
1/25/16	

1	

Introduc/on	to		
Communica/on-Avoiding	Algorithms	

	
www.cs.berkeley.edu/~demmel	

Jim	Demmel,		and	many,	many	others	…	

2	

Why	avoid	communica/on?	(1/2)	
Algorithms	have	two	costs	(measured	in	/me	or	energy):	
1. Arithme/c	(FLOPS)	
2. Communica/on:	moving	data	between		

–  levels	of	a	memory	hierarchy	(sequen/al	case)		
–  processors	over	a	network	(parallel	case).		

CPU	
Cache	

DRAM	

CPU	
DRAM	

CPU	
DRAM	

CPU	
DRAM	

CPU	
DRAM	

1/25/16	

2	

Why	avoid	communica/on?	(2/3)	
•  Running	/me	of	an	algorithm	is	sum	of	3	terms:	

–  #	flops	*	/me_per_flop	
–  #	words	moved	/	bandwidth	
–  #	messages	*	latency	

3"

communica/on	

•  Time_per_flop		<<		1/	bandwidth		<<		latency	
•  Gaps	growing	exponen/ally	with	/me	[FOSC]	

•  Avoid	communica/on	to	save	/me	

•  Goal	:	reorganize	algorithms	to	avoid	communica/on	
•  Between	all	memory	hierarchy	levels		

•  L1									L2									DRAM										network,		etc		
•  Very	large	speedups	possible	
•  Energy	savings	too!	

Annual	improvements	

Time_per_flop	 Bandwidth	 Latency	

Network	 26%	 15%	

DRAM	 23%	 5%	

59%	

Why	Minimize	Communica/on?	(2/2)	

1	

10	

100	

1000	

10000	

Pi
co
Jo
ul
es
	

now	

2018	

Source:	John	Shalf,	LBL	

1/25/16	

3	

Why	Minimize	Communica/on?	(2/2)	

1	

10	

100	

1000	

10000	

Pi
co
Jo
ul
es
	

now	

2018	

Source:	John	Shalf,	LBL	

Minimize	communica/on	to	save	energy	

Alterna/ve	Cost	Model	for	Algorithms?	

Total	distance	moved	by	beads	on	an	abacus	

1/25/16	

4	

Goals	

7"

•  Redesign	algorithms	to	avoid	communica/on	
•  Between	all	memory	hierarchy	levels		

•  L1									L2									DRAM										network,		etc		

• Alain	lower	bounds	if	possible	
•  Current	algorithms	omen	far	from	lower	bounds	
•  Large	speedups	and	energy	savings	possible	

•  Lots	of	open	problems	/	poten/al	class	projects		

Sample	Speedups		
•  Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

•  Up to 3x faster for tensor contractions on 2K core Cray XE/6

•  Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6

•  Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

•  Up to 11.8x faster for direct N-body on 32K core IBM BG/P

•  Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

•  Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere

•  Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

•  Up to 4.2x faster for MiniGMG benchmark bottom solver,
using CA-BiCGStab (2.5x for overall solve)

–  2.5x / 1.5x for combustion simulation code

8	

1/25/16	

5	

“New	Algorithm	Improves	Performance	and	Accuracy	on	Extreme-Scale	
Compu/ng	Systems.	On	modern	computer	architectures,	communica:on	
between	processors	takes	longer	than	the	performance	of	a	floa:ng	
point	arithme:c	opera:on	by	a	given	processor.	ASCR	researchers	have	
developed	a	new	method,	derived	from	commonly	used	linear	algebra	
methods,	to	minimize	communica:ons	between	processors	and	the	
memory	hierarchy,	by	reformula:ng	the	communica:on	paDerns	
specified	within	the	algorithm.	This	method	has	been	implemented	in	the	
TRILINOS	framework,	a	highly-regarded	suite	of	somware,	which	provides	
func/onality	for	researchers	around	the	world	to	solve	large	scale,	
complex	mul/-physics	problems.”	
	
FY	2010	Congressional	Budget,	Volume	4,	FY2010	Accomplishments,	Advanced	Scien/fic	Compu/ng	

Research	(ASCR),	pages	65-67.	

President	Obama	cites	Communica/on-Avoiding	Algorithms	in	
the	FY	2012	Department	of	Energy	Budget	Request	to	Congress:	

CA-GMRES	(Hoemmen,	Mohiyuddin,	Yelick,	JD)	
“Tall-Skinny”	QR	(Grigori,	Hoemmen,	Langou,		JD)	

Summary	of	CA	Algorithms	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on	for	linear	algebra	
problems	like	Ax=b,	least	squares,	Ax	=	λx,	SVD,	etc	

•  New	algorithms	that	alain	these	lower	bounds	
• Being	added	to	libraries:	Sca/LAPACK,	PLASMA,	
MAGMA	

•  Large	speed-ups	possible	
• Autotuning	to	find	op/mal	implementa/on	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra		

1/25/16	

6	

Outline	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on		
•  New	algorithms	that	alain	these	lower	bounds	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra		
•  Related	work	

Outline	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on		
•  New	algorithms	that	alain	these	lower	bounds	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra	
•  Related	work		

1/25/16	

7	

Lower	bound	for	all	“direct”	linear	algebra	

•  Holds	for	
– Matmul,	BLAS,	LU,	QR,	eig,	SVD,	tensor	contrac/ons,	…	
–  Some	whole	programs	(sequences	of		these	opera/ons,	
no	maler	how	individual	ops	are	interleaved,	eg	Ak)	

–  Dense	and	sparse	matrices	(where	#flops		<<		n3)	
–  Sequen/al	and	parallel	algorithms	
–  Some	graph-theore/c	algorithms	(eg	Floyd-Warshall)	

13	

• 		Let	M	=	“fast”	memory	size	(per	processor)	
	

#words_moved	(per	processor)	=	Ω(#flops	(per	processor)	/	M1/2)	

#messages_sent	(per	processor)	=	Ω(#flops	(per	processor)	/	M3/2)	

• 		Parallel	case:	assume	either	load	or	memory	balanced	
	

Lower	bound	for	all	“direct”	linear	algebra	

•  Holds	for	
– Matmul,	BLAS,	LU,	QR,	eig,	SVD,	tensor	contrac/ons,	…	
–  Some	whole	programs	(sequences	of		these	opera/ons,	
no	maler	how	individual	ops	are	interleaved,	eg	Ak)	

–  Dense	and	sparse	matrices	(where	#flops		<<		n3)	
–  Sequen/al	and	parallel	algorithms	
–  Some	graph-theore/c	algorithms	(eg	Floyd-Warshall)	

14	

• 		Let	M	=	“fast”	memory	size	(per	processor)	
	

#words_moved	(per	processor)	=	Ω(#flops	(per	processor)	/	M1/2)	

#messages_sent		≥		#words_moved	/	largest_message_size	
	

• 		Parallel	case:	assume	either	load	or	memory	balanced	
	

1/25/16	

8	

Lower	bound	for	all	“direct”	linear	algebra	

•  Holds	for	
– Matmul,	BLAS,	LU,	QR,	eig,	SVD,	tensor	contrac/ons,	…	
–  Some	whole	programs	(sequences	of		these	opera/ons,	
no	maler	how	individual	ops	are	interleaved,	eg	Ak)	

–  Dense	and	sparse	matrices	(where	#flops		<<		n3)	
–  Sequen/al	and	parallel	algorithms	
–  Some	graph-theore/c	algorithms	(eg	Floyd-Warshall)	

15	

• 		Let	M	=	“fast”	memory	size	(per	processor)	
	

#words_moved	(per	processor)	=	Ω(#flops	(per	processor)	/	M1/2)	

#messages_sent	(per	processor)	=	Ω(#flops	(per	processor)	/	M3/2)	

• 		Parallel	case:	assume	either	load	or	memory	balanced	
	

SIAM	SIAG/Linear	Algebra	Prize,	2012	
Ballard,	D.,	Holtz,	Schwartz	

	

Can	we	alain	these	lower	bounds?	
•  Do	conven/onal	dense	algorithms	as	implemented	
in		LAPACK	and	ScaLAPACK	alain	these	bounds?	
– Omen	not		

•  If	not,	are	there	other	algorithms	that	do?	
– Yes,	for	much	of	dense	linear	algebra	
– New	algorithms,	with	new	numerical	proper/es,															
new	ways	to	encode	answers,		new	data	structures																														

– Not	just	loop	transforma/ons	
•  Only	a	few	sparse	algorithms	so	far	
•  Lots	of	work	in	progress	/	possible	projects	
•  Case	study:	Matrix	Mul/ply	

16	

1/25/16	

9	

17"

Naïve	Matrix	Mul/ply	
{implements	C	=	C	+	A*B}	
for	i	=	1	to	n	
			
			for	j	=	1	to	n	
	
	
							for	k	=	1	to	n	
											C(i,j)	=	C(i,j)	+	A(i,k)	*	B(k,j)	
								

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

18"

Naïve	Matrix	Mul/ply	
{implements	C	=	C	+	A*B}	
for	i	=	1	to	n	
		{read	row	i	of	A	into	fast	memory}	
			for	j	=	1	to	n	
							{read	C(i,j)	into	fast	memory}	
							{read	column	j	of	B	into	fast	memory}	
							for	k	=	1	to	n	
											C(i,j)	=	C(i,j)	+	A(i,k)	*	B(k,j)	
							{write	C(i,j)	back	to	slow	memory}	

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

1/25/16	

10	

19"

Naïve	Matrix	Mul/ply	
{implements	C	=	C	+	A*B}	
for	i	=	1	to	n	
		{read	row	i	of	A	into	fast	memory}																	…		n2	reads	altogether	
			for	j	=	1	to	n	
							{read	C(i,j)	into	fast	memory}																					…		n2	reads	altogether	
							{read	column	j	of	B	into	fast	memory}						…		n3	reads	altogether	
							for	k	=	1	to	n	
											C(i,j)	=	C(i,j)	+	A(i,k)	*	B(k,j)	
							{write	C(i,j)	back	to	slow	memory}												…	n2	writes	altogether	

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

n3	+	3n2	reads/writes	altogether	–	dominates	2n3	arithme/c	

20"

Blocked	(Tiled)	Matrix	Mul/ply	
Consider	A,B,C	to	be	n/b-by-n/b	matrices	of	b-by-b	subblocks	where																													

b	is	called	the	block	size;				assume	3	b-by-b	blocks	fit	in	fast	memory	
				for	i	=	1	to	n/b	

	 							for	j	=	1	to	n/b	
							 	{read	block	C(i,j)	into	fast	memory}	
							 	for	k	=	1	to	n/b	
											 								{read	block	A(i,k)	into	fast	memory}	
											 								{read	block	B(k,j)	into	fast	memory}	
										 									C(i,j)	=	C(i,j)	+	A(i,k)	*	B(k,j)	{do	a	matrix	mul/ply	on	blocks}	
						 		{write	block	C(i,j)	back	to	slow	memory}	

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
b-by-b	
block	

1/25/16	

11	

21"

Blocked	(Tiled)	Matrix	Mul/ply	
Consider	A,B,C	to	be	n/b-by-n/b	matrices	of	b-by-b	subblocks	where																													

b	is	called	the	block	size;				assume	3	b-by-b	blocks	fit	in	fast	memory		
				for	i	=	1	to	n/b	

	 							for	j	=	1	to	n/b	
							 	{read	block	C(i,j)	into	fast	memory}												…	b2	×	(n/b)2	=	n2	reads	
							 	for	k	=	1	to	n/b	
											 								{read	block	A(i,k)	into	fast	memory}				…	b2	×	(n/b)3	=	n3/b	reads			
											 								{read	block	B(k,j)	into	fast	memory}				…	b2	×	(n/b)3	=	n3/b	reads		
										 									C(i,j)	=	C(i,j)	+	A(i,k)	*	B(k,j)	{do	a	matrix	mul/ply	on	blocks}	
						 		{write	block	C(i,j)	back	to	slow	memory}		…	b2	×	(n/b)2	=	n2	writes	
	

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
b-by-b	
block	

2n3/b	+	2n2	reads/writes	<<	2n3	arithme/c		-		Faster!	

Does	blocked	matmul	alain	lower	bound?	
•  Recall:	if	3	b-by-b	blocks	fit	in	fast	memory	of					
size	M,	then	#reads/writes	=	2n3/b	+	2n2	

•  Make	b	as	large	as	possible:	3b2	≤	M,	so							
#reads/writes		≥	2n3/(M/3)1/2		+	2n2			

•  Alains	lower	bound		=	Ω	(#flops	/	M1/2)	

•  But	what	if	we	don’t	know	M?		
•  Or	if	there	are	mul/ple	levels	of	fast	memory?	
•  How	do	we	write	the	algorithm?	

22	

1/25/16	

12	

How	hard	is	hand-tuning	matmul,	anyway?	

23"

•  Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
•  Students given “blocked” code to start with (7x faster than naïve)

•  Still hard to get close to vendor tuned performance (ACML) (another 6x)
•  For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

How	hard	is	hand-tuning	matmul,	anyway?	

24"

1/25/16	

13	

Recursive	Matrix	Mul/plica/on	(RMM)	(1/2)	
•  For	simplicity:	square	matrices	with	n	=	2m	

•  C	=															=	A	·	B	=							·								·												

						=	

•  True	when	each	Aij	etc			1x1			or			n/2		x		n/2		

25"

A11 A12
A21 A22

B11 B12
B21 B22

C11 C12
C21 C22

A11·B11 + A12·B21 A11·B12 + A12·B22
A21·B11 + A22·B21 A21·B12 + A22·B22

 func C = RMM (A, B, n)
 if n = 1, C = A * B, else
 { C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
 C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
 C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
 C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2) }
 return

Recursive	Matrix	Mul/plica/on	(RMM)	(2/2)	

26"

 func C = RMM (A, B, n)
 if n=1, C = A * B, else
 { C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)
 C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
 C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
 C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2) }
 return

A(n) = # arithmetic operations in RMM(. , . , n)
 = 8 · A(n/2) + 4(n/2)2 if n > 1, else 1
 = 2n3 … same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(. , . , n)
 = 8 · W(n/2) + 12(n/2)2 if 3n2 > M , else 3n2
 = O(n3 / M1/2 + n2) … same as blocked matmul

“Cache oblivious”, works for memory hierarchies, but not panacea

	For	big	speedups,	see	SC12	poster		
on	“Bea/ng	MKL	and	ScaLAPACK	
at	Rectangular	Matmul”	11/13	at	
5:15-7pm	

1/25/16	

14	

CARMA	Performance:	Shared	Memory	

Square:	m	=	k	=	n	

MKL	(double)	
CARMA	(double)	

MKL	(single)	
CARMA	(single)	

Peak	(single)	

Peak	(double)	

(log)	

(linear)	

																			Preliminaries										Lower	Bounds										CARMA										Benchmarking										Future	Work										Conclusion																			27	

Intel	Emerald:	4	Intel	Xeon	X7560	x	8	cores,	4	x	NUMA	

CARMA	Performance:	Shared	Memory	

Inner	Product:	m	=	n	=	64	

MKL	(double)	

CARMA	(double)	

MKL	(single)	

CARMA	(single)	

(log)	

(linear)	

																			Preliminaries										Lower	Bounds										CARMA										Benchmarking										Future	Work										Conclusion																			28	

Intel	Emerald:	4	Intel	Xeon	X7560	x	8	cores,	4	x	NUMA	

1/25/16	

15	

Why	is	CARMA	Faster?	
L3	Cache	Misses	

Shared	Memory	Inner	Product	(m	=	n	=	64;	k	=	524,288)	

97%	Fewer	
Misses	

86%	Fewer	
Misses	

(linear)	

																			Preliminaries										Lower	Bounds										CARMA										Benchmarking										Future	Work										Conclusion																			29	

Parallel	MatMul	with	2D	Processor	Layout	

•  P	processors	in	P1/2	x	P1/2		grid	
–  Processors	communicate	along	rows,	columns	

•  Each	processor	owns	n/P1/2		x		n/P1/2	submatrices	of	A,B,C	
•  Example:	P=16,	processors	numbered	from	P00	to	P33	

–  Processor	Pij	owns	submatrices	Aij,	Bij	and	Cij	

P00		P01			P02			P03	

P10		P11			P12			P13	

P20		P21			P22			P23	

P30		P31			P32			P33	

P00		P01			P02			P03	

P10		P11			P12			P13	

P20		P21			P22			P23	

P30		P31			P32			P33	

P00		P01			P02			P03	

P10		P11			P12			P13	

P20		P21			P22			P23	

P30		P31			P32			P33	

C															=															A											*													B	

1/25/16	

16	

31"

SUMMA	Algorithm	
•  SUMMA	=	Scalable	Universal	Matrix	Mul/ply		

–  Alains	lower	bounds:	
•  Assume	fast	memory	size	M	=	O(n2/P)	per	processor	–	1	copy	of	data	
•  #words_moved	=	Ω(#flops	/	M1/2)	=	Ω((n3/P)	/	(n2/P)1/2)	=	Ω(n2	/	P1/2)	
•  #messages									=	Ω(#flops	/	M3/2)	=	Ω((n3/P)	/	(n2/P)3/2)	=	Ω(P1/2)		

–  Can	accommodate	any	processor	grid,	matrix	dimensions	&	
layout	

–  Used	in	prac/ce	in	PBLAS	=	Parallel	BLAS	
•  www.netlib.org/lapack/lawns/lawn{96,100}.ps	

	
	
	
	
	
	

•  Comparison	to	Cannon’s	Algorithm	
–  Cannon	alains	lower	bound	
–  But	Cannon	harder	to	generalize	to	other	grids,	dimensions,			layouts,	and	Cannon	may	use	more	

memory		

32"

SUMMA	–	n	x	n	matmul	on	P1/2	x	P1/2	grid			

•  C(i, j) is n/P1/2 x n/P1/2 submatrix of C on processor Pij"
•  A(i,k) is n/P1/2 x b submatrix of A"
•  B(k,j) is b x n/P1/2 submatrix of B "
•  C(i,j) = C(i,j) + Σk A(i,k)*B(k,j) "

•  summation over submatrices"
•  Need not be square processor grid "

* =
i!

j!

A(i,k)!

k!
k!
B(k,j)!

C(i,j)	

1/25/16	

17	

33"

SUMMA–	n	x	n	matmul	on	P1/2	x	P1/2	grid		

For k=0 to n-1 … or n/b-1 where b is the block size
 … = # cols in A(i,k) and # rows in B(k,j)
 for all i = 1 to pr … in parallel
 owner of A(i,k) broadcasts it to whole processor row
 for all j = 1 to pc … in parallel
 owner of B(k,j) broadcasts it to whole processor column
 Receive A(i,k) into Acol
 Receive B(k,j) into Brow
 C_myproc = C_myproc + Acol * Brow

* =
i!

j!

A(i,k)!

k!
k!
B(k,j)!

C(i,j)	

For k=0 to n/b-1
 for all i = 1 to P1/2

 owner of A(i,k) broadcasts it to whole processor row (using binary tree)
 for all j = 1 to P1/2

 owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
 Receive A(i,k) into Acol
 Receive B(k,j) into Brow
 C_myproc = C_myproc + Acol * Brow

Brow	

Acol	

•  Alains	bandwidth	lower	bound	
•  Alains	latency	lower	bound	if		
						b	near	maximum	n/P1/2	

Summary	of	dense	parallel	algorithms		
alaining	communica/on	lower	bounds	

34	

•  		Assume	nxn	matrices	on	P	processors		
•  	Minimum	Memory	per	processor	=		M	=	O(n2	/	P)	
•  		Recall	lower	bounds:	

#words_moved				=			Ω((n3/	P)		/	M1/2)		=		Ω(n2	/		P1/2)																
#messages												=			Ω((n3/	P)		/	M3/2)		=		Ω(P1/2)	

•  Does	ScaLAPACK	alain	these	bounds?	
•  For	#words_moved:	mostly,	except	nonsym.	Eigenproblem	
•  For	#messages:	asympto/cally	worse,	except	Cholesky	

•  New	algorithms	alain	all	bounds,	up	to	polylog(P)	factors	
•  Cholesky,	LU,	QR,	Sym.	and	Nonsym	eigenproblems,	SVD	

•  Needed	to	replace	par/al	pivo/ng	in	LU	
•  Need	randomiza/on	for	Nonsym	eigenproblem	(so	far)	

Can	we	do	Beler?	

1/25/16	

18	

Can	we	do	beler?	
•  Aren’t	we	already	op/mal?	
•  Why	assume	M	=	O(n2/P),	i.e.	minimal?	

– Lower	bound	s/ll	true	if	more	memory	
– Can	we	alain	it?	
– Special	case:	“3D	Matmul”:		uses	M	=	O(n2/P2/3)	

• Dekel,	Nassimi,	Sahni	[81],	Bernsten	[89],																								
Agarwal,	Chandra,	Snir	[90],	Johnson	[93],																								
Agarwal,	Balle,	Gustavson,	Joshi,	Palkar	[95]	

• Processors	arranged	in	P1/3	x	P1/3	x	P1/3		grid	
– M	=	O(n2/P2/3)	is		P1/3		/mes	the	minimum	

•  Not	always	that	much	memory	available…	

2.5D	Matrix	Mul/plica/on		

•  Assume	can	fit	cn2/P	data	per	processor,	c>1	
•  Processors	form	(P/c)1/2		x		(P/c)1/2		x		c		grid	

c	

(P/c)1/2	

(P/
c)
1/2

	

Example:	P	=		32,		c	=	2	

1/25/16	

19	

2.5D	Matrix	Mul/plica/on		

•  Assume	can	fit	cn2/P	data	per	processor,	c	>	1	
•  Processors	form	(P/c)1/2		x		(P/c)1/2		x		c		grid	

k	

j	

i	
Ini/ally	P(i,j,0)	owns	A(i,j)	and	B(i,j)	
				each	of	size	n(c/P)1/2	x	n(c/P)1/2	

(1)		P(i,j,0)	broadcasts	A(i,j)	and	B(i,j)	to	P(i,j,k)	
(2)		Processors	at	level	k	perform	1/c-th	of	SUMMA,	i.e.	1/c-th	of		Σm	A(i,m)*B(m,j)	
(3)		Sum-reduce	par/al	sums	Σm	A(i,m)*B(m,j)	along	k-axis	so	P(i,j,0)	owns	C(i,j)	

2.5D	Matmul	on	BG/P,	16K	nodes	/	64K	cores	

 0

 20

 40

 60

 80

 100

8192 131072

P
e
rc

e
n
ta

g
e
 o

f
m

a
ch

in
e
 p

e
a
k

n

Matrix multiplication on 16,384 nodes of BG/P

12X faster

2.7X faster

Using c=16 matrix copies

2D MM
2.5D MM

1/25/16	

20	

2.5D	Matmul	on	BG/P,	16K	nodes	/	64K	cores	

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=131072, 2D

n=131072, 2.5D

E
xe

cu
tio

n
 t
im

e
 n

o
rm

a
liz

e
d
 b

y
2
D

Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c	=	16	copies	

Dis:nguished	Paper	Award,	EuroPar’11	
SC’11	paper	by	Solomonik,	Bhatele,	D.	

12x	faster	

2.7x	faster	

Perfect	Strong	Scaling	–	in	Time	and	Energy	(1/2)	
•  Every	/me	you	add	a	processor,	you	should	use	its	memory	M	too	
•  Start	with	minimal	number	of	procs:	PM	=	3n2	
•  Increase	P	by	a	factor	of	c	è	total	memory	increases	by	a	factor	of	c	
•  Nota/on	for	/ming	model:	

–  γT	,	βT	,	αT	=	secs	per	flop,	per	word_moved,	per	message	of	size	m	
•  T(cP)	=	n3/(cP)	[γT+	βT/M1/2	+	αT/(mM1/2)]	
															=	T(P)/c	
•  Nota/on	for	energy	model:	

–  γE	,	βE	,	αE	=	joules	for	same	opera/ons	
–  δE	=	joules	per	word	of	memory	used	per	sec	
–  εE	=	joules	per	sec	for	leakage,	etc.	

•  E(cP)	=	cP	{	n3/(cP)	[γE+	βE/M1/2	+	αE/(mM1/2)]	+	δEMT(cP)	+	εET(cP)	}	
															=	E(P)	
•  Limit:		c	≤	P1/3		(3D	algorithm),	if	star/ng	with	1	copy	of	inputs	
	

1/25/16	

21	

Perfect	Strong	Scaling	–	in	Time	and	Energy	(2/2)	
•  Perfect	scaling	extends	to	N-body,	Strassen,	…	
•  Can	prove	lower	bounds	on	network	(eg	3D	torus	for	matmul)	
•  We	can	use	these	models	to	answer	many	ques/ons,	including:	

•  What	is	the	minimum	energy	required	for	a	computa/on?	
•  Given	a	maximum	allowed	run/me	T	,	what	is	the	minimum	

energy	E		needed	to	achieve	it?	
•  Given	a	maximum	energy	budget	E	,	what	is	the	minimum	

run/me	T		that	we	can	alain?	
•  The	ra/o	P	=	E/T		gives	us	the	average	power	required	to	run	

the	algorithm.	Can	we	minimize	the	average	power	consumed?	
•  Given	an	algorithm,	problem	size,	number	of	processors	and	

target	energy	efficiency	(GFLOPS/W),	can	we	determine	a	set	
of	architectural	parameters	to	describe	a	conforming	
computer	architecture?	

•  See	Andrew	Gearhart’s	PhD	thesis	

Handling	Heterogeneity	

•  Suppose	each	of	P	processors	could	differ	
–  γi		=	sec/flop,	βi	=	sec/word,	αi	=	sec/message,	Mi	=	memory		

•  What	is	op/mal	assignment	of	work	Fi		to	minimize	/me?	
–  Ti	=	Fi	γi		+	Fi	βi	/Mi

1/2	+		Fi	αi	/Mi
3/2	=	Fi	[γi		+	βi	/Mi

1/2	+	αi	/Mi
3/2]	=		Fi	ξi	

–  Choose	Fi	so	Σi	Fi	=	n3	and	minimizing	T	=	maxi	Ti	

–  Answer:	Fi	=	n3(1/ξi)/Σj(1/ξj)		and		T	=	n3/Σj(1/ξj)		
•  Op/mal	Algorithm	for	nxn	matmul	

–  Recursively	divide	into	8	half-sized	subproblems	
–  Assign	subproblems	to	processor	i	to	add	up	to	Fi	flops	

•  Works	for	Strassen,	other	algorithms…	

1/25/16	

22	

Applica/on	to	Tensor	Contrac/ons	

•  Ex:	C(i,j,k)	=	Σmn	A(i,j,m,n)*B(m,n,k)	
–  Communica/on	lower	bounds	apply	

•  Complex	symmetries	possible	
–  Ex:	B(m,n,k)	=	B(k,m,n)	=	…	
–  d-fold	symmetry	can	save	up	to	d!-fold	flops/memory	

•  Heavily	used	in	electronic	structure	calcula/ons	
–  Ex:	NWChem	

•  CTF:	Cyclops	Tensor	Framework	
–  Exploits	2.5D	algorithms,	symmetries	

–  Solomonik,	Hammond,	Malhews	

C(i,j,k)	=	Σm	A(i,j,m)*B(m,k)	

A	
3-fold	symm	

B	
2-fold	symm	

C	
2-fold	symm	

1/25/16	

23	

Applica/on	to	Tensor	Contrac/ons	

•  Ex:	C(i,j,k)	=	Σmn	A(i,j,m,n)*B(m,n,k)	
–  Communica/on	lower	bounds	apply	

•  Complex	symmetries	possible	
–  Ex:	B(m,n,k)	=	B(k,m,n)	=	…	
–  d-fold	symmetry	can	save	up	to	d!-fold	flops/memory	

•  Heavily	used	in	electronic	structure	calcula/ons	
–  Ex:	NWChem,	for	coupled	cluster	(CC)	approach	to	Schroedinger	eqn.	

•  CTF:	Cyclops	Tensor	Framework	
–  Exploits	2.5D	algorithms,	symmetries	
–  Up	to	3x	faster	running	CC	than	NWChem	on	3072	cores	of	Cray	XE6		
–  Solomonik,	Hammond,	Malhews	

TSQR:	QR	of	a	Tall,	Skinny	matrix	

46	

W	=	

Q00	R00	
Q10	R10	
Q20	R20	
Q30	R30	

W0	
W1	
W2	
W3	

Q00	
							Q10	
														Q20	
																					Q30	

= = .	

R00	
R10	
R20	
R30	

R00	
R10	
R20	
R30	

=
Q01	R01	
Q11	R11	

Q01	
						Q11	

= .	 R01	
R11	

R01	
R11	

= Q02	R02	

1/25/16	

24	

TSQR:	QR	of	a	Tall,	Skinny	matrix	

47	

W	=	

Q00	R00	
Q10	R10	
Q20	R20	
Q30	R30	

W0	
W1	
W2	
W3	

Q00	
							Q10	
														Q20	
																					Q30	

= = .	

R00	
R10	
R20	
R30	

R00	
R10	
R20	
R30	

=
Q01	R01	
Q11	R11	

Q01	
						Q11	

= .	 R01	
R11	

R01	
R11	

= Q02	R02	

Output	=		{	Q00,	Q10,	Q20,	Q30,	Q01,	Q11,	Q02,	R02	}	

TSQR:	An	Architecture-Dependent	Algorithm	

W	=		

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	Parallel:	

W	=		

W0	
W1	
W2	
W3	

R01	 R02	

R00	

R03	
Sequen/al:	

W	=		

W0	
W1	
W2	
W3	

R00	
R01	

R01	
R11	

R02	

R11	
R03	

Dual	Core:	

Can	choose	reduc/on	tree	dynamically	
Mul/core	/	Mul/socket	/	Mul/rack	/	Mul/site	/	Out-of-core:		?	

1/25/16	

25	

TSQR	Performance	Results	
•  Parallel	Speedups	

– Up	to	8x	on	8	core	Intel	Clovertown	
– Up	to	6.7x	on	16	processor	Pen/um	cluster	
– Up	to	4x	on	32	processor	IBM	Blue	Gene	
– Up	to	13x	on	NVidia	GPU	
– Up	to	4x	on	4	ci/es	vs	1	city	(Dongarra,	Langou	et	al)	
– Only	1.6x	slower	on	Cloud	than	just	accessing	data	twice	
(Gleich	and	Benson)	

•  Sequen/al	Speedup	
– “Infinite”	for	out-of-core	on	PowerPC	laptop	

•  SVD	costs	about	the	same	
•  Joint	work	with	Grigori,	Hoemmen,	Langou,	Anderson,	Ballard,	Keutzer,	others	

49	
Data	from	Grey	Ballard,	Mark	Hoemmen,	Laura	Grigori,	Julien	Langou,	Jack	Dongarra,	
Michael	Anderson		

Using	similar	idea	for	TSLU	as	TSQR:	
	Use	reduc/on	tree,	to	do	“Tournament	Pivo/ng”	

50

Wnxb =

W1
W2
W3
W4

P1·L1·U1
P2·L2·U2
P3·L3·U3
P4·L4·U4

=

Choose b pivot rows of W1, call them W1’
Choose b pivot rows of W2, call them W2’
Choose b pivot rows of W3, call them W3’
Choose b pivot rows of W4, call them W4’

W1’
W2’
W3’
W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Choose b pivot rows, call them W34’

W12’
W34’

= P1234·L1234·U1234

Choose b pivot rows

•  Go back to W and use these b pivot rows
•  Move them to top, do LU without pivoting
•  Extra work, but lower order term

•  Thm: As numerically stable as Partial Pivoting on a larger matrix

1/25/16	

26	

LU	Speedups	from		
Tournament	Pivo/ng	and	2.5D			

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e
rc

e
n
ta

g
e
 o

f
m

a
ch

in
e
 p

e
a
k

#nodes

2.5D LU with CA-pivoting on BG/P (n=65,536)

2.5D LU (CA-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

2.5D	vs	2D	LU	
With	and	Without	Pivo/ng	

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

T
im

e
 (

se
c)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Thm:	Perfect	Strong	Scaling	impossible,	because		Latency*Bandwidth	=	Ω(n2)	

1/25/16	

27	

Other CA algorithms
•  Need for pivoting arises beyond LU, in QR

–  Choose permutation P so that leading columns of A*P = Q*R
span column space of A – Rank Revealing QR (RRQR)

–  Usual approach like Partial Pivoting
•  Put longest column first, update rest of matrix, repeat
•  Hard to do using BLAS3 at all, let alone hit lower bound

–  Use Tournament Pivoting
•  Each round of tournament selects best b columns from

two groups of b columns, either using usual approach
or something better (Gu/Eisenstat)

•  Thm: This approach ``reveals the rank’’ of A in the sense that
the leading rxr submatrix of R has singular values “near” the
largest r singular values of A; ditto for trailing submatrix

–  Idea extends to other pivoting schemes
•  Cholesky with diagonal pivoting
•  LU with complete pivoting
•  LDLT with complete pivoting 53"

Communica/on	Lower	Bounds	for	
Strassen-like	matmul	algorithms	

•  Proof:	graph	expansion	(different	from	classical	matmul)	
–  Strassen-like:	DAG	must	be	“regular”	and	connected	

•  Extends	up	to	M	=	n2	/	p2/ω	

•  Best	Paper	Prize	(SPAA’11),	Ballard,	D.,	Holtz,	Schwartz	
								appeared	in	JACM	

•  Is	the	lower	bound	alainable?	

Classical		
O(n3)	matmul:	

	
#words_moved	=	
Ω	(M(n/M1/2)3/P)	

Strassen’s		
O(nlg7)	matmul:	

	
#words_moved	=	
Ω	(M(n/M1/2)lg7/P)	

Strassen-like		
O(nω)	matmul:	

	
#words_moved	=	
Ω	(M(n/M1/2)ω/P)	

1/25/16	

28	

vs.														

Runs	all	7	mul/plies	in	parallel	
Each	on	P/7	processors	
Needs	7/4	as	much	memory	

Runs	all	7	mul/plies	sequen/ally	
Each	on	all	P	processors	
Needs	1/4	as	much	memory	

CAPS	
				If	EnoughMemory	and	P	≥	7		
								then	BFS	step	
								else	DFS	step	
				end	if	

Communication Avoiding Parallel Strassen (CAPS)

In	prac/ce,		how	to	
best	interleave	
BFS	and	DFS	is	
a	“tuning	parameter”	

56	

Performance Benchmarking, Strong Scaling Plot
Franklin (Cray XT4) n = 94080

Speedups:	24%-184%	
(over	previous	Strassen-based	algorithms)	

	Invited	to	appear	as	
Research	Highlight	in	CACM	

1/25/16	

29	

What	about	fast	algorithms	for	the	
rest	of	linear	algebra?	

•  “Fast	Matrix	Mul/plica/on	is	Stable”	
–  JD,	I.	Dumitriu,	O.	Holtz,	R.	Kleinberg	(2007)	

•  “Fast	Linear	Algebra	is	Stable”	
–  JD,	I.	Dumitriu,	O.	Holtz	(2007)	

•  “Sequen/al	Communica/on	Bounds	for	Fast	
Linear	Algebra”	
– G.	Ballard,	JD,	O.	Holtz,	O.	Schwartz	(EECS-2012-36)	

•  Parallel	communica/on	bounds?	
•  Implementa/ons?	

Symmetric	Band	Reduc/on	

•  Grey	Ballard	and	Nick	Knight	
•  A		⇒	QAQT	=	T,		where		

–  A=AT	is	banded	
–  T	tridiagonal	
–  Similar	idea	for	SVD	of	a	band	matrix	

•  Use	alone,	or	as	second	phase	when	A	is	dense:	
–  Dense	⇒	Banded	⇒	Tridiagonal	

•  Implemented	in	LAPACK’s	sytrd	
•  Algorithm	does	not	sa/sfy	communica/on	lower	bound	
theorem	for	applying	orthogonal	transforma/ons	
–  It	can	communicate	even	less!	

1/25/16	

30	

Conven/onal	vs	CA	-	SBR	

Conven/onal	 Communica/on-Avoiding	

Many	tuning	parameters	
Right	choices	reduce	#words_moved	by	factor	M/bw,	not	just	M1/2			

Touch	all	data	4	/mes	 Touch	all	data	once	

Many	tuning	parameters:	
				Number	of	“sweeps”,		#diagonals	cleared	per	sweep,			sizes	of	parallelograms	
				#bulges	chased	at	one	/me,				how	far	to	chase	each	bulge	
Right	choices	reduce	#words_moved	by	factor	M/bw,	not	just	M1/2			

Speedups	of	Sym.	Band	Reduc/on	
vs	LAPACK’s	DSBTRD	

•  Up	to	17x	on	Intel	Gainestown,	vs	MKL	10.0	
–  n=12000,	b=500,	8	threads	

•  Up	to	12x	on	Intel	Westmere,	vs	MKL	10.3	
–  n=12000,	b=200,	10	threads	

•  Up	to	25x	on	AMD	Budapest,	vs	ACML	4.4	
–  n=9000,	b=500,	4	threads	

•  Up	to	30x	on	AMD	Magny-Cours,	vs	ACML	4.4	
–  n=12000,	b=500,	6	threads	
	

•  Neither	MKL	nor	ACML	benefits	from	mul/threading	in	
DSBTRD		
–  Best	sequen/al	speedup	vs	MKL:	1.9x	
–  Best	sequen/al	speedup	vs	ACML:	8.5x	

1/25/16	

31	

What about sparse matrices? (1/3)
•  If matrix quickly becomes dense, use dense algorithm
•  Ex: All Pairs Shortest Path using Floyd-Warshall
•  Similar to matmul: Let D = A, then

•  But can’t reorder outer loop for 2.5D, need another idea
•  Abbreviate D(i,j) = min(D(i,j),mink(A(i,k)+B(k,j)) by D = A¤B

–  Dependencies ok, 2.5D works, just different semiring
•  Kleene’s Algorithm:

61"

for k = 1:n, for i = 1:n, for j=1:n
 D(i,j) = min(D(i,j), D(i,k) + D(k,j))

D = DC-APSP(A,n)
 D = A, Partition D = [[D11,D12];[D21,D22]] into n/2 x n/2 blocks
 D11 = DC-APSP(D11,n/2),
 D12 = D11 ! D12, D21 = D21 ! D11, D22 = D21 ! D12,
 D22 = DC-APSP(D22,n/2),
 D21 = D22 ! D21, D12 = D12 ! D22, D11 = D12 ! D21,

Performance of 2.5D APSP using Kleene

62"

c=1

 0

 200

 400

 600

 800

 1000

 1200

1 4 16 64 25
6

10
24 1 4 16 64 25

6
10

24

G
Fl

op
s

Number of compute nodes

n=4096

n=8192

c=16
c=4

Strong Scaling on Hopper (Cray XE6 with 1024 nodes = 24576 cores)

6.2x
speedup

2x
speedup

1/25/16	

32	

What about sparse matrices? (2/3)
•  If parts of matrix becomes dense, optimize those
•  Ex: Cholesky on matrix A with good separators
•  Thm (Lipton,Rose,Tarjan,’79) If all balanced separators

of G(A) have at least w vertices, then G(chol(A)) has
clique of size w
–  Need to do dense Cholesky on w x w submatrix

•  Thm: #Words_moved = Ω(w3/M1/2) etc
•  Thm (George,’73) Nested dissection gives optimal

ordering for 2D grid, 3D grid, similar matrices
–  w = n for 2D n x n grid, w = n2 for 3D n x n x n grid

•  Sequential multifrontal Cholesky attains bounds
•  PSPACES (Gupta, Karypis, Kumar) is a parallel sparse

multifrontal Cholesky package
–  Attains 2D and 2.5D lower bounds (using optimal dense Cholesky on

separators)
63"

What about sparse matrices? (3/3)
•  If	matrix	stays	very	sparse,	lower	bound	unalainable,	new	one?		
•  Ex:	A*B,	both	diagonal:	no	communica/on	in	parallel	case	
•  Ex:	A*B,	both	are	Erdos-Renyi:	Prob(A(i,j)≠0)	=	d/n,	d	<<	n1/2,iid	
•  Assump/on:	Algorithm	is	sparsity-independent:	assignment	of	

data	and	work	to	processors	is	sparsity-palern-independent			
(but	zero	entries	need	not	be	communicated	or	operated	on)	

•  Thm:	A	parallel	algorithm	that	is	sparsity-independent	and	load	
balanced	for	Erdos-Renyi	matmul	sa/sfies	(in	expecta/on)	

					#Words_moved	=	Ω(min(dn/P1/2	,	d2n/P))	
–  Proof	exploits	fact	that	reuse	of	entries	of	C	=	A*B	unlikely	

•  Contrast	general	lower	bound:		
					#Words_moved	=	Ω(d2n/(PM1/2)))	
•  Alained	by	divide-and-conquer	algorithm	that	splits	matrices	

along	dimensions	most	likely	to	minimize	cost	
•  Recent	result	(P.	Koanantakool	et	al,	IPDPS’16):	Dense*Sparse	

64"

1/25/16	

33	

Summary	of	Direct	Linear	Algebra	(1/2)	
•  New	lower	bounds,	op/mal	algorithms,	big	speedups	in	theory	and	prac/ce	
•  Lots	of	ongoing	work	/	possible	projects	on	

–  Algorithms:		
•  LDLT,	QR	with	pivo/ng,	other	pivo/ng	schemes,	low	rank	factoriza/ons,	eigenproblems…						
•  All-pairs-shortest-path,	…	
•  Both	2D	(c=1)	and	2.5D	(c>1)			
•  But	only	bandwidth	may	decrease	with	c>1,	not	latency	
•  Sparse	matrices	

–  Pla�orms:		
•  Mul/core,	cluster,	GPU,	cloud,	heterogeneous,			low-energy,	…	

–  Somware:		
•  Integra/on	into	Sca/LAPACK,	PLASMA,		MAGMA,…	

•  Integra/on	of	CTF	into	quantum	chemistry/DFT	applica/ons		
–  Aquarius,	with	ANL,	UT	Aus/n	on	IBM	BG/Q,	Cray	XC30	
–  Qbox,	with	LLNL,	IBM,	on	IBM	BG/Q	
–  Q-Chem,	work	in	progress	

•  Integra/on	into	big	data	analysis	system	based	on	Spark	at	AMPLab	

Summary	of	Direct	Linear	Algebra	(2/2)	
•  New	lower	bounds,	op/mal	algorithms,	big	speedups	in	
theory	and	prac/ce	

•  Lots	of	ongoing	work	/	possible	projects	on	
–  Algorithms:		

•  LDLT,	QR	with	pivo/ng,	other	pivo/ng	schemes,	low	rank	factoriza/ons,	
eigenproblems	…	

•  Compare	fast	QR	(
•  All-pairs-shortest-path,	…	
•  Both	2D	(c=1)	and	2.5D	(c>1)			
•  But	only	bandwidth	may	decrease	with	c>1,	not	latency	
•  Sparse	matrices	

–  Pla�orms:		
•  Mul/core,	cluster,	GPU,	cloud,	heterogeneous,			low-energy,	…	

–  Somware:		
•  Integra/on	into	Sca/LAPACK,	PLASMA,		MAGMA,…	

1/25/16	

34	

Outline	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on		
•  New	algorithms	that	alain	these	lower	bounds	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra	
•  Related	Work		

Recall	op/mal	sequen/al	Matmul	
•  Naïve	code	
					for	i=1:n,	for	j=1:n,	for	k=1:n,		
										C(i,j)+=A(i,k)*B(k,j)	
	
•  “Blocked”	code	
					for	i	=	1:n/b,			for	j	=	1:n/b,			for	k	=	1:n/b	
										C[i,j]+=A[i,k]*B[k,j]			…			b	x	b	matmul	
	
•  Thm:	Picking	b	=	M1/2	alains	lower	bound:	
						#words_moved	=	Ω(n3/M1/2)	
•  Where	does	1/2	come	from?	

1/25/16	

35	

New	Thm	applied	to	Matmul	
•  for	i=1:n,	for	j=1:n,	for	k=1:n,	C(i,j)	+=	A(i,k)*B(k,j)	
•  Record	array	indices	in	matrix	Δ	

	
•  Solve	LP	for	x	=	[xi,xj,xk]T:		max	1Tx			s.t.			Δ	x	≤	1	

– Result:	x	=	[1/2,	1/2,	1/2]T,	1Tx	=	3/2	=	e	
•  Thm:	#words_moved	=	Ω(n3/Me-1)=	Ω(n3/M1/2)	
				Alained	by	block	sizes	Mxi,Mxj,Mxk	=	M1/2,M1/2,M1/2	

i	 j	 k	
1	 0	 1	 A	

Δ			=	 0	 1	 1	 B	

1	 1	 0	 C	

New	Thm	applied	to	Direct	N-Body	
•  for	i=1:n,	for	j=1:n,	F(i)	+=	force(P(i)	,	P(j))	
•  Record	array	indices	in	matrix	Δ	

	
•  Solve	LP	for	x	=	[xi,xj]T:		max	1Tx		s.t.	Δ	x	≤	1	

– Result:	x	=	[1,1],	1Tx	=	2	=	e	
•  Thm:	#words_moved	=	Ω(n2/Me-1)=	Ω(n2/M1)	
				Alained	by	block	sizes	Mxi,Mxj	=	M1,M1	

i	 j	
1	 0	 F	

Δ			=	 1	 0	 P(i)	

0	 1	 P(j)	

1/25/16	

36	

N-Body	Speedups	on	IBM-BG/P	(Intrepid)	
8K	cores,	32K	par/cles	

11.8x	speedup	

K.	Yelick,	E.	Georganas,	M.	Driscoll,	P.	Koanantakool,	E.	Solomonik	

04/07/2015 CS267 Lecture 21

Some Applications
•  Gravity, Turbulence, Molecular Dynamics, Plasma

Simulation, …
•  Electron-Beam Lithography Device Simulation
•  Hair ...

– www.fxguide.com/featured/brave-new-hair/
–  graphics.pixar.com/library/CurlyHairA/paper.pdf	

72

1/25/16	

37	

New	Thm	applied	to	Random	Code	
•  for	i1=1:n,	for	i2=1:n,	…	,	for	i6=1:n	
						A1(i1,i3,i6)	+=	func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))	
						A5(i2,i6)	+=	func2(A6(i1,i4,i5),A3(i3,i4,i6))	
•  Record	array	indices		
					in	matrix	Δ	
	

	
•  Solve	LP	for	x	=	[x1,…,x6]T:		max	1Tx		s.t.	Δ	x	≤	1	

–  Result:	x	=	[2/7,3/7,1/7,2/7,3/7,4/7],	1Tx	=	15/7	=	e	
•  Thm:	#words_moved	=	Ω(n6/Me-1)=	Ω(n6/M8/7)	
				Alained	by	block	sizes	M2/7,M3/7,M1/7,M2/7,M3/7,M4/7	
	
	
	
	

i1	 i2	 i3	 i4	 i5	 i6	

1	 0	 1	 0	 0	 1	 A1	

1	 1	 0	 1	 0	 0	 A2	

Δ	=	 0	 1	 1	 0	 1	 0	 A3	

0	 0	 1	 1	 0	 1	 A3,A4	

0	 0	 1	 1	 0	 1	 A5	

1	 0	 0	 1	 1	 0	 A6	

Approach	to	generalizing	lower	bounds	
•  Matmul	
								for	i=1:n,	for	j=1:n,	for	k=1:n,		
														C(i,j)+=A(i,k)*B(k,j)	
	=>			for	(i,j,k)	in	S	=	subset	of	Z3	

														Access	loca/ons	indexed	by	(i,j),	(i,k),		(k,j)	
•  General	case	
							for	i1=1:n,		for	i2	=	i1:m,	…	for	ik	=	i3:i4	
													C(i1+2*i3-i7)	=	func(A(i2+3*i4,i1,i2,i1+i2,…),B(pnt(3*i4)),…)	
													D(something	else)	=	func(something	else),		…	
	=>		for	(i1,i2,…,ik)	in	S	=	subset	of	Zk	
													Access	loca/ons	indexed	by	“projec/ons”,	eg	
																φC	(i1,i2,…,ik)	=	(i1+2*i3-i7)	
																φA	(i1,i2,…,ik)	=	(i2+3*i4,i1,i2,i1+i2,…),		…	
•  Goal:	Communica/on	lower	bounds	and	op/mal	algorithms	for	any	

program	that	looks	like	this	

•  Can	we	bound	#loop_itera/ons	/	points	in	S	
						given	bounds	on	#points	in	its	images	φC	(S),	φA	(S),	…			?		

1/25/16	

38	

General	Communica/on	Bound	

•  Thm:	Given	a	program	with	array	refs	given	by	
projec/ons	φj,	then	there	is	an	e	≥	1	such	that	

																#words_moved	=	Ω	(#itera/ons/Me-1)	
					where	e	is	the	the	value	of	a	linear	program:	
																minimize	e	=	Σj	ej	subject	to		
																rank(H)	≤	Σj	ej*rank(φj(H))		for	all	subgroups	H	<	Zk	
	
•  Proof	depends	on	recent	result	in	pure	mathema/cs	by			

Christ/Tao/Carbery/Bennel	

•  Given	S	subset	of	Zk,	group	homomorphisms	φ1,	φ2,	…,													
bound	|S|	in	terms	of	|φ1(S)|,		|φ2(S)|,	…	,	|φm(S)|	

•  Thm	(Christ/Tao/Carbery/Bennel):	Given	s1,…,sm	
																																|S|	≤	Πj	|φj(S)|

sj	

Is	this	bound	alainable	(1/2)?	
•  But	first:	Can	we	write	it	down?	

–  One	inequality	per	subgroup	H	<	Zd,	but	s/ll	finitely	many!	
–  Thm	(bad	news):	Wri/ng	down	all	inequali/es	in	LP	reduces	to	
Hilbert’s	10th	problem	over	Q			

•  Could	be	undecidable:	open	ques/on	
–  Thm	(good	news):	Another	LP	has	same	solu/on,	is	decidable	(but	
expensive	so	far)	

–  Thm:	(beler	news)	Easy	to		write	LP	down	explicitly	in	many	cases	
of	interest:	

• When	at	most	3	arrays	
• When	at	most	4	loop	indices	
• When	subscripts	are	subsets	of	indices	

	
–  Also	easy	to	get	upper/lower	bounds	on	e	

•  Tarski-decidable	to	get	superset	of	constraints	(may	get				.	sHBL	too	large)	

1/25/16	

39	

Is	this	bound	alainable	(2/2)?	

•  Depends	on	loop	dependencies	
•  Best	case:	none,	or	reduc/ons	(matmul)	
•  Thm:	When	all	subscripts	are	subsets	of	indices,	the	
solu/on	x	of	the	dual	LP	gives	op/mal	/le	sizes:			Mx1,	
Mx2,	…	

•  Ex:	Linear	algebra,	n-body,	“random	code,”	join,	…	
•  Conjecture:	always	alainable	(modulo	
dependencies):	work	in	progress	/	class	project	

•  Long	term	goal:	incorporate	in	compilers	

Ongoing	Work	

•  Automate	genera/on	of	lower	bounds	
•  Extend	“perfect	scaling”	results	for	/me	and	
energy	by	using	extra	memory	

•  Have	yet	to	find	a	case	where	we	cannot	alain	
lower	bound	(dependencies	permi�ng)																	
–	can	we	prove	this?	

•  Incorporate	into	compilers	

1/25/16	

40	

Outline	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on		
•  New	algorithms	that	alain	these	lower	bounds	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra		
•  Related	work	

Avoiding	Communica/on	in	Itera/ve	Linear	Algebra	

•  k-steps	of	itera/ve	solver	for	sparse	Ax=b	or	Ax=λx	
– Does	k	SpMVs	with	A	and	star/ng	vector	
– Many	such	“Krylov	Subspace	Methods”	

•  Goal:	minimize	communica/on	
– Assume	matrix	“well-par//oned”	
–  Serial	implementa/on	

•  Conven/onal:	O(k)	moves	of	data	from	slow	to	fast	memory	
•  New:	O(1)	moves	of	data	–	op:mal	

–  Parallel	implementa/on	on	p	processors	
•  Conven/onal:	O(k	log	p)	messages		(k	SpMV	calls,	dot	prods)	
•  New:	O(log	p)	messages	-	op:mal	

•  Lots	of	speed	up	possible	(modeled	and	measured)	
–  Price:	some	redundant	computa/on	
	

80	

1/25/16	

41	

1			2			3			4		…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

•  Example:	A	tridiagonal,	n=32,	k=3	
•  Works	for	any	“well-par//oned”	A	

1			2			3			4		…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

•  Example:	A	tridiagonal,	n=32,	k=3	

1/25/16	

42	

1			2			3			4		…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

•  Example:	A	tridiagonal,	n=32,	k=3	

1			2			3			4		…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

•  Example:	A	tridiagonal,	n=32,	k=3	

1/25/16	

43	

1			2			3			4		…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

	
•  Example:	A	tridiagonal,	n=32,	k=3	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		

	
•  Example:	A	tridiagonal,	n=32,	k=3	

1/25/16	

44	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Sequen/al	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	

Step	1	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Sequen/al	Algorithm		
		

	
•  Example:	A	tridiagonal,	n=32,	k=3	
	

Step	1	 Step		2	

1/25/16	

45	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Sequen/al	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	

Step	1	 Step		2	 Step		3	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]		
•  Sequen/al	Algorithm	

•  Example:	A	tridiagonal,	n=32,	k=3	

Step	1	 Step		2	 Step		3	 Step		4	

1/25/16	

46	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Parallel	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	
•  Each	processor	communicates	once	with	neighbors		

Proc	1	 Proc		2	 Proc		3	 Proc		4	

1			2			3			4	…	 	…	32	

x	

A·x	

A2·x	

A3·x	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

•  Replace	k	itera/ons	of	y	=	A⋅x	with	[Ax,	A2x,	…,	Akx]	
•  Parallel	Algorithm		

	
•  Example:	A	tridiagonal,	n=32,	k=3	
•  Each	processor	works	on	(overlapping)	trapezoid	

Proc	1	 Proc		2	 Proc		3	 Proc		4	

1/25/16	

47	

Same	idea	works	for	general	sparse	matrices	

Communica/on	Avoiding	Kernels:	
The	Matrix	Powers	Kernel	:	[Ax,	A2x,	…,	Akx]		

Simple	block-row	par//oning	è		
				(hyper)graph	par//oning	
	
Lem-to-right	processing	è
 Traveling	Salesman	Problem	

Minimizing	Communica/on	of	GMRES	to	solve	Ax=b	
•  GMRES:	find	x	in	span{b,Ab,…,Akb}	minimizing	||	Ax-b	||2	

Standard	GMRES	
		for	i=1	to	k	
					w	=	A	·	v(i-1)			…	SpMV	
					MGS(w,	v(0),…,v(i-1))	
					update	v(i),	H	
		endfor	
		solve	LSQ	problem	with	H	
	

Communica:on-avoiding	GMRES	
			W	=	[v,	Av,	A2v,	…	,	Akv]	
			[Q,R]	=	TSQR(W)			
										…		“Tall	Skinny	QR”	
			build	H	from	R		
			solve	LSQ	problem	with	H	
	
	
	
	

• Oops	–	W	from	power	method,	precision	lost!	
94	

Sequen/al	case:	#words	moved	decreases	by	a	factor	of	k	
Parallel	case:	#messages	decreases	by	a	factor	of	k	

1/25/16	

48	

“Monomial”	basis	[Ax,…,Akx]			
fails	to	converge	

	Different	polynomial	basis		[p1(A)x,…,pk(A)x]	
	does	converge	

95	

Speed	ups	of	GMRES	on	8-core	Intel	Clovertown	
	

[MHDY09]	

96	

Requires	Co-tuning	Kernels	

1/25/16	

49	

97	

CA-BiCGStab	

1/25/16	

50	

Naive	 Monomial	 Newton	 Chebyshev	

Replacement	Its.	 74	(1)	 [7,	15,	24,	31,	…,	
92,	97,	103]	(17)	

[67,	98]	(2)	 68	(1)	

With	Residual	Replacement	(RR)		
a	la	Van	der	Vorst	and	Ye		

Sample	Applica/on	Speedups		

100	

• Geometric	Mul/grid	(GMG)	w	CA	Bolom	Solver	
•  Compared	BICGSTAB	vs.	CA-BICGSTAB	with		s	=	4	
•  Hopper	at	NERSC	(Cray	XE6),	weak	scaling:	Up	to	
4096	MPI	processes	(24,576	cores	total)	

•  Speedups	for	miniGMG	benchmark	(HPGMG	benchmark	predecessor)		
– 4.2x	in	bolom	solve,	2.5x	overall	GMG	solve	
	

•  Implemented	as	a	solver	op/on	in	BoxLib	and	CHOMBO	AMR	frameworks	
	

– 3D	LMC	(a	low-mach	number	combus/on	code)	
•  2.5x	in	bolom	solve,	1.5x	overall	GMG	solve	

– 3D	Nyx	(an	N-body	and	gas	dynamics	code)	
•  2x	in	bolom	solve,	1.15x	overall	GMG	solve	

•  Solve	Horn-Schunck	Op/cal	Flow	Equa/ons		
•  Compared	CG	vs.	CA-CG	with		s	=	3,	43%	faster	on	NVIDIA	GT	640	GPU	

1/25/16	

51	

Tuning	space	for	Krylov	Methods	

Explicit			(O(nnz))	 Implicit				(o(nnz))	

Explicit				(O(nnz))	 CSR	and	varia/ons	 Vision,	climate,	AMR,…	

Implicit			(o(nnz))	 Graph	Laplacian	 Stencils	

Nonzero		
entries	

Indices	

• 		Classifica/ons	of	sparse	operators	for	avoiding	communica/on	
• 		Explicit	indices	or	nonzero	entries		cause		most	communica/on,		along	with	vectors	
• 		Ex:	With	stencils	(all	implicit)	all	communica/on	for	vectors	

• 		Opera/ons	
• 		[x,	Ax,	A2x,…,	Akx]			or		[x,	p1(A)x,	p2(A)x,	…,	pk(A)x]	
• 		Number	of	columns	in		x	
• 		[x,	Ax,	A2x,…,	Akx]		and	[y,	ATy,	(AT)2y,…,	(AT)ky],	or	[y,	ATAy,	(ATA)2y,…,	(ATA)ky],		
• 		return	all	vectors	or	just	last	one	

• 		Cotuning	and/or	interleaving	
• 		W	=	[x,	Ax,	A2x,…,	Akx]		and		{TSQR(W)	or	WTW	or	…	}	
• 		Dilo,	but	throw	away	W	

• 		Precondi/oned	versions	

Summary	of	Itera/ve	Linear	Algebra	

•  New	Lower	bounds,	op/mal	algorithms,																		
big	speedups	in	theory	and	prac/ce	

•  Lots	of	other	progress,	open	problems	
–  	Many	different	algorithms	reorganized		

•  More	underway,	more	to	be	done	
– Need	to	recognize	stable	variants	more	easily	
–  Precondi/oning			

•  “Underlapping”	instead	of	“overlapping”	Domain	Decomposi/on		
•  Hierarchically	Semiseparable	Matrices	

– Autotuning	and	synthesis	
•  pOSKI	for	SpMV	–	available	at	bebop.cs.berkeley.edu	
•  Different	kinds	of	“sparse	matrices”	

1/25/16	

52	

Outline	
•  “Direct”	Linear	Algebra	

•  Lower	bounds	on		communica/on		
•  New	algorithms	that	alain	these	lower	bounds	

•  Dilo	for	programs	accessing	arrays	(eg	n-body)	
•  Dilo	for	“Itera/ve”	Linear	Algebra		
•  Related	work	

•  Write-Avoiding	Algorithms	
•  Reproducibility	

Write-Avoiding	Algorithms	
•  What	if	writes	are	more	expensive	than	reads? 		

– Nonvola/le	Memory	(Flash,	PCM,	…)	
–  Saving	intermediates	to	disk	in	cloud	(eg	Spark)	
–  Extra	coherency	traffic	in	shared	memory	

•  Can	we	design	“write-avoiding	(WA)”	algorithms?	
– Goal:	find	and	alain	beler	lower	bound	for	writes	
–  Thm:	For	classical	matmul,	possible	to	do	asympto/cally	
fewer	writes	than	reads	to	given	layer	of	memory	hierarchy	

–  Thm:	Cache-oblivious	algorithms	cannot	be	write-avoiding	
–  Thm:	Strassen	and	FFT	cannot	be	write-avoiding	

1/25/16	

53	

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.9$ 2.1$ 1.8$ 2.3$ 4.8$ 9.8$ 19.5$ 39.6$ 78.5$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.6$ 4.2$ 8.8$ 17.9$ 36.6$ 75.4$ 147.5$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.8$ 6.9$ 14$ 28.1$ 56.5$ 115.5$ 226.6$

MissesonIdeal$Cache$ 2.512$ 3.024$ 4.048$ 6$ 12$ 24$ 48$ 96$ 192$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: CO
 L2: CO
 L1: CO

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 2$ 1.9$ 2$ 2.3$ 2.7$ 3$ 3.6$ 4.4$

L3_VICTIMS.E$ 0.4$ 0.9$ 1.9$ 4.2$ 11.8$ 25.3$ 50.7$ 101.7$ 203.2$

LLC_S_FILLS.E$ 2.5$ 3$ 4.1$ 6.5$ 14.5$ 28.3$ 54$ 105.7$ 208.2$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 700
 L2: MKL
 L1: MKL

Cache-Oblivious	Matmul	
#DRAM	reads	close	to	op/mal	
#DRAM	writes	much	larger	

Measured	L3-DRAM	traffic	on	
Intel	Nehalem	Xeon-7560	
Op/mal	#DRAM	reads	=	O(n3/M1/2)	
Op/mal	#DRAM	writes	=	n2	

Write-Avoiding	Matmul	
		Total	L3	misses	close	to	op/mal	
		Total	DRAM	writes	much	larger	

Reproducible	Floa/ng	Point	Computa/on	

•  Do	you	get	the	same	answer	if	you	run	the	same	
program	twice	with	the	same	input?	
– Not	even	on	your	mul/core	laptop!	

•  Floa/ng	point	addi/on	is	nonassocia/ve,	
summa/on	order	not	reproducible	

•  First	release	of	the	ReproBLAS	
–  Reproducible	BLAS	1,	independent	of	data	order,	
number	of	processors,	data	layout,	reduc/on	tree,	…	

–  Sequen/al	and	distributed	memory	(MPI)	
•  bebop.cs.berkeley.edu/reproblas	

1/25/16	

54	

More	possible	class	projects	

•  Could	be	one	or	more	of	
– Extend	lower	bounds,	new	algorithms,	compare	
exis/ng	algorithms,	use	algorithms	to	improve	
exis/ng	applica/ons,	performance	analysis/
measurement,	compiler	infrastructure,	present	
exis/ng	results…	

•  Extend	to	machine	learning	algorithms,	other	
of	the	``13	mo/fs’’		

For	more	details	

•  Bebop.cs.berkeley.edu	
–  155	page	survey	in	Acta	Numerica	

•  CS267	–	Berkeley’s	Parallel	Compu/ng	Course	
–  Live	broadcast	in	Spring	2016	

•  www.cs.berkeley.edu/~demmel	
•  All	slides,	video	available		

–  Prerecorded	version	broadcast	since	Spring	2013	
•  www.xsede.org	
•  Free	supercomputer	accounts	to	do	homework	
•  Free	autograding	of	homework	

1/25/16	

55	

Collaborators	and	Supporters	
•  James	Demmel,	Kathy	Yelick,	Michael	Anderson,	Grey	Ballard,	Erin	Carson,	Aditya	

Devarakonda,	Michael	Driscoll,	David	Eliahu,	Andrew	Gearhart,	Evangelos	Georganas,	
Nicholas	Knight,	Penporn	Koanantakool,	Ben	Lipshitz,	Oded	Schwartz,	Edgar	Solomonik,	
Omer	Spillinger	

•  Aus/n	Benson,	Maryam	Dehnavi,	Mark	Hoemmen,	Shoaib	Kamil,	Marghoob	Mohiyuddin	
•  Abhinav	Bhatele,	Aydin	Buluc,	Michael	Christ,	Ioana	Dumitriu,	Armando	Fox,		David	

Gleich,		Ming	Gu,	Jeff	Hammond,	Mike	Heroux,	Olga	Holtz,	Kurt	Keutzer,	Julien	Langou,	
Devin	Malhews,	Tom	Scanlon,	Michelle	Strout,	Sam	Williams,		Hua	Xiang	

•  Jack	Dongarra,	Jakub	Kurzak,	Dulceneia	Becker,		Ichitaro	Yamazaki,	…	
•  Sivan	Toledo,	Alex	Druinsky,	Inon	Peled			
•  Laura	Grigori,	Sebas/en	Cayrols,	Simplice	Donfack,	Mathias	Jacquelin,	Amal	Khabou,	

Sophie	Moufawad,	Mikolaj	Szydlarski	
•  Members	of	ParLab,	ASPIRE,	BEBOP,	CACHE,	EASI,	FASTMath,	MAGMA,	PLASMA	
•  Thanks	to	DOE,	NSF,	UC	Discovery,	INRIA,	Intel,	Microsom,	Mathworks,	Na/onal	

Instruments,	NEC,	Nokia,	NVIDIA,	Samsung,	Oracle		
•  bebop.cs.berkeley.edu	

Summary	

Don’t	Communic…	

110	

Time	to	redesign	all	linear	algebra,	n-body,…			
algorithms	and	somware	

(and	compilers…)	
	

