
Communication avoiding rank revealing factorizations,
and low rank approximations

L. Grigori

Inria Paris, UPMC
sabbatical at UC Berkeley

February 2016

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

2 of 63

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

3 of 63

Low rank matrix approximation

� Problem: given m × n matrix A, compute rank-k approximation ZW T ,
where Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn→ 2(m + n)k

4 of 63

Singular value decomposition

Given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 · (V1 V2

)T
where

� U is m ×m orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

� Σ is m × n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k, Σ2 is n − k × n − k

� V is n × n orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k

5 of 63

Norms

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2

1(A) + . . . σ2
n(A)

||A||2 = σmax(A) = σ1(A)

Some properties:

||A||2 ≤ ||A||F ≤
√

min(m, n)||A||2

Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

|QAZ ||F = ||A||F
||QAZ ||2 = ||A||2

6 of 63

Low rank matrix approximation

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk)≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A) (1)

min
rank(Ãk)≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Original image of size

919× 707

Rank-38 approximation,

SVD

Rank-75 approximation,

SVD

� Image source: https:

//upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg
7 of 63

https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg
https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added
progressively.

� Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).

� Weakly streaming algorithm: can solve a problem with O(1) passes over
the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

8 of 63

Low rank matrix approximation: trade-offs

9 of 63

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

10 of 63

Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
, (3)

where R11 is k × k , Pc and k are chosen such that ||R22||2 is small and R11

is well-conditioned.

� Q(:, 1 : k) forms an approximate orthogonal basis for the range of A,

� Pc

[
R−1

11 R12

−I

]
is an approximate right null space of A.

11 of 63

Rank revealing QR factorization

The factorization from equation (3) is rank revealing if

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ q1(n, k),

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k , where

σmax(A) = σ1(A) ≥ . . . ≥ σmin(A) = σn(A)

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

||R−1
11 R12||max ≤ q2(n, k)

� Gu and Eisenstat show that given k and f , there exists a Pc such that
q1(n, k) =

√
1 + f 2k(n − k) and q2(n, k) = f .

� Factorization computed in 4mnk (QRCP) plus O(mnk) flops.

12 of 63

QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm
column norm vector: colnrm(j) = ||A(:, j)||2, j = 1 : n.
for j = 1 : n do

1. Pivot, choose column p of largest norm,
swap columns j and p in A and modify colnrm.

2. Compute Householder matrix Hj s.t.
HjA(j : m, j) = ±||A(j : m, j)||2e1.

3. Update A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n).
4. Norm downdate colnrm(j + 1 : n)2− = A(j , j + 1 : n)2.

end for

Lower bounds on communication for dense LA
Matrix of size n × n distributed over P processors.

words ≥ Ω

(
n2

√
P

)
, # messages ≥ Ω

(√
P
)
. (4)

13 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
14 of 63

Select k columns from a tall and skinny matrix

Given W of size m × 2k , m >> k , k columns are selected as:

W = QR02 using TSQR
R02Pc = Q2R2 using QRCP
Return WPc(:, 1 : k)

15 of 63

Reduction trees

Any shape of reduction tree can be used during CA RRQR, depending on
the underlying architecture.

� Binary tree:

A00 A10 A20 A30

↓ ↓ ↓ ↓
f (A00) f (A10) f (A20) f (A30)

↘ ↙ ↘ ↙
f (A01) f (A11)

↘ ↙
f (A02)

� Flat tree:

A00 A10 A20 A30

↓

��)

������) ���������)

f (A00)

↓
f (A01)

↓
f (A02)

↓
f (A03)

Notation: at each node of the reduction tree, f (Aij) returns the first b columns

obtained after performing (strong) RRQR of Aij .

16 of 63

CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with
the following bounds:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP(n − k),

||R−1
11 R12||max ≤ FTP

� Binary tree of depth log2(n/k),

FTP ≤
1√
2k

(n/k)log2(
√

2fk) . (5)

The upper bound is a decreasing function of k when k >
√

n/(
√

2f).

� Flat tree of depth n/k ,

FTP ≤
1√
2k

(√
2fk
)n/k

. (6)

17 of 63

Cost of CA-RRQR

Cost of CA-RRQR vs QR with column pivoting

n × n matrix on
√

P ×
√

P processor grid, block size k

Flops : 4n3/P + O(n2klogP/
√

P) vs (4/3)n3/P

Bandwidth : O(n2 log P/
√

P) vs same
Latency : O(n log P/k) vs O(n log P)

Communication optimal, modulo polylogarithmic factors, by choosing

k =
1

2log 2P

n√
P

18 of 63

Numerical results

� Stability close to QRCP for many tested matrices.

� Absolute value of diagonals of R, L referred to as R-values, L-values.

� Methods compared

� RRQR: QR with column pivoting

� CA-RRQR-B with tournament pivoting based on binary tree

� CA-RRQR-F with tournament pivoting based on flat tree

� SVD

19 of 63

Numerical results - devil’s stairs

Devil’s stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code:
Length = 20; s = zeros(n,1); Nst = floor(n/Length);
for i = 1 : Nst do

s(1+Length*(i-1):Length*i) = -0.6*(i-1);
end for
s(Length ∗ Nst : end) = −0.6 ∗ (Nst − 1);
s = 10. ∧ s;
A = orth(rand(n)) * diag(s) * orth(randn(n));

QLP decomposition (Stewart)

APc1 = Q1R1 using ca rrqr

RT
1 = Q2R2

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Column No. i

R
−

v
a
lu

e
s
 &

 s
in

g
u
la

r
v
a
lu

e
s

QRCP

CARRQR−B

CARRQR−F

SVD

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

T
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

20 of 63

Numerical results - devil’s stairs

Devil’s stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code:
Length = 20; s = zeros(n,1); Nst = floor(n/Length);
for i = 1 : Nst do

s(1+Length*(i-1):Length*i) = -0.6*(i-1);
end for
s(Length ∗ Nst : end) = −0.6 ∗ (Nst − 1);
s = 10. ∧ s;
A = orth(rand(n)) * diag(s) * orth(randn(n));

QLP decomposition (Stewart)

APc1 = Q1R1 using ca rrqr

RT
1 = Q2R2

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Column No. i

R
−

v
a
lu

e
s
 &

 s
in

g
u
la

r
v
a
lu

e
s

QRCP

CARRQR−B

CARRQR−F

SVD

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

T
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Column No. i

L
−

v
a
lu

e
s
 &

 s
in

g
u
la

r
v
a
lu

e
s

QRCP + QLP

CARRQR−B + QLP

CARRQR−F + QLP

SVD

20 of 63

Numerical results (contd)

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: shaw - 1D image restoration model [Hansen, 2007]

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (7)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (8)

where Πj (j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B, and

CARRQR-F, and ε is the machine precision.
21 of 63

Numerical results - a set of 18 matrices

� Ratios |R(i , i)|/σi (R), for QRCP (top plot), CARRQR-B (second plot), and
CARRQR-F (third plot).

� The number along x-axis represents the index of test matrices.

22 of 63

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

23 of 63

LU versus QR - filled graph G+(A)

� Consider A is SPD and A = LLT

� Given G (A) = (V ,E), G +(A) = (V ,E +) is defined as:
there is an edge (i , j) ∈ G +(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� G (L + LT) = G +(A), ignoring cancellations.
� Definition holds also for directed graphs (LU factorization).

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x



1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G+(A)

24 of 63

LU versus QR

Filled column intersection graph G+
∩ (A)

� Graph of the Cholesky factor of ATA

� G (R) ⊆ G +
∩ (A)

� ATA can have many more nonzeros than A

25 of 63

LU versus QR

Numerical stability

� Let L̂ and Û be the computed factors of the block LU factorization. Then

L̂Û = A + E , ‖E‖max ≤ c(n)ε
(
‖A‖max + ‖L̂‖max‖Û‖max

)
. (9)

� For partial pivoting, ‖L‖max ≤ 1, ‖U‖max ≤ 2n‖A‖max

In practice, ‖U‖max ≤
√

n‖A‖max

26 of 63

Low rank approximation based on LU factorization

� Given desired rank k, the factorization has the form

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
, (10)

where A ∈ Rm×n, Ā11 ∈ Rk,k , S(Ā11) = Ā22 − Ā21Ā−1
11 Ā12.

� The rank-k approximation matrix Ãk is

Ãk =

(
I

Ā21Ā−1
11

)(
Ā11 Ā12

)
=

(
Ā11

Ā21

)
Ā−1

11

(
Ā11 Ā12

)
. (11)

� Ā−1
11 is never formed, its factorization is used when Ãk is applied to a

vector.

� In randomized algorithms, U = C +AR+, where C +,R+ are
Moore-Penrose generalized inverses.

27 of 63

Design space

Non-exhaustive list for selecting k columns and rows:

1. Select k linearly independent columns of A (call result B), by using

1.1 (strong) QRCP/tournament pivoting using QR,
1.2 LU / tournament pivoting based on LU, with some form of pivoting

(column, complete, rook),
1.3 randomization: premultiply X = ZA where random matrix Z is short and

fat, then pick k rows from XT , by some method from 2) below,
1.4 tournament pivoting based on randomized algorithms to select columns at

each step.

2. Select k linearly independent rows of B, by using

2.1 (strong) QRCP / tournament pivoting based on QR on BT , or on QT , the
rows of the thin Q factor of B,

2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook)
on B,

2.3 tournament pivoting based on randomized algorithms to select rows.

28 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji

29 of 63

Our LU CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting
on matrix A of size m × n:

1. Select k columns by using tournament pivoting, permute them in front,
bounds for s.v. governed by q1(n, k)

APc = Q

(
R11 R12

R22

)
=

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
2. Select k rows from (Q11; Q21)T of size m × k by using tournament

pivoting,

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
such that ||Q̄21Q̄−1

11 ||max ≤ FTP and bounds for s.v. governed by q2(m, k).

30 of 63

Orthogonal matrices

Given orthogonal matrix Q ∈ Rm×m and its partitioning

Q =

(
Q11 Q12

Q21 Q22

)
, (12)

the selection of k cols by tournament pivoting from (Q11; Q21)T leads to
the factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(13)

where S(Q̄11) = Q̄22 − Q̄21Q̄−1
11 Q̄12 = Q̄−T22 .

31 of 63

Orthogonal matrices (contd)

The factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(14)

satisfies:

ρj(Q̄21Q̄−1
11) ≤ FTP , (15)

1

q2(m, k)
≤ σi (Q̄11) ≤ 1, (16)

σmin(Q̄11) = σmin(Q̄22) (17)

for all 1 ≤ i ≤ k , 1 ≤ j ≤ m − k , where ρj(A) is the 2-norm of the j-th row

of A, q2(m, k) =
√

1 + F 2
TP(m − k).

32 of 63

Sketch of the proof

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
=

(
I

Q̄21Q̄−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)(
R11 R12

R22

)
(18)

where

Q̄21Q̄−1
11 = Ā21Ā−1

11 ,

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22.

33 of 63

Sketch of the proof (contd)

Ā11 = Q̄11R11, (19)

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22. (20)

We obtain

σi (A) ≥ σi (Ā11) ≥ σmin(Q̄11)σi (R11) ≥ 1

q1(n, k)q2(m, k)
σi (A),

We also have that

σk+j(A) ≤ σj(S(Ā11)) = σj(S(Q̄11)R22) ≤ ||S(Q̄11)||2σj(R22)

≤ q1(n, k)q2(m, k)σk+j(A),

where q1(n, k) =
√

1 + F 2
TP(n − k), q2(m, k) =

√
1 + F 2

TP(m − k).

34 of 63

LU CRTP factorization - bounds if rank = k

Given A of size m × n, one step of LU CRTP computes the decomposition

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(21)

where Ā11 is of size k × k and

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12 = Ā22 − Q̄21Q̄

−1
11 Ā12. (22)

It satisfies the following properties:

ρl(Ā21Ā−1
11) = ρl(Q̄21Q̄−1

11) ≤ FTP , (23)

||S(Ā11)||max ≤ min((1 + FTP

√
k)||A||max ,FTP

√
1 + F 2

TP(m − k)σk(A))

1 ≤ σi (A)

σi (Ā11)
,
σj(S(Ā11))

σk+j(A)
≤ q(m, n, k), (24)

for any 1 ≤ l ≤ m − k , 1 ≤ i ≤ k , and 1 ≤ j ≤ min(m, n)− k,
q(m, n, k) =

√
(1 + F 2

TP(n − k)) (1 + F 2
TP(m − k)).

35 of 63

LU CRTP factorization - bounds if rank = K = Tk

Consider T block steps of LU CRTP factorization

PrAPc =


I
L21 I

...
...

. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT ,T+1

UT+1,T+1

 (25)

where Utt is k × k for 1 ≤ t ≤ T , and UT+1,T+1 is (m − Tk)× (n − Tk). Then:

ρl(Li+1,j) ≤ FTP ,

||UK ||max ≤ min
(

(1 + FTP

√
k)K/k ||A||max , q2(m, k)q(m, n, k)K/k−1σK (A)

)
,

for any 1 ≤ l ≤ k. q2(m, k) =
√

1 + F 2
TP(m − k), and

q(m, n, k) =
√

(1 + F 2
TP(n − k)) (1 + F 2

TP(m − k)).

36 of 63

LU CRTP factorization - bounds if rank = K = Tk

Consider T = K/k block steps of our LU CRTP factorization

PrAPc =


I
L21 I

...
...

. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT ,T+1

UT+1,T+1

 (26)

where Utt is k × k for 1 ≤ t ≤ T , and UT+1,T+1 is (m − Tk)× (n − Tk). Then:

1∏t−2
v=0 q(m − vk, n − vk, k)

≤
σ(t−1)k+i (A)

σi (Utt)
≤ q(m − (t − 1)k, n − (t − 1)k, k),

1 ≤ σj(UT+1,T+1)

σK+j(A)
≤

K/k−1∏
v=0

q(m − vk, n − vk, k),

for any 1 ≤ i ≤ k, 1 ≤ t ≤ T , and 1 ≤ j ≤ min(m, n)− K . Here

q2(m, k) =
√

1 + F 2
TP(m − k), and

q(m, n, k) =
√

(1 + F 2
TP(n − k)) (1 + F 2

TP(m − k)).

37 of 63

Arithmetic complexity - arbitrary sparse matrices

� Let di be the number of nonzeros in column i of A, nnz(A) =
∑n

i=1 di .

� A is permuted such that d1 ≤ . . . ≤ dn.

� A = [A00, . . . ,An/k,0] is partitioned into n/k blocks of columns.

At first step of TP:

� Pick k cols from A1 = [A00,A10]

nnz(A1) ≤ 2k
∑2k

i=1 di ,

flopsQR(A1) ≤ 8k2
∑2k

i=1 di .

At the second step of TP:

� Pick k cols from A2

nnz(A2) ≤ 2k
∑3k

i=k+1 di

flopsQR(A2) ≤ 8k2
∑3k

i=k+1 di

Bounds attained when:

A =



∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗



38 of 63

Arithmetic complexity - arbitrary sparse matrices (2)

nnzmax(TPFT) ≤ 4dnk2

nnztotal(TPFT) ≤ 2k

(
2k∑
i=1

di +
3k∑

i=k+1

di + . . .+
n∑

i=n−2k+1

di

)
≤

≤ 4k
n∑

i=1

di = 4nnz(A)k ,

flops(TPFT) ≤ 16nnz(A)k2,

39 of 63

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure

flops(TPFT) ≤ 16nnz(A)k2

flops(TPBT) ≤ 8
nnz(A)

P
k2 log

n

k

G (ATA) is an n1/2- separable graph

flops(TPFT) ≤ O(nnz(A)k3/2)

flops(TPBT) ≤ O(
nnz(A)

P
k3/2 log

n

k
)

Randomized algorithm by Clarkson and Woodruff, STOC’13

� Given n × n matrix A, it computes LDW T , where D is k × k such that
with failure probability 1/10
||A− LDW T ||F ≤ (1 + ε)||A− Ak ||F , Ak is best rank-k approximation.

� The cost of this algorithm is

flops ≤ O(nnz(A)) + nk2ε−4logO(1)(nk2ε−4)

� Tournament pivoting is faster if ε ≤ 1
(nnz(A)/n)1/4

or if ε = 0.1 and nnz(A)/n ≤ 104.
40 of 63

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure

flops(TPFT) ≤ 16nnz(A)k2

flops(TPBT) ≤ 8
nnz(A)

P
k2 log

n

k

G (ATA) is an n1/2- separable graph

flops(TPFT) ≤ O(nnz(A)k3/2)

flops(TPBT) ≤ O(
nnz(A)

P
k3/2 log

n

k
)

Randomized algorithm by Clarkson and Woodruff, STOC’13

� Given n × n matrix A, it computes LDW T , where D is k × k such that
with failure probability 1/10
||A− LDW T ||F ≤ (1 + ε)||A− Ak ||F , Ak is best rank-k approximation.

� The cost of this algorithm is

flops ≤ O(nnz(A)) + nk2ε−4logO(1)(nk2ε−4)

� Tournament pivoting is faster if ε ≤ 1
(nnz(A)/n)1/4

or if ε = 0.1 and nnz(A)/n ≤ 104.
40 of 63

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

41 of 63

Numerical results

Index of singular values

0 50 100 150 200 250 300

S
in

g
u
la

r
v
a
lu

e

10
-20

10
-15

10
-10

10
-5

10
0

Evolution of singular values for exponential

QRCP

LU-CRQRCP

LU-CRTP

SVD

Index of singular values

0 50 100 150 200 250 300

S
in

g
u
la

r
v
a
lu

e

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

Evolution of singular values for foxgood

QRCP

LU-CRQRCP

LU-CRTP

SVD

� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: foxgood - Severely ill-posed test problem of the 1st kind Fredholm integral
equation used by Fox and Goodwin

42 of 63

Numerical results

� Here k = 16 and the factorization is truncated at K = 128 (bars) or K = 240
(red lines).

� LU CTP: Column tournament pivoting + partial pivoting

� All singular values smaller than machine precision, ε, are replaced by ε.

� The number along x-axis represents the index of test matrices.

43 of 63

Results for image of size 919× 707

Original image Rank-38 approx, SVD Singular value distribution

Rank-38 approx, LUPP Rank-38 approx, LU CRTP Rank-75 approx, LU CRTP

44 of 63

Results for image of size 691× 505

Original image Rank-105 approx, SVD
Singular value distribution

Rank-105 approx, LUPP Rank-105 approx, LU CRTP Rank-209 approx, LU CRTP

45 of 63

Comparing nnz in the factors L,U versus Q,R

Name/size Nnz Rank K Nnz QRCP/ Nnz LU CRTP/
A(:, 1 : K) Nnz LU CRTP Nnz LUPP

gemat11 1232 128 2.1 2.2
4929 4895 512 3.3 2.6

9583 1024 11.5 3.2
wang3 896 128 3.0 2.1
26064 3536 512 2.9 2.1

7120 1024 2.9 1.2
Rfdevice 633 128 10.0 1.1

74104 2255 512 82.6 0.9
4681 1024 207.2 0.0

Parab fem 896 128 − 0.5
525825 3584 512 − 0.3

7168 1024 − 0.2
Mac econ 384 128 − 0.3

206500 1535 512 − 0.3
5970 1024 − 0.2

46 of 63

Performance results

Selection of 256 columns by tournament pivoting

� Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)

� Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time
in secs

Matrices: dimension at leaves on 32 procs

� Parab fem: 528825× 528825 528825× 16432

� Mac econ: 206500× 206500 206500× 6453

Time Time leaves Number of MPI processes
2k cols 32procs 16 32 64 128 256 512 1024

SPQR + dGEQP3
Parab fem 0.26 0.26 + 1129 46.7 24.5 13.7 8.4 5.9 4.8 4.4
Mac econ 0.46 25.4 + 510 132.7 86.3 111.4 59.6 27.2 − −

47 of 63

Plan

Low rank matrix approximation

Rank revealing QR factorization

LU CRTP: Truncated LU factorization with column and row tournament
pivoting

Experimental results, LU CRTP

Randomized algorithms for low rank approximation

48 of 63

Randomized algorithms - main idea

� Construct a low dimensional subspace that captures the action of A.

� Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:

1. Compute an approximate basis for the range of A (m × n)
find Q (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A ≈ QQTA

2. Use Q to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.

49 of 63

Why a random projection works

Johnson-Lindenstrauss Lemma
For any 0 < ε < 1, and any set of vectors x1, .., .xn in Rm, let
k ≥ 4(ε2/2− ε3/3)−1ln(n). Let F be a random kxm orthogonal matrix
multiplied by

√
m/k. Then with probability at 1/n, for all 1 <= i , j <= n

(1− ε)||xi − xj ||2 <= ||F (xi − xj)||2 <= (1 + ε)||xi − xj ||2

� Any m-vector can be embedded in k = O(log(n)/ε2) dimensions while
incurring a distortion of at most 1± ε between all pairs of m-vectors.

� JL relies on F being uniformly distributed random orthonormal matrix.

� Such an F can be obtained by computing the QR factorization of an
m × k matrix of i.i.d. N(0, 1) random variables.

Source: Theorem 2.1 and proof in S. Dasgupta, A. Gupta, 2003, An Elementary Proof of

a Theorem of Johnson and Lindenstrauss

50 of 63

Typical randomized truncated SVD

Algorithm
Input: m × n matrix A, desired rank k , l = p + k exponent q.
1. Sample an n × l test matrix G with independent mean-zero,

unit-variance Gaussian entries.
2. Compute Y = (AAT)qAG /* Y is expected to span the column space

of A */
3. Construct Q ∈ Rm×l with columns forming an orthonormal basis for

the range of Y .
4. Compute B = QTA
5. Compute the SVD of B = ÛΣV T

Return the approximation Ãk = QÛ · Σ · V T

51 of 63

Randomized truncated SVD (q = 0)

The best approximation is when Q equals the first k + p left singular vectors
of A. Given A = UΣV T ,

QQTA = U(1 : m, 1 : k + p)Σ(1 : k + p, 1 : k + p)(V (1 : n, 1 : k + p))T

||A− QQTA||2 = σk+p+1

Theorem 1.1 from Halko et al. If G is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix G is

E(||A− QQTA||2) ≤
(

1 +
4
√

k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− QQTA||2 ≤
(

1 + 11
√

k + p ·
√

min(m, n)
)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.

52 of 63

Randomized truncated SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− QQTA||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√

k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

� Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈ σk+1 then the approximation should be accurate.

� Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2

≈
√

n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk

53 of 63

Power iteration q ≥ 1

The matrix (AAT)qA has a faster decay in its singular values:

� has the same left singular vectors as A

� its singular values are:

σj((AAT)qA) = (σj(A))2q+1

54 of 63

Cost of randomized truncated SVD

� Randomized SVD requires 2q + 1 passes over the matrix.

� The last 3 steps of the algorithms cost:
(2) Compute Y = (AAT)qAG : 2(2q + 1) · nnz(A) · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QTA: 2nnz(A) · (k + p)
(5) Compute SVD of B: O(n(k + p)2)

� If nnz(A)/m ≥ k + p and q = 1, then (2) and (4) dominate (3).

� To be faster than deterministic approaches, the cost of (2) and (4) need
to be reduced.

55 of 63

Fast Johnson-Lindenstrauss transform

Find sparse or structured G such that computing AG is cheap, e.g. a
subsampled random Fourier trasnform (SRFT),

G =

√
n

k + p
D × F × S , where

� D is n × n diagonal with entries uniformly distributed on unit circle in C
� F is n × n discrete Fourier transform, Fjk = 1√

n
e−2πi(j−1)(k−1)/n

� S is n × (k + p) random subset of the columns of the identity (draws
k + p columns at random from DF).

Computational cost
(2) Compute AG in O(mn log(n)) or O(mn log(k + p)) via a subsampled
FFT
(4) Compute B = QTA still expensive ! – can be reduced by row sampling

References: Ailon and Chazelle (2006), Liberty, Rokhlin, Tygert and Woolfe

(2006).
56 of 63

Summary of computation cost

Dense matrix A of size m × n

� QR with column pivoting: 4mnk

� Randomized SVD with a Gaussian matrix: O(mnk)

� Randomized SVD with an SRFT: O(mn log(k))

57 of 63

Clarksson and Woodruff, STOC 2013

� Based on randomized sparse embedding

� Let S , of size poly(k/ε)× n be formed such that each column has one
non-zero, ±1, randomly chosen

S =


0 0 1 0 0 1
1 0 0 0 0 0
0 0 0 −1 1 0
0 −1 0 0 0 0


� Given A of size n × n and rank k , for certain poly(k/ε), with probability

at least 9/10, the column space of A is preserved, that is for all x ∈ Rn,

||SAx ||2 = (1± ε)||Ax ||2

� SA can be computed in nnz(A) time

Source: Woodruff’s talk, STOC 2013

58 of 63

Clarksson and Woodruff, STOC 2013

Main idea

� Let A be an n × n matrix
S be an v × n sparse embedding matrix, v = Θ(ε−4k2 log6(k/ε))
R an t × n sparse embedding matrix, t = O(kε−1 log(k/ε))

A′ = ART (SART)−1SA

� Extract low rank approximation from A′

� More details in Theorem 47 from STOC 2013

� Theorem 47 relies on S and R being the product of a sparse embedding
and a SRHT matrix

59 of 63

Clarkson and Woodruff, STOC 2013

� Given n × n matrix A, it computes LDW T , where D is k × k such that
with failure probability 1/10
||A− LDW T ||F ≤ (1 + ε)||A− Ak ||F , Ak is best rank-k approximation.

flops ≤ O(nnz(A)) + (nk2ε−4 + k3ε−5)logO(1)(nk2ε−4 + k3ε−5)

60 of 63

Possible projects

1. Compare Clarkson Woodruff with LU CRTP in terms of accuracy and/or
speed.

2. Implement tournament pivoting for dense matrices based on ScaLAPACK

3. Study the extension of tournament pivoting to tensors

4. Connections with non-negative factorizations

61 of 63

More details on deterministic algorithms

� [Demmel et al., 2015] Communication avoiding rank revealing QR
factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J.
Matrix Analysis and Applications, 2015.

� Low rank approximation of a sparse matrix based on LU factorization
with column and row tournament pivoting, with S. Cayrols and J.
Demmel. Soon on arxiv.

62 of 63

References (1)

Bischof, C. H. (1991).

A parallel QR factorization algorithm with controlled local pivoting.
SIAM J. Sci. Stat. Comput., 12:36–57.

Businger, P. A. and Golub, G. H. (1965).

Linear least squares solutions by Householder transformations.
Numer. Math., 7:269–276.

Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).

Communication-avoiding rank-revealing qr decomposition.
SIAM Journal on Matrix Analysis and its Applications, 36(1):55–89.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218.

Eisenstat, S. C. and Ipsen, I. C. F. (1995).

Relative perturbation techniques for singular value problems.
SIAM J. Numer. Anal., 32(6):1972–1988.

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM J. Sci. Comput., 17(4):848–869.

Hansen, P. C. (2007).

Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems.
Numerical Algorithms, (46):189–194.

63 of 63

	Low rank matrix approximation
	Rank revealing QR factorization
	LU_CRTP: Truncated LU factorization with column and row tournament pivoting
	Experimental results, LU_CRTP
	Randomized algorithms for low rank approximation

