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Background–Applications: Bing Search
I Scientific Computing/Data Analysis
I Computer Vision
I Machine learning; kernel learning.



Google Search on Low-rank Approximation



Goals in Low-rank Matrix Approximations

I Highly efficient

I Minimum communication

I As accurate/reliable as truncated SVD

I Beyond SVD: preserve sparsity, structure, interpretability



Background: Low-Rank Approximation Methods

I Deterministic low-rank approximations
I Interpolative decomposition (ID) (Cheng et. al. 2005, Liberty

et. al 2007)
I Deterministic CUR with various column selection algorithms

I Randomized low-rank approximations
I Using the subsampled fft technique, for `� k: ”optimal”

complexity is
O
(
mn log(k) + `2(m + n)

)
I Several approximation algorithms (Halko et. al. 2010)
I Some of the first randomized algorithms. (Rokhlin et. al.

2008)
I Randomized LU decomposition for low-rank approximation

(Shabat et. al. 2015)

Spectrum-revealing factorizations stronger in theory and efficiency



Background: Other Data Analysis Methods

Data Analysis: Low-rank matrix approximations that respect
data sparsity, structure, and interpretability; more informative than

truncated SVD.

I CX decomposition: for medical data, text data, etc

A ≈ CX ,

where C consists of well-chosen columns of A.
I CUR decomposition: for recommendation systems, text data

analysis
A ≈ CUR,

where C and R consist of well-chosen columns and rows of A.
I LHLT decomposition: Approximate kernel methods,

independent component analysis

A ≈ LHLT ,

where L consists of well-chosen columns of SPD matrix A.



Google Search on CUR Decomposition



Golden Standard: Truncated SVD
Given matrix M ∈ Rm×n with m ≤ n, its SVD is

M = UΣV T =
(
u1 · · · un

) σ1
. . .

σn

( v1 · · · vn
)T
,

where σj is the jth largest singular value of M. The rank-k
truncated SVD is

Mk = UkΣkV
T
k =

(
u1 · · · uk

) σ1
. . .

σk

( v1 · · · vk
)T
.

Theorem: (Eckart & Young, 1936)

Minrank(H)≤k‖M − H‖2 = ‖M −Mk‖2 = σk+1(M).



Review: Rank-revealing Matrix factorizations: QR

I Given: Matrix M ∈ Cm×n and 1 ≤ ` ≤ min(m, n) = n,
Existence: QR factorization with column permutation Π

MΠ = Q

(
A` B`

0 C`

)
with

σj (M)√
1 + `(n − `)

≤ σj (A`) ≤ σj (M) , j = 1, · · · , `,

σ`+1 (M) ≤ ‖C`‖2 ≤ σ`+1 (M)
√

1 + `(n − `),

where σj (·) is the jth largest singular value.

Rank-revealing: A` reveals numerical rank of M.



Example: Kahan Matrix

I For s, c > 0 and s2 + c2 ≤ 1, Kahan Matrix Kn = SnCn:

Sn = diag(1, s, · · · , sn−1),Cn =


1 −c −c · · · −c

1 −c · · · −c
1 · · · −c

. . .
...
1


I Kahan Matrix not in rank revealed form:

σmin(Kn) = O

((
s

1 + c

)n)
� sn−1

I Little consensus on definition of ”reveal.”



New: Spectrum-revealing factorizations (I): QR/CX
I Given: Matrix M ∈ Cm×n and 1 ≤ k ≤ ` ≤ min(m, n) = n,

Existence: QR factorization with column permutation Π

MΠ = Q

(
A` B`

0 C`

)
with τj =

σ`+1 (M)

σj (M)
j = 1, · · · , k + 1,

σj (M)√
1 + O

(
τ2j

) ≤ σj
((

A` B`

))
≤ σj (M)

σk+1 (M) ≤ ‖MΠ− QMk‖ ≤ σk+1 (M)
√

1 + O
(
τ2k+1

)
(

cf.
σj (M)√

1 + `(n − `)
≤ σj (A`) , ‖C`‖2 ≤ σ`+1 (M)

√
1 + `(n − `).

)

Mk = truncated SVD of

(
A` B`

0

)
; σj (·) = jth largest singular value.

QMk well approximates MΠ and reveals its leading singular values.





New: Spectrum-revealing factorizations (II) Cholesky

I Given: SPD matrix M ∈ Rn×n and 1 ≤ k ≤ ` ≤ n,
Existence: Cholesky factorization with diagonal permutation

ΠMΠT = LLT , L =

(
A` 0
B` C`

)
with τj =

σ`+1 (M)

σj (M)

σj (M)

1 + O (τj)
≤σ2j

(
A`

B`

)
≤ σj (M) , j = 1, · · · , k ,

σk+1 (M) ≤ ‖ΠMΠT − LkL
T
k ‖ ≤ σk+1 (M) (1 + O (τk+1))

Lk = truncated SVD of

(
A`
B`

)
.



New: Spectrum-revealing factorizations (II) LHLT

I Given: SPD matrix M ∈ Rn×n and 1 ≤ k ≤ ` ≤ n,

I Existence: LHLT factorization with diagonal permutation

ΠMΠT = LLT , L =

(
A` 0
B` C`

)
,

M̂ = ΠT

(
A`

B`

)(
A`

B`

)† (
ΠMΠT

)( A`

B`

)(
A`

B`

)†
Π

σj (M)√
1 + O

(
τ2j

) ≤ σj (M̂) ≤ σj (M) , j = 1, · · · , k

σk+1 (M) ≤ ‖M − M̂k‖ ≤ σk+1 (M)
√

1 + O
(
τ2k+1

)
M̂k = truncated SVD of M̂; τj = σ`+1(M)

σj (M)



New: Spectrum-revealing factorizations (III) LU

I Given: Matrix M ∈ Cm×n and 1 ≤ k ≤ ` ≤ min(m, n) = n,
Existence: LU with row, column permutations Πl , Πr

ΠlMΠr = LU, L =

(
L11 0
L21 L22

)
, U =

(
U11 U12

0 U22

)

with τj =
σ`+1 (M)

σj (M)
, j = 1, · · · , `

σj (M)

1 + O (τj)
≤ σj

((
L11
L21

)
·
(
U11 U12

))
≤ σj (M),

σk+1 (M) ≤ ‖M − M̂k‖ ≤ σk+1 (M) (1 + O (τk+1))

M̂k = truncated SVD of

(
L11
L21

)
·
(
U11 U12

)
.



New: Spectrum-revealing factorizations (III) CUR

I Given: Matrix M ∈ Cm×n and 1 ≤ k ≤ ` ≤ min(m, n) = n,
Existence: CUR with row, column permutations Πl , Πr

ΠlMΠr = LU, L =

(
L11 0
L21 L22

)
, U =

(
U11 U12

0 U22

)

ΠlM̂Πr =

(
L11
L21

)(
L11
L21

)†
(ΠlMΠr )

(
U11 U12

)† (
U11 U12

)
.

σj (M)√
1 + O

(
τ2j

) ≤ σj (M̂) ≤ σj (M) , j = 1, · · · , k

σk+1 (M) ≤ ‖M − M̂k‖ ≤ σk+1 (M)
√

1 + O
(
τ2k+1

)
M̂k = truncated SVD of M̂; τj = σ`+1(M)

σj (M)



Talks: Spectrum-Revealing Matrix Factorizations and
Randomized Algorithms



New Algorithms (Ia)

I Solving linear systems of equations Ax = b:

I Standard method: Gaussian Elimination with Partial Pivoting
(GEPP): Π A = LU: most efficient, but can be unstable.

I New method: randomized Gaussian Elimination with Complete
Pivoting (RGECP): ΠlAΠr = LU: almost as efficient, but is
always stable. (joint work with C. Melgaard.)

I Communication-avoiding version would be numerically stable,
in contrast to CA-LU with partial pivoting.



New Algorithms (Ib)

I Column pivots random: Successive Schur Sampling.

I RGECP is O(rn2) more flops than GEPP:

I Theorem: Given δ ∈ (0, 1). If

r > 32 ln

(
n(n + 1)

2δ

)
,

then the pivot growth factor of RGECP satisfies

ρ(A) ≤ 3
√

e(n + 1)n2+
1
2
ln(n)

with probability greater than 1− δ.



New Algorithms (IIa)

I Low-rank Matrix Approximations

I Randomized algorithm for computing a Spectrum-revealing LU
Decomposition (joint work with D. Anderson): First of its
kind. Computes

ΠlAΠr ≈ LU, L =

(
L11
L21

)
, U =

(
U11 U12

)
without ever computing the Schur complement. Likely the
most efficient for low-rank matrix approximation.

I Non-classical communication patterns:

I Computing/Updating random projection.
I Both row and column swaps.
I No Schur updating.



New Algorithms (IIb)



New Algorithms (III)
I Low-rank Matrix Approximations

I Randomized algorithm for computing a Spectrum-revealing QR
factorization (J. Duersch, Nov. 2015)

AΠ ≈ Q

(
R11 R12

0 0

)
Never need to update trailing submatrix in R. Up to twice as
fast as truncated QR.



New Algorithms (IV)

I Low-rank Matrix Approximations

I Randomized algorithm for computing a Spectrum-revealing
Cholesky factorization
Randomized block left looking Cholesky. Much promise in
quality and efficiency.



Numerical Experiments for RGECP (I)
I Fortran implementation, optimized BLAS.
I Randomized GECP: Execution Time Relative to GEPP



Numerical Experiments for RGECP (II)
I GEPP and Randomized GECP Element Growth
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Numerical Experiments for RGECP (III)
I GEPP and Randomized GECP Residuals for random linear

systems.



Numerical Experiments for Spectrum-revealing LU (I)
I SRLU vs. truncated LU, execution times.



Numerical Experiments for Spectrum-revealing LU (II)
I SRLU vs. truncated LU, Complexity comparison.



Numerical Experiments for Spectrum-revealing LU (III)
I SRLU vs. truncated SVD.



Numerical Experiments for Spectrum-revealing QR (I)

I Edison (12 core, shared memory machine).

I Matrix A is 12000× 12000.

I dgeqp2 (full decomposition), 75.84s

I dgeqrf (full decomposition), 5.91s

I truncated k=1200 randomized qrcp, 1.59s

I truncated k=600 randomized qrcp, 0.76s



Numerical Experiments for Spectrum-revealing QR (II)



Numerical Experiments for Spectrum-revealing QR (III)



Numerical Experiments for Spectrum-revealing QR (IV)



Conclusions

I A new suite of randomized algorithms for numerical linear
algebra and low-rank matrix approximations, along with
theoretical analysis.

I Codes in different stages of development.

I Communication-avoiding variants needed.

Thank you


