
Communication avoiding for sparse matrices and
graphs

Laura Grigori

ALPINES
INRIA and LJLL, UPMC

On sabbatical at UC Berkeley

March 2016

Plan

Introduction

Sparse Matrix Matrix multiplication
Lower bounds for matrices with random sparsity
Communication optimal algorithms

Sparse Cholesky factorization for SPD matrices
Combinatorial tools: undirected graphs, elimination trees
Parallel Cholesky factorization
Lower bounds for model problems

Graphs: All pairs shortest path

2 of 73

Plan

Introduction

Sparse Matrix Matrix multiplication

Sparse Cholesky factorization for SPD matrices

Graphs: All pairs shortest path

3 of 73

Lower bounds on communication for sparse LA

� More difficult than the dense case
� For example computing the product of two (block) diagonal matrices

involves no communication in parallel

� Lower bound on communication from dense linear algebra is loose

� Very few existing results:
� Lower bounds for parallel multiplication of sparse random matrices

[Ballard et al., 2013]
� Lower bounds for Cholesky factorization of model problems

[Grigori et al., 2010]

4 of 73

Plan

Introduction

Sparse Matrix Matrix multiplication
Lower bounds for matrices with random sparsity
Communication optimal algorithms

Sparse Cholesky factorization for SPD matrices

Graphs: All pairs shortest path

5 of 73

Sparse matrix multiplication (SpGEMM)

Cij =
∑

k

AikBkj

Slides with help from G. Ballard, A. Buluc, O. Schwartz. Results from B. Lipshitz thesis

6 of 73

Sequential sparse matrix multiplication

� Column-wise formulation by Gustavson, implemented in Matlab.

� Input matrices of size n × n, stored in compressed sparse column.

� Complexity: O(flops(A · B) + nnz + n), optimal when
flops(A · B) > nnz + n.

Input: A,B,C
for j = 1 to n do

for k where bk,j 6= 0 do
C(:, j) := C(:, j) + A(:, k) · bkj

end for

end for

7 of 73

Sparse Matrix Multiplication

� Consider matrices with random sparsity: the adjacency matrices of Erdős
- Rényi(n,d) graphs - ER(n,d).

� Let A and B be n × n ER(n,d) matrices. We assume d � n. Then:
� Each entry in A and B is nonzero with probability d/n.
� The expected number of nonzeros in A and B is dn.
� The expected number of scalar multiplications in AB is (d2/n2) · n3 = d2n.
� The expected number of nonzeros in C is d2n(1− o(1)).

Results:

� Lower bounds on communication, improved (higher) with respect to ones
derived from dense linear algebra

� Optimal algorithms

8 of 73

Communication bounds for matrix multiplication

Given: A,B of size n × n, local memory of size M, P processors, the lower
bound on volume of communication for computing A · B on P processors is:

Dense Classic (cubic flops)
Memory dependent

Ω

(
n3

M3/2
· M

P

) Memory independent

Ω

(
n2

P2/3

)
Erdős - Rényi(n,d)
Extension of lower bound for dense matrices to sparse matrices

Ω

(
#flops

M3/2
· M

P

)
= Ω

(
d2n

P
√

M

)
≤ Ω

(√
d2n

P

)

No algorithm attains this bound.

9 of 73

Communication bounds for Erdős - Rényi(n,d)

Extension of lower bound for dense matrices to sparse matrices

Ω

(
#flops

M3/2
· M

P

)
= Ω

(
d2n

P
√

M

)
≤ Ω

(√
d2n

P

)

No algorithm attains this bound.

New bound from [Ballard et al., 2013]

Ω

(
min

(
dn√

P
,

d2n

P

))
= Ω

(
dn√

P
min

(
1,

d√
P

))
� With some assumptions. Which bound applies depends on ratio d/

√
P.

� Improvement factor of
√
M ·max{1,

√
P/d} with respect to previous bound

� Two algorithms attain this bound: recursive and 3D iterative.

10 of 73

Geometric view of the computation

Computation cube for matrix multiply, with a specified subset of voxels:

� A face for each input/output matrix.

� Voxel (i , j , k) corresponds to the multiplication aik · bkj .

� Loomis & Whitney (1949): Volume of 3D set V satisfies:

V ≤ (area (A shadow) · area(B shadow) · area(C shadow))1/2

Source figure: G. Ballard
11 of 73

Communication bounds for Erdős-Rényi(n,d)

Assumptions:

� Sparsity independent algorithms

� Input and output are sparse: d ≤
√

n

� The algorithm is load balanced

Sparsity independent algorithms:

� Assignement of entries of A,B,C to processors is independent of sparsity
pattern of input/output matrices.

� Assignement of computation voxels to processors is independent of
sparsity pattern of input/output matrices.

� All known algorithms are sparsity-independent

12 of 73

Lower bound - intuition of the proof

Idea: how many useful flops can be performed by using S inputs/outputs
(similar to the dense case).

C(i,j)
 ℓij

V

 C

� Distinguish between input shadows and output shadow

� Given a shadow, is it stored on only one processor

� Given an internal grid point, does it correspond to a non-zero: use
sparsity independence and randomness

13 of 73

Partitioning the work cube to processes

� Our bounds apply to all sparsity independent algorithms.

� We analyze algorithms that assign contiguous brick-shaped sets of voxels
to each processor.

With correctly chosen data distributions:

� 1D algorithms communicate entries of only one of the three matrices

� 2D algorithms communicate entries of two of the three matrices

� 3D algorithms communicate entries of all three matrices

14 of 73

Partitioning the work cube to processes

Details:
� 1D algorithms communicate entries of only one of the three matrices:

� Block Row: partition A,B,C on procs in a block row fashion. Shift block
rows of B around a ring of processors. W = dn, S = P

� Improved Block Row: each proc gathers all required rows of B at once.
Point to point communication: W = d2n/P,min{P, dn/P}

� Outer product: Partition A in block cols, B in block rows, compute outer
product, all-to-all to gather C . W = d2n/P, S = logP

� 2D algorithms communicate entries of two of the three matrices: 2D Sparse SUMMA.

� 3D algorithms communicate entries of all three matrices: 3D Sparse SUMMA, 3D
Recursive.

15 of 73

2D Summa

� Process grid
√

P ×
√

P (in general does not have to be square)

� C (i , j) is n/
√

P × n/
√

P submatrix of C on processor Pij

� A(i , k) is n/
√

P × b submatrix of A on processor Pik

� B(k, j) is b × n/
√

P submatrix of B on processor Pkj

� C (i , j) = C (i , j) +
∑

k A(i , k) · B(k , j)

� To minimize communication, choose b close to n/
√

P (as in the figure)

16 of 73

2D Summa (with b = n/
√
P)

� C (i , j) = C (i , j) +
∑

k A(i , k) · B(k , j)

1: for k=1 to
√

P do
2: for all i , j = 1 . . .

√
P do

3: Pik broadcasts A(i , k) along its row of processors Pi,:

4: Pkj broadcasts B(k , j) along its column of processors P:,j

5: C (i , j) = C (i , j) + A(i , k) · B(k , j)
6: end for
7: end for

17 of 73

Dense 3D Summa

� Assume each processor can store cn2/P
data, c > 1

� Process grid:
√

P/c ×
√

P/c × c

For c = 3

1. Layer 1 stores only A(:, 1 : 2) and
B(1 : 2, :)

2. Layer 2 stores only A(:, 3 : 4) and
B(3 : 4, :)

3. Layer 3 stores only A(:, 5 : 6) and
B(5 : 6, :)

18 of 73

Dense 3D Summa

Process grid:
√

P/c ×
√

P/c × c

1. Pij0 broadcasts A(i , j) and B(i , j) to Pijt

2. Processors at layer t perform 1/c-th of
SUMMA, i.e. 1/c-th of∑

k A(i , k) ∗ B(k , j)

3. Number of steps is
√

P/c3

4. At each step, broadcast a block of A and a
block of B along rows / columns of the
face

√
P/c ×

√
P/c process grid

5. Sum-reduce partial sums∑
k A(i , k) · B(k , j) along t-axis so Pij0

owns C (i , j)

W = O(n2/
√

Pc), S = O(
√

P/c3 + log c)

19 of 73

Sparse 3D Summa

Process grid:
√

P/c ×
√

P/c × c , A,B distributed over
√

P ×
√

P procs.
� Distribute A and B on c layers: only 1/c-th of columns of A and rows of B need to be

distributed.
E.g. for A, each proc owns a block of size n/

√
P/c × n/

√
P/c3.

All-to-all operations performed by blocks of
√
c ×
√
c procs.

W = O(
dn

P
· log c), S = O(log c)

Example for 2× 2× 4 grid, c = 4.

A

B

C

20 of 73

Sparse 3D Summa (contd)

� Processors collect all entries of A and B they need
allgather operation among

√
P/c procs.

W = O(
√

P/c · dn

P
) = O(dn/

√
Pc),

S = O(log
√

P/c)

� Reduce C on the first layer, and scatter it on all
procs
Sparse case: since each nonzero is contributed by
a few flops, use instead gather + merge or
all-to-all

W = O(
d2n

P
· log c), S = O(log c)

21 of 73

Optimizing c

Lower bound on communication:

Ω

(
min

(
dn√

P
,

d2n

P

))
If d >

√
P, then d2n/P > dn/

√
P.

Cost of sparse 3D Summa:

O

(
dn√
Pc

+
d2n

P
log c

)
If d >

√
P, choose c = 1

If d <
√

P, choose c = Θ(P/d2) to balance the two terms in the bandwidth
cost.

→ Sparse Summa communication optimal by choosing c = min(1,P/d2).
Remark: no increase in memory requirement, which remains d2n/P.

22 of 73

Recursive algorithm [Ballard et al., 2013]

Divides A · B into 4 sub-problems, each
executed on P/4 processors.
While P > 1, pick the cheapest split

Split 1: Problem m/2× k ×m/2

A B C

m

k

k m

m

m

1 2

3 4

1,2

3,4
1,3 2,4

Replicates A and B

Split 2: Problem m × k/4×m

A B C

1 2 43

1

2

3

4

1,2,3,4m

k

k m

m

m

Redistributes and reduces C

Based on [Ballard, Demmel, Holtz, Lipshitz, Schwartz, SPAA’12

23 of 73

Recursive algorithm [Ballard et al., 2013]

Split 1: Problem (m/2)× k × (m/2)

A B C

m

k

k m

m

m

1 2

3 4

1,2

3,4
1,3 2,4

Replicates A and B:
Allgather between disjoint pairs of
procs
W = O

(
dmk
nP

)
, S = O(1)

Split 2: Problem m × k/4×m

A B C

1 2 43

1

2

3

4

1,2,3,4m

k

k m

m

m

Redistributes and reduces C :
All-to-all between disjoint sets of 4
procs

W = O
(

d2m2k
n2P

)
, S = O(1)

24 of 73

Recursive algorithm

� Algorithm: while P > 1, pick the cheapest split.

� Initially m = k = n, split 1 O(dn/P) words is cheaper than split 2
O(d2n/P).

� Split 1 cheaper for the first log2 d steps.

Case 1: If P ≤ d2, Split 1 always cheapest:

W =

log4 P−1∑
i=0

O

(
d(n/2i)n

nP/4i

)
= O

(
dn√

P

)
, S = O(log P)

25 of 73

Recursive algorithm

Algorithm: while P > 1, pick the cheapest split
Case 2: If P > d2, first log2d steps use split 1, then use split 2.
After log2d steps, subproblem has shape n/d × n × n/d and P/d2 procs.

W =

log2 d−1∑
i=0

O

(
d(n/2i)n

nP/4i

)
+

log4 P∑
i=log2 d

O

(
d2n

P

)
= O

(
d2n

P
log

P

d2

)
,

S = O(log P)

� Matches the lower bound of Ω
(

min
(

dn√
P
, d2n

P

))
up to log factor.

� Possible layout: A in block column layout, B in block-row layout, C has
blocks of size n/d × n/d , each distributed on a different dP/d2e of the
processors.

� No need to use DFS, since BFS uses only a constant factor extra memory.

26 of 73

Results for Erdős - Rényi Graph ER(n,d)

� Machine used: Titan, Cray XK7 from ORNL: 18,688 nodes, each node
has 32GB of RAM, a 16 core AMD Opteron 6274 processor, and an
Nvidia K20 GPU (not used).

� Experiments: use one core per process (16 MPI processes per node).

27 of 73

Results for Erdős - Rényi Graph

� For each case, expected number of nonzeros in the output is d2n = 230.

� For n = 230, d = 1, comm time = 39.3 secs, local operations = 11.9 secs and
imbalance = 0.98 secs.

28 of 73

Results for Erdős - Rényi Graph - strong scaling

� In general, recursive algorithm outperforms all others
� Among the others: when d <

√
P, Outer product and Improved block row perform best

when d >
√
P, sparse SUMMA performs best

29 of 73

Plan

Introduction

Sparse Matrix Matrix multiplication

Sparse Cholesky factorization for SPD matrices
Combinatorial tools: undirected graphs, elimination trees
Parallel Cholesky factorization
Lower bounds for model problems

Graphs: All pairs shortest path

30 of 73

SPD matrices and Cholesky factorization

A is symmetric and positive definite (SPD) if

� A = AT ,

� all its eigenvalues are positive,

� or equivalently, A has a Cholesky factorization, A = LLT .

Some properties of an SPD matrix A

� There is no need to pivot for accuracy (just performance) during the
Cholesky factorization.

� For any permutation matrix P, PAPT is also SPD.

31 of 73

Sparse Cholesky factorization

Algebra:

A =

(
a11 AT

21

A21 A22

)
=

(√
a11

A21./
√
a11 I

)
·
(√

a11 AT
21./
√
a11

As
22

)
=

(√
a11

A21./
√
a11 L22

)
·
(√

a11 AT
21./
√
a11

LT
22

)
, where

As
22 = A22 − (A21./

√
a11) · (AT

21./
√
a11)

Algorithm:
for k = 1 : n − 1 do

akk =
√
akk

/* factor(k) */
for i = k + 1 : n st aik 6= 0 do

aik = aik/akk
end for
for i = k + 1 : n st aik 6= 0 do

update(k, i)
for j = i : n st akj 6= 0 do

aij = aij − aikajk
end for

end for

end for

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9

x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x

32 of 73

Filled graph G+(A)

� Given G (A) = (V ,E), G +(A) = (V ,E +) is defined as:
there is an edge (i , j) ∈ G +(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� Definition holds also for directed graphs (LU factorization).

� G (L + LT) = G +(A), ignoring cancellations.

� G +(A) is chordal (every cycle of length at least four has a chord, an edge
connecting two non-neighboring nodes).

� Conversely, if G (A) is chordal, then there is a perfect elimination order,
that is a permutation P such that G (PAPT) = G +(PAPT).

� References: [Parter, 1961, Rose, 1970, Rose and Tarjan, 1978]

33 of 73

Filled graph G+(A)

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9

x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9

x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x

1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G+(A)

34 of 73

Steps of sparse Cholesky factorization

1. Order rows and columns of A to reduce fill-in

2. Symbolic factorization: based on eliminaton trees

� Compute the elimination tree (in nearly linear time in nnz(A))
� Allocate data structure for L
� Compute the nonzero structure of the factor L, in O(nnz(L)

3. Numeric factorization

� Exploit memory hierarchy
� Exploit parallelism due to sparsity

4. Triangular solve

35 of 73

Order columns/rows of A

Strategies applied to the graph of A for Cholesky,
Strategies applied to the graph of ATA for LU with partial pivoting.

Local strategy: minimum degree [Tinney/Walker ’67]

� Minimize locally the fill-in.

� Choose at each step (for 1 to n) the node of minimum degree.

Global strategy: graph partitioning approach

� Nested dissection [George, 1973]
� First level: find the smallest possible

separator S , order last
� Recurse on A and B

� Multilevel schemes [Barnard/Simon ’93,
Hendrickson/Leland ’95, Karypis/Kumar
’95].

36 of 73

Nested dissection and separator tree

Separator tree:

� Combines together nodes belonging to a same separator, or to a same
disjoint graph

Some available packages:

� Metis, Parmetis
(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

� Scotch, Ptscotch (www.labri.fr/perso/pelegrin/scotch/)

37 of 73

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
www.labri.fr/perso/pelegrin/scotch/

Nested dissection on our 9× 9 structured matrix

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9

x x x
x x x

x x x x

x x x
x x x

x x x x

x x x x
x x x x x

x x x x

,

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9

x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x

7 8 9

3

6

1 2

4 5

G(A)

7 8 9

3

6

1 2

4 5

G+(A)

9

8

7

3

1 2

6

4 5

T (A)

38 of 73

Elimination tree (etree)

Definition ([Schreiber, 1982] and also [Duff, 1982])
Given A = LLT , the etree T (A) has the same node set as G (A), and k is
the parent of j iff

k = min{i > j : lij 6= 0}

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9

x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x

9

8

7

3

1 2

6

4 5

T (A)

39 of 73

Column dependencies and the elimination tree

� If ljk 6= 0, then
� Factor(k) needs to be computed before Factor(j).
� k is an ancestor of j in T (A).

� Columns belonging to disjoint subtrees can be factored independently.
� Topological orderings of T (A) (that number children before their parent)

� preserve the amount of fill, the flops of the factorization, the structure of
T (A)

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9

x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x

9

8

7

3

1 2

6

4 5

T (A)

40 of 73

Numeric factorization - multifrontal approach

� Driven by the separator tree of A, a supernodal elimination tree.

� The Cholesky factorization is performed during a postorder traversal of
the separator tree.

� At each node k of the separator tree:

� A frontal matrix Fk is formed by rows and columns involved at step k of
factorization:
� rows that have their first nonzero in column k of A,
� contribution blocks (part of frontal matrices) from children in T (A).

� The new frontal matrix is obtained by an extend-add operation.

� The first rows/columns of Fk corresponding to supernode k are factored.

41 of 73

Numeric factorization - an example

9

8

7

3

1 2

6

4 5

F1 =

1 3 7

1 x
3 x x
7 x x x

 →

1 3 7

1 l
3 l f
7 l f f

 F2 =

2 3 9

2 x
3 x x
9 x x x

 →

2 3 9

2 l
3 l f
9 l f f

F3 =

3 7 8 9

3 x
7 x x
8 x x x
9 x x x x

 →

3 7 8 9

3 l
7 l f
8 l f f
9 l f f f

Supernode 7

F{7,8,9} =

7 8 9

7 x
8 x x
9 x x x

 →

7 8 9

7 l
8 l l
9 l l l

L + LT =

1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x

Notation used for frontal matrices Fk :

� x - elements obtained by the extend-add operation,
� l - elements of L computed at node k, f - elements of frontal matrix that will be passed to parent of node k.

42 of 73

Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989] applied on the separator
tree

Subtree to subcube mapping

1. Assign all the processors to the root.

2. Assign to each subtree half of the

processors.

3. Go to Step 1 for each subtree which is

assigned more than one processor.

The figure displays the process grid used by

PSPASES.

19

9

8

7

3

1 2

6

4 5

18

...

[
0
] [

1
] [

2
] [

3
]
[
2 3

][
0 1

]

[
0 1
2 3

]

[
0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Process grid

43 of 73

Numeric factorization - PSPASES [Gupta et al., 1995]

� Subtree to subcube mapping and bitmask based cyclic distribution:

Starting at the last level of the separator tree (bottom up traversal), let
i = 1

for each two consecutive levels k , k − 1, based on value of i-th LSB of
column/row indices

� For level k:
Map all even columns to subcube with lower processor numbers
Map all odd columns to subcube with higher processor numbers

� For level k − 1:
Map all even rows to subcube with lower processor numbers
Map all odd rows to subcube with higher processor numbers

� Let i = i + 1

PSPASES uses a bitmask based block-cyclic distribution.
44 of 73

Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989].

� Extend-add operation requires each processor to exchange half of its data with a

corresponding processor from the other half of the grid.

19

9

8

7

3

1 2

6

4 5

18

...

F1 :

1 3 7

1 0
3 0 0
7 0 0 0

 [
0
]

F2 :

2 3 9

2 1
3 1 1
9 1 1 1

 [
1
]

0 ↔ 1

F3 :

3 7 8 9

3 1
7 1 1
8 1 1 0
9 1 1 0 1

 [0 1
] 2 ↔ 3

F6 :

6 7 8 9

6 3
7 3 3
8 3 3 2
9 3 3 2 3

 [2 3
]

0 ↔ 2
1 ↔ 3

F{7,8,9} :

7 8 9

7 3
8 1 0
9 3 2 3

 [0 1
2 3

]

0 ↔ 4
2 ↔ 6
1 ↔ 5
3 ↔ 7

F19 :
(19

19 x
) [

0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Data distribution, process grid and

data exchange pattern

45 of 73

Performance results on Cray T3D

Results from [Gupta et al., 1995]

46 of 73

Lower bounds on communication for Cholesky

� Consider A of size ks × ks results from a finite difference operator on a
regular grid of dimension s ≥ 2 with ks nodes.

� Its Cholesky L factor contains a dense lower triangular matrix of size
ks−1 × ks−1.

7 8 9

3

6

1 2

4 5

G+(A)

L + LT =

1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x

� Computing the Cholesky factorization of the ks−1 × ks−1 matrix
dominates the computation.

47 of 73

Lower bounds on communication

� This result applies more generally to matrix A whose graph G = (V ,E),
|V | = n has the following property for some l :

� if every set of vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at
least l vertices in V −W ,

� then the Cholesky factor of A contains a dense l × l submatrix.

48 of 73

Lower bounds on communication

For the Cholesky factorization of a ks × ks matrix resulting from a finite
difference operator on a regular grid of dimension s ≥ 2 with ks nodes:

#words ≥ Ω

(
W√

M

)
, #messages ≥ Ω

(
W

M3/2

)

� Sequential algorithm
� W = k3(s−1)/3 and M is the fast memory size

� Work balanced parallel algorithm executed on P processors

� W = k3(s−1)

3P
and M ≈ nnz(L)/P

49 of 73

Why / how PSPASES attains optimality

� For each node in the separator tree, the communication in the Cholesky
factorization dominates the communication in the extend-add step.

� Optimal dense Cholesky factorization needs to be used for each
multifrontal matrix (n × n, P procs).

� optimal block size - minimize communication while increasing flops by a
lower order term

b =
n√
P

log−2
2

√
P

50 of 73

Optimal sparse Cholesky factorization

� Results for n × n matrix resulting from 2D and 3D regular grids.

� Analysis assumes local memory per processor is M = O(n log n/P)- 2D
case and M = O(n4/3/P)- 3D case.

PSPASES PSPASES with Lower bound
optimal layout

2D grids

flops O
(

n3/2

P

)
O
(

n3/2

P

)
Ω
(

n3/2

P

)
words O(n√

P
) O

(
n√
P

log P
)

Ω
(

n√
P log n

)
messages O(

√
n) O

(√
P log3 P

)
Ω

(√
P

(log n)3/2

)
3D grids

flops O
(

n2

P

)
O
(

n2

P

)
Ω
(

n2

P

)
words O(n4/3

√
P

) O
(

n4/3
√

P
log P

)
Ω
(

n4/3
√

P

)
messages O(n2/3) O

(√
P log3 P

)
Ω
(√

P
)

51 of 73

Optimal sparse Cholesky factorization: summary

� PSPASES with an optimal layout attains the lower bound in parallel for
2D/3D regular grids:

� Uses nested dissection to reorder the matrix

� Distributes the matrix using the subtree to subcube algorithm

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization

� Sequential multifrontal algorithm attains the lower bound

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization

52 of 73

Plan

Introduction

Sparse Matrix Matrix multiplication

Sparse Cholesky factorization for SPD matrices

Graphs: All pairs shortest path

53 of 73

Preliminaries

Graph G = (V ,E) is formed by:

� a set of vertices V ,

� a set of edges E .

� Edges can be directed or not, can have weights or not.

� A path from v1 to vn is formed by a sequence of edges
(v1, v2), . . . (vn−1, vn). Its length is the sum of its weights.

54 of 73

Parallel graph algorithms

� Graph traversals: breadth-first search
� Single Source Shortest Path: Delta-stepping (Meyer and Sanders),

randomized approach (Ullman and Yannakakis)
� All Pairs Shortest Path (APSP): Floyd-Warshall, Johnson (based on

Dijkstra).
� Graph partitioning

Applications

� Routing in transportation networks: compute point to point shortest
paths

� Internet and WWW: web search, page rank, document classification and
clustering

� Scientific computing: reorderings, graph partitioning, maximum
matchings

� APSP: urban planning and simulation, datacenter network design, traffic
routing, subroutine in Ullman and Yannakaki’s BFS algorithm

55 of 73

All-pairs shortest paths

� Input: directed graphs with weights on edges
� APSP: find shortest paths between all reachable vertex pairs

Floyd-Warshall

for i , j = 1 : n, d(i → i) := 0, d(i → j) :=∞
for each edge (i , j)
d(i → j) := w(i → j), Π(i , j) := i

for k=1 to n do
for i = 1 to n do

for j = 1 to n do
If d(i → k) + d(k → j) < d(i → j)
d(i → j) := d(i → k) + d(k → j)
Π(i , j) := Π(k, j)

end for
end for

end for

� First step: computes the lengths of the paths
between all pairs of vertices

� Second step: if required, path reconstruction

� Assume there is no negative cycle

56 of 73

All-pairs shortest paths

APSP problem corresponds to finding the matrix closure on the tropical
(min,+) semiring. In the semiring matrix multiplication (distance product)

� replace each multiply with an addition: compute length of a larger path
from smaller paths or edges

� replace each add with a minimum operation: get the minimum path if
there are multiple paths

Assume for simplicity adjacency matrices of power of two dimension.

Cost first step: O(n3) additions and O(n2) min operations.
Cost path reconstruction: the Shortest-path tree can be calculated for each
node in O(|E |) time using O(n) memory to store each tree.

57 of 73

All-pairs shortest paths

� Floyd-Warshall more suitable for denser graphs

� In parallel, Floyd-Warshall can be competitive even for sparser graphs, as
for example on GPUs [Buluc et al., 2010].

� Johnson’s algorithm, using for each vertex Dijkstra’s single-source
shortest path algorithm, requires less flops than Floyd-Warshall for sparse
graphs: O(|E |+ |V | log |V |) for each vertex.

� Divide and Conquer APSP (DC-APSP)
� Idea presented in a proof by Aho et al showing equivalence between

semiring matrix multiplication and APSP, later presented in papers by
Tiskin, Park et al.

� Faster than the 3 nested loops on GPUs [Buluc et al., 2010].

58 of 73

Divide and conquer APSP

Source slide: A. Buluç

59 of 73

Divide and conquer APSP

Source slide: A. Buluç
60 of 73

Divide and conquer APSP

CB: update paths in V2.

Source slide: A. Buluç.

61 of 73

Divide and conquer APSP

BD: find SP from V1 to V2.

Source slide: A. Buluç.

62 of 73

Divide and conquer APSP - results

� GPU: Nvidia GeForce 8800 Ultra
� Dense graph of at most 8192 vertices
� Matrix multiply optimized by modifying Volkov’s code

63 of 73

Lower bounds for APSP

Semiring matrix multiplication has same computational dependency as
classic matrix multiplication, and the bounds of [Hong and Kung, 1981],
[Irony et al., 2004] apply [Solomonik et al., 2013]:

Memory dependent

W = Ω

(
n3

M3/2
· M

P

)
S(M) = Ω

(
n3

P ·M3/2

)
Memory independent

W = Ω

(
n2

P2/3

)
S = Ω(log P)

64 of 73

Latency bandwidth trade-off for DC-APSP

Divide and conquer APSP has dependencies similar to 2.5D LU factorization.
Hence the same latency-bandwidth trade-off exists [Solomonik et al., 2013]:

If each processor stores M = cn2/P copies of data, then:

S ·W = Ω(
√

cP)

and if we want to decrease the bandwidth cost by a factor of
√

c we obtain:

W = Ω

(
n2

√
cP

)
, S = Ω(

√
cP)

65 of 73

Parallelizing APSP

Grid of processors:
√

P/c ×
√

P/c × c

Floyd-Warshall: a communication optimal algorithm can be obtained by
using the same idea as 2.5D dense matrix multiply → 2.5D-SMMM.

DC-APSP

� To minimize latency, 1/8-th of the processors should be assigned to
solving a sub-problem
→ but then only 1/8-th of the processors are active

Solution: 2.5D block cyclic DC-APSP [Solomonik et al., 2013]

66 of 73

2.5D block cylic DC-APSP

� Use 2.5D block cyclic DC-APSP until c = 1
For block size b = O(n/c), there are O(log c) recursive steps

� When c = 1, P ≥ 1, switch to 2.5D-SMMM.

Communication optimal:

W = O(n2/
√

cP), S = O(
√

cP log2 P)

67 of 73

Experimental results [Solomonik et al., 2013]

� Hopper, Cray XE6, each node is a dual-socket 12-core Magny-Cours Opteron.

� Threaded Semiring-Matrix-Matrix-Multiply achieves 25% of peak performance (13.6
GFlops) on 6 cores (no fused multiply-add operation for the semiring).

� Strong scaling data: best performance for any replication factor c (often c = 4).

� On 24,276 cores, 2.5D faster by 1.8x for n = 8, 192 and 2.0x for n = 32, 768.

68 of 73

Experimental results [Solomonik et al., 2013]

� In the figure, bars stacked such that c = 4 case shows the benefit over c = 1 case.

� For n = 4096, c = 16 leads to a speed-up of 6.2x with respect to c = 1.

69 of 73

Conclusions

� Open problems:
� Identify lower bounds on communication for other operations: LU, QR, etc.
� Study other graph algorithms

70 of 73

References (1)

Ballard, G., Buluc, A., Demmel, J., Grigori, L., Schwartz, O., and Toledo, S. (2013).

Communication optimal parallel multiplication of sparse random matrices.
In In Proceedings of ACM SPAA, Symposium on Parallelism in Algorithms and Architectures.

Buluc, A., Gilbert, J. R., and Budak, C. (2010).

Solving path problems on the GPU.
Parallel Computing, 36:241–253.

Duff, I. S. (1982).

Full matrix techniques in sparse gaussian elimination.
In Springer-Verlag, editor, Lecture Notes in Mathematics (912), pages 71–84.

George, A. (1973).

Nested dissection of a regular finite element mesh.
SIAM Journal on Numerical Analysis, 10:345–363.

George, A., Liu, J. W.-H., and Ng, E. G. (1989).

Communication results for parallel sparse Cholesky factorization on a hypercube.
Parallel Computing, 10(3):287–298.

Grigori, L., David, P.-Y., Demmel, J., and Peyronnet, S. (2010).

Brief announcement: Lower bounds on communication for direct methods in sparse linear algebra.
Proceedings of ACM SPAA.

Gupta, A., Karypis, G., and Kumar, V. (1995).

Highly scalable parallel algorithms for sparse matrix factorization.
IEEE Transactions on Parallel and Distributed Systems, 8(5).

71 of 73

References (2)

Hong, J.-W. and Kung, H. T. (1981).

I/O complexity: The Red-Blue Pebble Game.
In STOC ’81: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pages 326–333, New York, NY, USA.
ACM.

Irony, D., Toledo, S., and Tiskin, A. (2004).

Communication lower bounds for distributed-memory matrix multiplication.
J. Parallel Distrib. Comput., 64(9):1017–1026.

Liu, J. W. H. (1990).

The role of elimination trees in sparse factorization.
SIAM. J. Matrix Anal. & Appl., 11(1):134 – 172.

Parter, S. (1961).

The use of linear graphs in gaussian elimination.
SIAM Review, pages 364–369.

Rose, D. J. (1970).

Triangulated graphs and the elimination process.
Journal of Mathematical Analysis and Applications, pages 597–609.

Rose, D. J. and Tarjan, R. E. (1978).

Algorithmic aspects of vertex elimination on directed graphs.
SIAM J. Appl. Math., 34(1):176–197.

Schreiber, R. (1982).

A new implementation of sparse gaussian elimination.
ACM Trans. Math. Software, 8:256–276.

72 of 73

References (3)

Solomonik, E., Buluc, A., and Demmel, J. (2013).

Minimizing communication in all-pairs shortest-paths.
In 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS’13).

73 of 73

	Introduction
	Sparse Matrix Matrix multiplication
	Lower bounds for matrices with random sparsity
	Communication optimal algorithms

	Sparse Cholesky factorization for SPD matrices
	Combinatorial tools: undirected graphs, elimination trees
	Parallel Cholesky factorization
	Lower bounds for model problems

	Graphs: All pairs shortest path

