
 ℓij

V

 C

� Distinguish between input shadows and output shadow

� Given a shadow, is it stored on only one processor

� Given an internal grid point, does it correspond to a non-zero: use
sparsity independence and randomness
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Partitioning the work cube to processes

� Our bounds apply to all sparsity independent algorithms.

� We analyze algorithms that assign contiguous brick-shaped sets of voxels
to each processor.

With correctly chosen data distributions:

� 1D algorithms communicate entries of only one of the three matrices

� 2D algorithms communicate entries of two of the three matrices

� 3D algorithms communicate entries of all three matrices
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Partitioning the work cube to processes

Details:
� 1D algorithms communicate entries of only one of the three matrices:

� Block Row: partition A,B,C on procs in a block row fashion. Shift block
rows of B around a ring of processors. W = dn, S = P

� Improved Block Row: each proc gathers all required rows of B at once.
Point to point communication: W = d2n/P,min{P, dn/P}

� Outer product: Partition A in block cols, B in block rows, compute outer
product, all-to-all to gather C . W = d2n/P, S = logP

� 2D algorithms communicate entries of two of the three matrices: 2D Sparse SUMMA.

� 3D algorithms communicate entries of all three matrices: 3D Sparse SUMMA, 3D
Recursive.
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2D Summa

� Process grid
√

P ×
√

P (in general does not have to be square)

� C (i , j) is n/
√

P × n/
√

P submatrix of C on processor Pij

� A(i , k) is n/
√

P × b submatrix of A on processor Pik

� B(k, j) is b × n/
√

P submatrix of B on processor Pkj

� C (i , j) = C (i , j) +
∑

k A(i , k) · B(k , j)

� To minimize communication, choose b close to n/
√

P (as in the figure)
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2D Summa (with b = n/
√
P)

� C (i , j) = C (i , j) +
∑

k A(i , k) · B(k , j)

1: for k=1 to
√

P do
2: for all i , j = 1 . . .

√
P do

3: Pik broadcasts A(i , k) along its row of processors Pi,:

4: Pkj broadcasts B(k , j) along its column of processors P:,j

5: C (i , j) = C (i , j) + A(i , k) · B(k , j)
6: end for
7: end for
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Dense 3D Summa

� Assume each processor can store cn2/P
data, c > 1

� Process grid:
√

P/c ×
√

P/c × c

For c = 3

1. Layer 1 stores only A(:, 1 : 2) and
B(1 : 2, :)

2. Layer 2 stores only A(:, 3 : 4) and
B(3 : 4, :)

3. Layer 3 stores only A(:, 5 : 6) and
B(5 : 6, :)
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Dense 3D Summa

Process grid:
√

P/c ×
√

P/c × c

1. Pij0 broadcasts A(i , j) and B(i , j) to Pijt

2. Processors at layer t perform 1/c-th of
SUMMA, i.e. 1/c-th of∑

k A(i , k) ∗ B(k , j)

3. Number of steps is
√

P/c3

4. At each step, broadcast a block of A and a
block of B along rows / columns of the
face

√
P/c ×

√
P/c process grid

5. Sum-reduce partial sums∑
k A(i , k) · B(k , j) along t-axis so Pij0

owns C (i , j)

W = O(n2/
√

Pc), S = O(
√

P/c3 + log c)
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Sparse 3D Summa

Process grid:
√

P/c ×
√

P/c × c , A,B distributed over
√

P ×
√

P procs.
� Distribute A and B on c layers: only 1/c-th of columns of A and rows of B need to be

distributed.
E.g. for A, each proc owns a block of size n/

√
P/c × n/

√
P/c3.

All-to-all operations performed by blocks of
√
c ×
√
c procs.

W = O(
dn

P
· log c), S = O(log c)

Example for 2× 2× 4 grid, c = 4.

A

B

C

20 of 73



Sparse 3D Summa (contd)

� Processors collect all entries of A and B they need
allgather operation among

√
P/c procs.

W = O(
√

P/c · dn

P
) = O(dn/

√
Pc),

S = O(log
√

P/c)

� Reduce C on the first layer, and scatter it on all
procs
Sparse case: since each nonzero is contributed by
a few flops, use instead gather + merge or
all-to-all

W = O(
d2n

P
· log c), S = O(log c)
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Optimizing c

Lower bound on communication:

Ω

(
min

(
dn√

P
,

d2n

P

))
If d >

√
P, then d2n/P > dn/

√
P.

Cost of sparse 3D Summa:

O

(
dn√
Pc

+
d2n

P
log c

)
If d >

√
P, choose c = 1

If d <
√

P, choose c = Θ(P/d2) to balance the two terms in the bandwidth
cost.

→ Sparse Summa communication optimal by choosing c = min(1,P/d2).
Remark: no increase in memory requirement, which remains d2n/P.
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Recursive algorithm [Ballard et al., 2013]

Divides A · B into 4 sub-problems, each
executed on P/4 processors.
While P > 1, pick the cheapest split

Split 1: Problem m/2× k ×m/2

A B C

m

k

k m

m

m

1 2

3 4

1,2

3,4
1,3 2,4

Replicates A and B

Split 2: Problem m × k/4×m

A B C

1 2 43

1

2

3

4

1,2,3,4m

k

k m

m

m

Redistributes and reduces C

Based on [Ballard, Demmel, Holtz, Lipshitz, Schwartz, SPAA’12
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Recursive algorithm [Ballard et al., 2013]

Split 1: Problem (m/2)× k × (m/2)

A B C

m

k

k m

m

m

1 2

3 4

1,2

3,4
1,3 2,4

Replicates A and B:
Allgather between disjoint pairs of
procs
W = O

(
dmk
nP

)
, S = O(1)

Split 2: Problem m × k/4×m

A B C

1 2 43

1

2

3

4

1,2,3,4m

k

k m

m

m

Redistributes and reduces C :
All-to-all between disjoint sets of 4
procs

W = O
(

d2m2k
n2P

)
, S = O(1)
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Recursive algorithm

� Algorithm: while P > 1, pick the cheapest split.

� Initially m = k = n, split 1 O(dn/P) words is cheaper than split 2
O(d2n/P).

� Split 1 cheaper for the first log2 d steps.

Case 1: If P ≤ d2, Split 1 always cheapest:

W =

log4 P−1∑
i=0

O

(
d(n/2i )n

nP/4i

)
= O

(
dn√

P

)
, S = O(log P)
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Recursive algorithm

Algorithm: while P > 1, pick the cheapest split
Case 2: If P > d2, first log2d steps use split 1, then use split 2.
After log2d steps, subproblem has shape n/d × n × n/d and P/d2 procs.

W =

log2 d−1∑
i=0

O

(
d(n/2i )n

nP/4i

)
+

log4 P∑
i=log2 d

O

(
d2n

P

)
= O

(
d2n

P
log

P

d2

)
,

S = O(log P)

� Matches the lower bound of Ω
(

min
(

dn√
P
, d2n

P

))
up to log factor.

� Possible layout: A in block column layout, B in block-row layout, C has
blocks of size n/d × n/d , each distributed on a different dP/d2e of the
processors.

� No need to use DFS, since BFS uses only a constant factor extra memory.
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Results for Erdős - Rényi Graph ER(n,d)

� Machine used: Titan, Cray XK7 from ORNL: 18,688 nodes, each node
has 32GB of RAM, a 16 core AMD Opteron 6274 processor, and an
Nvidia K20 GPU (not used).

� Experiments: use one core per process (16 MPI processes per node).

27 of 73



Results for Erdős - Rényi Graph

� For each case, expected number of nonzeros in the output is d2n = 230.

� For n = 230, d = 1, comm time = 39.3 secs, local operations = 11.9 secs and
imbalance = 0.98 secs.
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Results for Erdős - Rényi Graph - strong scaling

� In general, recursive algorithm outperforms all others
� Among the others: when d <

√
P, Outer product and Improved block row perform best

when d >
√
P, sparse SUMMA performs best
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SPD matrices and Cholesky factorization

A is symmetric and positive definite (SPD) if

� A = AT ,

� all its eigenvalues are positive,

� or equivalently, A has a Cholesky factorization, A = LLT .

Some properties of an SPD matrix A

� There is no need to pivot for accuracy (just performance) during the
Cholesky factorization.

� For any permutation matrix P, PAPT is also SPD.
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Sparse Cholesky factorization

Algebra:

A =

(
a11 AT

21

A21 A22

)
=

( √
a11

A21./
√
a11 I

)
·
( √

a11 AT
21./
√
a11

As
22

)
=

( √
a11

A21./
√
a11 L22

)
·
( √

a11 AT
21./
√
a11

LT
22

)
, where

As
22 = A22 − (A21./

√
a11) · (AT

21./
√
a11)

Algorithm:
for k = 1 : n − 1 do

akk =
√
akk

/* factor(k) */
for i = k + 1 : n st aik 6= 0 do

aik = aik/akk
end for
for i = k + 1 : n st aik 6= 0 do

update(k, i)
for j = i : n st akj 6= 0 do

aij = aij − aikajk
end for

end for

end for

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x
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Filled graph G+(A)

� Given G (A) = (V ,E ), G +(A) = (V ,E +) is defined as:
there is an edge (i , j) ∈ G +(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� Definition holds also for directed graphs (LU factorization).

� G (L + LT ) = G +(A), ignoring cancellations.

� G +(A) is chordal (every cycle of length at least four has a chord, an edge
connecting two non-neighboring nodes).

� Conversely, if G (A) is chordal, then there is a perfect elimination order,
that is a permutation P such that G (PAPT ) = G +(PAPT ).

� References: [Parter, 1961, Rose, 1970, Rose and Tarjan, 1978]
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Filled graph G+(A)

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x



1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G+(A)
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Steps of sparse Cholesky factorization

1. Order rows and columns of A to reduce fill-in

2. Symbolic factorization: based on eliminaton trees

� Compute the elimination tree (in nearly linear time in nnz(A))
� Allocate data structure for L
� Compute the nonzero structure of the factor L, in O(nnz(L)

3. Numeric factorization

� Exploit memory hierarchy
� Exploit parallelism due to sparsity

4. Triangular solve
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Order columns/rows of A

Strategies applied to the graph of A for Cholesky,
Strategies applied to the graph of ATA for LU with partial pivoting.

Local strategy: minimum degree [Tinney/Walker ’67]

� Minimize locally the fill-in.

� Choose at each step (for 1 to n) the node of minimum degree.

Global strategy: graph partitioning approach

� Nested dissection [George, 1973]
� First level: find the smallest possible

separator S , order last
� Recurse on A and B

� Multilevel schemes [Barnard/Simon ’93,
Hendrickson/Leland ’95, Karypis/Kumar
’95].
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Nested dissection and separator tree

Separator tree:

� Combines together nodes belonging to a same separator, or to a same
disjoint graph

Some available packages:

� Metis, Parmetis
(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

� Scotch, Ptscotch (www.labri.fr/perso/pelegrin/scotch/)
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Nested dissection on our 9× 9 structured matrix

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x

x x x
x x x

x x x x

x x x x
x x x x x

x x x x


,

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



7 8 9

3

6

1 2

4 5
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7 8 9
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6

1 2

4 5

G+(A)

9
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7

3

1 2

6

4 5

T (A)
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Elimination tree (etree)

Definition ([Schreiber, 1982] and also [Duff, 1982] )
Given A = LLT , the etree T (A) has the same node set as G (A), and k is
the parent of j iff

k = min{i > j : lij 6= 0}

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



9

8

7

3

1 2

6

4 5

T (A)
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Column dependencies and the elimination tree

� If ljk 6= 0, then
� Factor(k) needs to be computed before Factor(j).
� k is an ancestor of j in T (A).

� Columns belonging to disjoint subtrees can be factored independently.
� Topological orderings of T (A) (that number children before their parent)

� preserve the amount of fill, the flops of the factorization, the structure of
T (A)

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



9

8

7

3

1 2

6

4 5

T (A)
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Numeric factorization - multifrontal approach

� Driven by the separator tree of A, a supernodal elimination tree.

� The Cholesky factorization is performed during a postorder traversal of
the separator tree.

� At each node k of the separator tree:

� A frontal matrix Fk is formed by rows and columns involved at step k of
factorization:
� rows that have their first nonzero in column k of A,
� contribution blocks (part of frontal matrices) from children in T (A).

� The new frontal matrix is obtained by an extend-add operation.

� The first rows/columns of Fk corresponding to supernode k are factored.
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Numeric factorization - an example

9

8

7

3

1 2

6

4 5

F1 =


1 3 7

1 x
3 x x
7 x x x

 →


1 3 7

1 l
3 l f
7 l f f

 F2 =


2 3 9

2 x
3 x x
9 x x x

 →


2 3 9

2 l
3 l f
9 l f f



F3 =


3 7 8 9

3 x
7 x x
8 x x x
9 x x x x

 →


3 7 8 9

3 l
7 l f
8 l f f
9 l f f f



Supernode 7

F{7,8,9} =


7 8 9

7 x
8 x x
9 x x x

 →


7 8 9

7 l
8 l l
9 l l l

L + LT =



1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x



Notation used for frontal matrices Fk :

� x - elements obtained by the extend-add operation,
� l - elements of L computed at node k, f - elements of frontal matrix that will be passed to parent of node k.
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Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989] applied on the separator
tree

Subtree to subcube mapping

1. Assign all the processors to the root.

2. Assign to each subtree half of the

processors.

3. Go to Step 1 for each subtree which is

assigned more than one processor.

The figure displays the process grid used by

PSPASES.

19

9

8

7

3

1 2

6

4 5

18

...

[
0
] [

1
] [

2
] [

3
]
[
2 3

][
0 1

]

[
0 1
2 3

]

[
0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Process grid
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Numeric factorization - PSPASES [Gupta et al., 1995]

� Subtree to subcube mapping and bitmask based cyclic distribution:

Starting at the last level of the separator tree (bottom up traversal), let
i = 1

for each two consecutive levels k , k − 1, based on value of i-th LSB of
column/row indices

� For level k:
Map all even columns to subcube with lower processor numbers
Map all odd columns to subcube with higher processor numbers

� For level k − 1:
Map all even rows to subcube with lower processor numbers
Map all odd rows to subcube with higher processor numbers

� Let i = i + 1

PSPASES uses a bitmask based block-cyclic distribution.
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Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989].

� Extend-add operation requires each processor to exchange half of its data with a

corresponding processor from the other half of the grid.

19

9

8

7

3

1 2

6

4 5

18

...

F1 :


1 3 7

1 0
3 0 0
7 0 0 0

 [
0
]

F2 :


2 3 9

2 1
3 1 1
9 1 1 1

 [
1
]

0 ↔ 1

F3 :


3 7 8 9

3 1
7 1 1
8 1 1 0
9 1 1 0 1

 [0 1
] 2 ↔ 3

F6 :


6 7 8 9

6 3
7 3 3
8 3 3 2
9 3 3 2 3

 [2 3
]

0 ↔ 2
1 ↔ 3

F{7,8,9} :


7 8 9

7 3
8 1 0
9 3 2 3

 [0 1
2 3

]

0 ↔ 4
2 ↔ 6
1 ↔ 5
3 ↔ 7

F19 :
( 19

19 x
) [

0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Data distribution, process grid and

data exchange pattern
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Performance results on Cray T3D

Results from [Gupta et al., 1995]
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Lower bounds on communication for Cholesky

� Consider A of size ks × ks results from a finite difference operator on a
regular grid of dimension s ≥ 2 with ks nodes.

� Its Cholesky L factor contains a dense lower triangular matrix of size
ks−1 × ks−1.

7 8 9

3

6

1 2

4 5

G+(A)

L + LT =



1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x



� Computing the Cholesky factorization of the ks−1 × ks−1 matrix
dominates the computation.
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Lower bounds on communication

� This result applies more generally to matrix A whose graph G = (V ,E ),
|V | = n has the following property for some l :

� if every set of vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at
least l vertices in V −W ,

� then the Cholesky factor of A contains a dense l × l submatrix.
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Lower bounds on communication

For the Cholesky factorization of a ks × ks matrix resulting from a finite
difference operator on a regular grid of dimension s ≥ 2 with ks nodes:

#words ≥ Ω

(
W√

M

)
, #messages ≥ Ω

(
W

M3/2

)

� Sequential algorithm
� W = k3(s−1)/3 and M is the fast memory size

� Work balanced parallel algorithm executed on P processors

� W = k3(s−1)

3P
and M ≈ nnz(L)/P
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Why / how PSPASES attains optimality

� For each node in the separator tree, the communication in the Cholesky
factorization dominates the communication in the extend-add step.

� Optimal dense Cholesky factorization needs to be used for each
multifrontal matrix (n × n, P procs).

� optimal block size - minimize communication while increasing flops by a
lower order term

b =
n√
P

log−2
2

√
P
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Optimal sparse Cholesky factorization

� Results for n × n matrix resulting from 2D and 3D regular grids.

� Analysis assumes local memory per processor is M = O(n log n/P)- 2D
case and M = O(n4/3/P)- 3D case.

PSPASES PSPASES with Lower bound
optimal layout

2D grids

# flops O
(

n3/2

P

)
O
(

n3/2

P

)
Ω
(

n3/2

P

)
# words O( n√

P
) O

(
n√
P

log P
)

Ω
(

n√
P log n

)
# messages O(

√
n) O

(√
P log3 P

)
Ω

( √
P

(log n)3/2

)
3D grids

# flops O
(

n2

P

)
O
(

n2

P

)
Ω
(

n2

P

)
# words O( n4/3

√
P

) O
(

n4/3
√

P
log P

)
Ω
(

n4/3
√

P

)
# messages O(n2/3) O

(√
P log3 P

)
Ω
(√

P
)
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Optimal sparse Cholesky factorization: summary

� PSPASES with an optimal layout attains the lower bound in parallel for
2D/3D regular grids:

� Uses nested dissection to reorder the matrix

� Distributes the matrix using the subtree to subcube algorithm

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization

� Sequential multifrontal algorithm attains the lower bound

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization
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Preliminaries

Graph G = (V ,E ) is formed by:

� a set of vertices V ,

� a set of edges E .

� Edges can be directed or not, can have weights or not.

� A path from v1 to vn is formed by a sequence of edges
(v1, v2), . . . (vn−1, vn). Its length is the sum of its weights.

54 of 73



Parallel graph algorithms

� Graph traversals: breadth-first search
� Single Source Shortest Path: Delta-stepping (Meyer and Sanders),

randomized approach (Ullman and Yannakakis)
� All Pairs Shortest Path (APSP): Floyd-Warshall, Johnson (based on

Dijkstra).
� Graph partitioning

Applications

� Routing in transportation networks: compute point to point shortest
paths

� Internet and WWW: web search, page rank, document classification and
clustering

� Scientific computing: reorderings, graph partitioning, maximum
matchings

� APSP: urban planning and simulation, datacenter network design, traffic
routing, subroutine in Ullman and Yannakaki’s BFS algorithm
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All-pairs shortest paths

� Input: directed graphs with weights on edges
� APSP: find shortest paths between all reachable vertex pairs

Floyd-Warshall

for i , j = 1 : n, d(i → i) := 0, d(i → j) :=∞
for each edge (i , j)
d(i → j) := w(i → j), Π(i , j) := i

for k=1 to n do
for i = 1 to n do

for j = 1 to n do
If d(i → k) + d(k → j) < d(i → j)
d(i → j) := d(i → k) + d(k → j)
Π(i , j) := Π(k, j)

end for
end for

end for

� First step: computes the lengths of the paths
between all pairs of vertices

� Second step: if required, path reconstruction

� Assume there is no negative cycle
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All-pairs shortest paths

APSP problem corresponds to finding the matrix closure on the tropical
(min,+) semiring. In the semiring matrix multiplication (distance product)

� replace each multiply with an addition: compute length of a larger path
from smaller paths or edges

� replace each add with a minimum operation: get the minimum path if
there are multiple paths

Assume for simplicity adjacency matrices of power of two dimension.

Cost first step: O(n3) additions and O(n2) min operations.
Cost path reconstruction: the Shortest-path tree can be calculated for each
node in O(|E |) time using O(n) memory to store each tree.
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All-pairs shortest paths

� Floyd-Warshall more suitable for denser graphs

� In parallel, Floyd-Warshall can be competitive even for sparser graphs, as
for example on GPUs [Buluc et al., 2010].

� Johnson’s algorithm, using for each vertex Dijkstra’s single-source
shortest path algorithm, requires less flops than Floyd-Warshall for sparse
graphs: O(|E |+ |V | log |V |) for each vertex.

� Divide and Conquer APSP (DC-APSP)
� Idea presented in a proof by Aho et al showing equivalence between

semiring matrix multiplication and APSP, later presented in papers by
Tiskin, Park et al.

� Faster than the 3 nested loops on GPUs [Buluc et al., 2010].
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Divide and conquer APSP

Source slide: A. Buluç
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Divide and conquer APSP

Source slide: A. Buluç
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Divide and conquer APSP

CB: update paths in V2.

Source slide: A. Buluç.
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Divide and conquer APSP

BD: find SP from V1 to V2.

Source slide: A. Buluç.
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Divide and conquer APSP - results

� GPU: Nvidia GeForce 8800 Ultra
� Dense graph of at most 8192 vertices
� Matrix multiply optimized by modifying Volkov’s code
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Lower bounds for APSP

Semiring matrix multiplication has same computational dependency as
classic matrix multiplication, and the bounds of [Hong and Kung, 1981],
[Irony et al., 2004] apply [Solomonik et al., 2013]:

Memory dependent

W = Ω

(
n3

M3/2
· M

P

)
S(M) = Ω

(
n3

P ·M3/2

)
Memory independent

W = Ω

(
n2

P2/3

)
S = Ω(log P)
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Latency bandwidth trade-off for DC-APSP

Divide and conquer APSP has dependencies similar to 2.5D LU factorization.
Hence the same latency-bandwidth trade-off exists [Solomonik et al., 2013]:

If each processor stores M = cn2/P copies of data, then:

S ·W = Ω(
√

cP)

and if we want to decrease the bandwidth cost by a factor of
√

c we obtain:

W = Ω

(
n2

√
cP

)
, S = Ω(

√
cP)
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Parallelizing APSP

Grid of processors:
√

P/c ×
√

P/c × c

Floyd-Warshall: a communication optimal algorithm can be obtained by
using the same idea as 2.5D dense matrix multiply → 2.5D-SMMM.

DC-APSP

� To minimize latency, 1/8-th of the processors should be assigned to
solving a sub-problem
→ but then only 1/8-th of the processors are active

Solution: 2.5D block cyclic DC-APSP [Solomonik et al., 2013]
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2.5D block cylic DC-APSP

� Use 2.5D block cyclic DC-APSP until c = 1
For block size b = O(n/c), there are O(log c) recursive steps

� When c = 1, P ≥ 1, switch to 2.5D-SMMM.

Communication optimal:

W = O(n2/
√

cP), S = O(
√

cP log2 P)
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Experimental results [Solomonik et al., 2013]

� Hopper, Cray XE6, each node is a dual-socket 12-core Magny-Cours Opteron.

� Threaded Semiring-Matrix-Matrix-Multiply achieves 25% of peak performance (13.6
GFlops) on 6 cores (no fused multiply-add operation for the semiring).

� Strong scaling data: best performance for any replication factor c (often c = 4).

� On 24,276 cores, 2.5D faster by 1.8x for n = 8, 192 and 2.0x for n = 32, 768.

68 of 73



Experimental results [Solomonik et al., 2013]

� In the figure, bars stacked such that c = 4 case shows the benefit over c = 1 case.

� For n = 4096, c = 16 leads to a speed-up of 6.2x with respect to c = 1.
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Conclusions

� Open problems:
� Identify lower bounds on communication for other operations: LU, QR, etc.
� Study other graph algorithms
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