Sparse linear solvers: iterative methods and preconditioning

L. Grigori
ALPINES
INRIA and LJLL, UPMC
On sabbatical at UC Berkeley

February 2016

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods
Conjugate gradient method

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Krylov subspace methods

Iterative solvers that reduce communication

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- A 1M-by-1M submatrix of the web connectivity graph, constructed from an archive at the Stanford WebBase.

Figure: Nonzero structure of the matrix

Sparse matrices and graphs

- Most matrices arising from real applications are sparse.
- GHS class: Car surface mesh, $n=100196, n n z(A)=544688$

Figure: Nonzero structure of the matrix

Figure: Its undirected graph

Examples from Tim Davis's Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

- Semiconductor simulation matrix from Steve Hamm, Motorola, Inc. circuit with no parasitics, $n=105676, n n z(A)=513072$

Figure: Nonzero structure of the matrix

Figure: Its undirected graph

Examples from Tim Davis's Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

Symmetric sparse matrices and graphs

- The structure of a square symmetric matrix A with nonzero diagonal can be represented by an undirected graph $G(A)=(V, E)$ with
$\square n$ vertices, one for each row/column of A
\square an edge (i, j) for each nonzero $a_{i j}, i>j$

$G(A)$

Notation: upper case (A) - matrices; lower case $\left(a_{i j}\right)$ - elements

Sparse linear solvers

Direct methods of factorization

- For solving $A x=b$, least squares problems
\square Cholesky, LU, QR, $L D L^{\top}$ factorizations
- Limited by fill-in/memory consumption and scalability

Iterative solvers

- For solving $A x=b$, least squares, $A x=\lambda x$, SVD
- When only multiplying A by a vector is possible
- Limited by accuracy/convergence

Hybrid methods

As domain decomposition methods

Plan

Sparse linear solvers

Krylov subspace methods
Conjugate gradient method

Iterative solvers that reduce communication

Krylov subspace methods

Solve $A x=b$ by finding a sequence $x_{1}, x_{2}, \ldots, x_{k}$ that minimizes some measure of error over the corresponding spaces

$$
x_{0}+\mathcal{K}_{i}\left(A, r_{0}\right), \quad i=1, \ldots, k
$$

They are defined by two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)$
2. Petrov-Galerkin condition: $r_{k} \perp \mathscr{L}_{k}$

$$
\Longleftrightarrow\left(r_{k}\right)^{t} y=0, \quad \forall y \in \mathscr{L}_{k}
$$

where

- x_{0} is the initial iterate, r_{0} is the initial residual,
- $\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}$ is the Krylov subspace of dimension k,

■ \mathscr{L}_{k} is a well-defined subspace of dimension k.

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

- Russian mathematician Alexei Krylov writes first paper, 1931.
- Lanczos - introduced an algorithm to generate an orthogonal basis for such a subspace when the matrix is symmetric.
- Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to matrix computations (Householder), Quicksort, Fast multipole, FFT.

Choosing a Krylov method

All methods (GMRES, CGS,CG...) depend on SpMV (or variations...) See www.netlib.org/templates/Templates.html for details

Source slide: J. Demmel

Conjugate gradient (Hestenes, Stieffel, 52)

- A Krylov projection method for SPD matrices where $\mathscr{L}_{k}=\mathcal{K}_{k}\left(A, r_{0}\right)$.
- Finds $x^{*}=A^{-1} b$ by minimizing the quadratic function

$$
\begin{aligned}
\phi(x) & =\frac{1}{2}(x)^{t} A x-b^{t} x \\
\nabla \phi(x) & =A x-b=0
\end{aligned}
$$

- After j iterations of CG,

$$
\left\|x^{*}-x_{j}\right\|_{A} \leq 2\left\|x-x_{0}\right\|_{A}\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{j},
$$

where x_{0} is starting vector, $\|x\|_{A}=\sqrt{x^{\top} A x}$ and $\kappa(A)=\left|\lambda_{\max }(A)\right| /\left|\lambda_{\min }(A)\right|$.

Conjugate gradient

- Computes A-orthogonal search directions by conjugation of the residuals

$$
\left\{\begin{array}{l}
p_{1}=r_{0}=-\nabla \phi\left(x_{0}\right) \tag{1}\\
p_{k}=r_{k-1}+\beta_{k} p_{k-1}
\end{array}\right.
$$

- At k-th iteration,

$$
x_{k}=x_{k-1}+\alpha_{k} p_{k}=\operatorname{argmin}_{x \in x_{0}+\mathcal{K}_{k}\left(A, r_{0}\right)} \phi(x)
$$

where α_{k} is the step along p_{k}.

- CG algorithm obtained by imposing the orthogonality and the conjugacy conditions

$$
\begin{aligned}
r_{k}^{T} r_{i} & =0, \text { for all } i \neq k, \\
p_{k}^{T} A p_{i} & =0, \text { for all } i \neq k .
\end{aligned}
$$

CG algorithm

Algorithm 1 The CG Algorithm

1: $r_{0}=b-A x_{0}, \rho_{0}=\left\|r_{0}\right\|_{2}^{2}, p_{1}=r_{0}, k=1$
2: while ($\sqrt{\rho_{k}}>\epsilon\|b\|_{2}$ and $k<k_{\text {max }}$) do

$$
\text { if }(k \neq 1) \text { then }
$$

4: $\quad \beta_{k}=\left(r_{k-1}, r_{k-1}\right) /\left(r_{k-2}, r_{k-2}\right)$
5: $\quad p_{k}=r_{k-1}+\beta_{k} p_{k-1}$
6: \quad end if
7: $\quad \alpha_{k}=\left(r_{k-1}, r_{k-1}\right) /\left(A p_{k}, p_{k}\right)$
8: $\quad x_{k}=x_{k-1}+\alpha_{k} p_{k}$
9: $\quad r_{k}=r_{k-1}-\alpha_{k} A p_{k}$
10: $\quad \rho_{k}=\left\|r_{k}\right\|_{2}^{2}$
11: $\quad k=k+1$

12: end while

Challenge in getting efficient and scalable solvers

- A Krylov solver finds x_{k+1} from $x_{0}+\mathcal{K}_{k+1}\left(A, r_{0}\right)$ where

$$
\mathcal{K}_{k+1}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k} r_{0}\right\},
$$

such that the Petrov-Galerkin condition $b-A x_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors $\left[x_{1}, \ldots, x_{k}\right.$]
- Finds best solution x_{k+1} as linear combination of $\left[x_{1}, \ldots, x_{k}\right]$

Typically, each iteration requires Sparse matrix vector product \rightarrow point-to-point communication Dot products for orthogonalization \rightarrow global communication

Map making, with R. Stompor, M. Szydlarski Results obtained on Hopper, Cray XE6, NERSC

Challenge in getting efficient and scalable solvers

- A Krylov solver finds x_{k+1} from $x_{0}+\mathcal{K}_{k+1}\left(A, r_{0}\right)$ where

$$
\mathcal{K}_{k+1}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k} r_{0}\right\},
$$

such that the Petrov-Galerkin condition $b-A x_{k+1} \perp \mathscr{L}_{k+1}$ is satisfied.

- Does a sequence of k SpMVs to get vectors [x_{1}, \ldots, x_{k}]
- Finds best solution x_{k+1} as linear combination of $\left[x_{1}, \ldots, x_{k}\right]$

Typically, each iteration requires

- Sparse matrix vector product \rightarrow point-to-point communication
- Dot products for orthogonalization \rightarrow global communication

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

Ways to improve performance

- Improve the performance of sparse matrix-vector product.
- Improve the performance of collective communication.
- Change numerics - reformulate or introduce Krylov subspace algorithms to:
\square reduce communication,
\square increase arithmetic intensity - compute sparse matrix-set of vectors product.
- Use preconditioners to decrease the number of iterations till convergence.

Sparse linear solvers

Krylov subspace methods

Iterative solvers that reduce communication
CA solvers based on s-step methods Enlarged Krylov methods

Iterative solvers that reduce communication

Communication avoiding based on s-step methods

- Unroll k iterations, orthogonalize every k steps.
- A factor of $O(k)$ less messages and bandwidth in sequential.
- A factor of $O(k)$ less messages in parallel (same bandwidth).

Enlarged Krylov methods

- Decrease the number of iterations to decrease the number of global communication.
- Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

- generate a set of vectors W for the Krylov subspace $\mathcal{K}_{k}\left(A, r_{0}\right)$,
- (A)-orthogonalize the vectors using a communication avoiding orthogonalization algorithm (e.g. TSQR(W)).

References

- Van Rosendale '83, Walker '85, Chronopoulous and Gear '89, Erhel '93, Toledo '95, Bai, Hu, Reichel ' 91 (Newton basis), Joubert and Carey ' 92 (Chebyshev basis), etc.
- Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers, preconditioners)

CA-GMRES

GMRES: find x in $\operatorname{span}\left\{b, A b, \ldots, A^{k} b\right\}$ minimizing $\|A x-b\|_{2}$ Cost of k steps of standard GMRES vs new GMRES

```
Standard GMRES
for \(i=1\) to \(k\)
    \(w=A \cdot v(i-1)\)
    MGS(w, v(0),...,v(i-1))
    update \(\mathrm{v}(\mathrm{i}), \mathrm{H}\)
endfor
solve LSQ problem with H
```

Sequential: \#words_moved = O(k•nnz) from SpMV
$+O\left(k^{2} \cdot n\right)$ from MGS
Parallel: \#messages =

$$
\begin{aligned}
& O(k) \text { from SpMV } \\
+ & O\left(k^{2} \cdot \log p\right) \text { from MGS }
\end{aligned}
$$

Source of following 11 slides: J. Demmel

CA-GMRES

GMRES: find x in $\operatorname{span}\left\{b, A b, \ldots, A^{k} b\right\}$ minimizing $\|A x-b\|_{2}$ Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
for $i=1$ to k
$\quad w=A \cdot v(i-1)$
MGS $(w, v(0), \ldots, v(i-1))$
update $v(i), H$
endfor
solve LSQ problem with H

Sequential: \#words_moved = O(k•nnz) from SpMV
$+O\left(k^{2} \cdot n\right)$ from MGS
Parallel: \#messages = $\mathrm{O}(\mathrm{k})$ from SpMV
$+\mathrm{O}\left(k^{2} \cdot \log p\right)$ from MGS
Source of following 11 slides: J. Demmel

Communication-avoiding GMRES $W=\left[v, A v, A^{2} v, \ldots, A^{k} v\right]$
$[Q, R]=\operatorname{TSQR}(W)$... "Tall Skinny QR"
Build H from R, solve LSQ problem

Sequential: \#words_moved = $\mathrm{O}(\mathrm{nnz})$ from SpMV
$+O(k \cdot n)$ from TSQR
Parallel: \#messages =
$\mathrm{O}(1)$ from computing W
$+\mathrm{O}(\log p)$ from TSQR

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$

$$
A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

$$
1234 \ldots
$$

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$

$$
A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$

$$
A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

$$
1234 \ldots
$$

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$

$$
A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

$$
1234 \ldots
$$

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$

$$
\begin{aligned}
& \text { Shaded triangles represent data computed redundantly } \\
& A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
\end{aligned}
$$

Matrix Powers Kernel

- Generate the set of vectors $\left\{A x, A^{2} x, \ldots A^{k} x\right\}$ in parallel
- Ghost necessary data to avoid communication
- Example: A tridiagonal, $n=32, k=3$
- Shaded triangles represent data computed redundantly

$$
A x=\left(\begin{array}{cccccc}
* & * & & & & \\
* & * & * & & & \\
& * & * & * & & \\
& & * & * & * & \\
& & & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
* \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

$$
1234 \ldots
$$

Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with modest surface-to-volume ratio.

- Parallel: block-row partitioning based on (hyper)graph partitioning,
- Sequential: top-to-bottom processing based on traveling salesman problem.

Challenges and research opportunities

Length of the basis k is limited by

- Size of ghost data
- Loss of precision

Preconditioners: lots of recent work

- Highly decoupled preconditioners: Block Jacobi
- Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)
- CA-ILU0, deflation (Carson, Demmel, Knight)

Performance

- Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]
- Used both optimizations:
\square sequential (moving data from DRAM to chip)
\square parallel (moving data between cores on chip)

Matrix

Performance (contd)

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60

Enlarged Krylov methods [Grigori et al., 2014]

- Partition the matrix into t domains
- split the residual r_{k-1} into t vectors corresponding to the t domains,

$$
r_{0} \rightarrow T\left(r_{0}\right)=\left[\begin{array}{cccc}
* & 0 & & 0 \\
\vdots & \vdots & & \vdots \\
* & 0 & & 0 \\
0 & * & & 0 \\
\vdots & \vdots & & \vdots \\
0 & * & & 0 \\
& & \ddots & \\
0 & 0 & & * \\
\vdots & \vdots & & \vdots \\
0 & 0 & & *
\end{array}\right]
$$

- generate t new basis vectors, obtain an enlarged Krylov subspace

$$
\mathscr{K}_{t, k}\left(A, r_{0}\right)=\operatorname{span}\left\{T_{s}\left(r_{0}\right), A T_{s}\left(r_{0}\right), A^{2} T_{s}(r 0), \ldots, A^{k-1} T_{s}\left(r_{0}\right)\right\}
$$

- search for the solution of the system $A x=b$ in $\mathscr{K}_{t, k}\left(A, r_{0}\right)$

Properties of enlarged Krylov subspaces

- The Krylov subspace $\mathcal{K}_{k}\left(A, r_{0}\right)$ is a subset of the enlarged one

$$
\mathcal{K}_{k}\left(A, r_{0}\right) \subset \mathscr{K}_{t, k}\left(A, r_{0}\right)
$$

- For all $k<k_{\text {max }}$ the dimensions of $\mathscr{K}_{t, k}$ and $\mathscr{K}_{t, k+1}$ are stricltly increasing by some number i_{k} and i_{k+1} respectively, where

$$
t \geq i_{k} \geq i_{k+1} \geq 1
$$

- The enlarged subspaces are increasing subspaces, yet bounded.

$$
\mathscr{K}_{t, 1}\left(A, r_{0}\right) \subsetneq \ldots \subsetneq \mathscr{K}_{t, k_{\max }-1}\left(A, r_{0}\right) \subsetneq \mathscr{K}_{t, k_{\max }}\left(A, r_{0}\right)=\mathscr{K}_{t, k_{\max }+q}\left(A, r_{0}\right), \forall q>0
$$

Properties of enlarged Krylov subspaces: stagnation

- Let $\mathcal{K}_{p_{\max }}=\mathcal{K}_{p_{\text {max }}+q}$ and $\mathscr{K}_{t, k_{\max }}=\mathscr{K}_{t, k_{\max }+q}$ for $q>0$. Then

$$
k_{\max } \leq p_{\max } .
$$

- The solution of the system $A x=b$ belongs to the subspace $x_{0}+\mathscr{K}_{t, k_{\text {max }}}$.

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathscr{K}_{t, k}$ and the following two conditions:

1. Subspace condition: $x_{k} \in x_{0}+\mathscr{K}_{t, k}$
2. Orthogonality condition: $r_{k} \perp \mathscr{K}_{t, k}$

- At each iteration, the new approximate solution x_{k} is found by minimizing $\phi(x)=\frac{1}{2}(x)^{t} A x-b^{t} x$ over $x_{0}+\mathscr{K}_{t, k}$:

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathscr{K}_{t, k}\left(A, r_{0}\right)\right\}
$$

Convergence analysis

Given

- A is an SPD matrix, x^{*} is the solution of $A x=b$
- $\left\|\bar{e}_{k}\right\|_{A}=\left\|x^{*}-\bar{x}_{k}\right\|_{A}$ is the $k^{\text {th }}$ error of CG
- $\left\|e_{k}\right\|_{A}=\left\|x^{*}-x_{k}\right\|_{A}$ is the $k^{t h}$ error of enlarged methods
- CG converges in \bar{K} iterations

Result

Enlarged Krylov methods converge in K iterations, where $K \leq \bar{K} \leq n$.

$$
\left\|e_{k}\right\|_{A}=\left\|x^{*}-x_{k}\right\|_{A} \leq\left\|\bar{e}_{k}\right\|_{A}
$$

LRE-CG: Long Recurrence Enlarged CG

- Use the entire basis to approximate the new solution
- $Q_{k}=\left[W_{1} W_{2} \ldots W_{k}\right]$ is an $n \times t k$ matrix containing the basis vectors of $\mathscr{K}_{t, k}$
- At each $k^{\text {th }}$ iteration, approximate the solution as

$$
x_{k}=x_{k-1}+Q_{k} \alpha_{k}
$$

such that

$$
\phi\left(x_{k}\right)=\min \left\{\phi(x), \forall x \in x_{0}+\mathscr{K}_{t, k}\right\}
$$

- Either x_{k} is the solution, or t new basis vectors and the new approximation $x_{k+1}=x_{k}+Q_{k+1} \alpha_{k+1}$ are computed.

SRE-CG: Short recurrence enlarged CG

- By A-orthonormalizing the basis vectors $Q_{k}=\left[W_{1}, W_{2}, \ldots W_{k}\right]$, we obtain a short recurrence enlarged CG.
- Given that $Q_{k-1}^{t} r_{k-1}=0$, we obtain the recurrence relations:

$$
\begin{aligned}
\alpha_{k} & =W_{k}^{t} r_{k-1}, \\
x_{k} & =x_{k-1}+W_{k} \alpha_{k}, \\
r_{k} & =r_{k-1}-A W_{k} \alpha_{k},
\end{aligned}
$$

- W_{k} needs to be A -orthormalized only against W_{k-1} and W_{k-2}.

SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm

Input: $A, b, x_{0}, \epsilon, k_{\text {max }}$
Output: x_{k}, the approximate solution of the system $A x=b$
$r_{0}=b-A x_{0}, \rho_{0}=\left\|r_{0}\right\|_{2}^{2}, k=1$
while ($\sqrt{\rho_{k-1}}>\epsilon\|b\|_{2}$ and $k<k_{\text {max }}$) do
if $\mathrm{k}==1$ then
Let $W_{1}=T\left(r_{0}\right)$, A-orthonormalise its vectors else

$$
\text { Let } W_{k}=A W_{k-1}
$$

A-orthonormalise W_{k} against W_{k-1} and W_{k-2} if $k>2$
A-orthonormalise the vectors of W_{k}
end if
10: $\quad \alpha_{k}=\left(W_{k}^{t} r_{k-1}\right)$
11: $\quad x_{k}=x_{k-1}+W_{k} \alpha_{k}$
12: $\quad r_{k}=r_{k-1}-A W_{k} \alpha_{k}$
13: $\quad \rho_{k}=\left\|r_{k}\right\|_{2}^{2}$
14: $\quad k=k+1$

1540end whi

SRE-CG: cost on t processors

Cost of \bar{k} iterations of CG is:

$$
\begin{aligned}
\text { Total Flops } & \approx 2 n n z \cdot \bar{k} / t+4 n \bar{k} / t \\
\text { \# words } & \approx O(\bar{k})(\text { from SpMV) } \\
\text { \# messages } & \approx 2 \mathrm{k} \log (\mathrm{t})+\mathrm{O}(\mathrm{k})(\text { from } \operatorname{SpMV})
\end{aligned}
$$

Cost of k iterations of SRE-CG is:

$$
\begin{aligned}
\text { Total Flops } & \approx 2 n n z \cdot k+O(n t k) \\
\text { \# words } & \approx k t^{2} \log (t)+O(k)(\text { from SpMV) } \\
\text { \# messages } & \approx k \log (t)+\mathrm{O}(\mathrm{k})(\text { from SpMV) }
\end{aligned}
$$

Ideally, SRE-CG converges t times faster $(k=\bar{k} / t)$
\Rightarrow SRE-CG has a factor of \bar{k} / k less global communication.

Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

$$
\begin{aligned}
-\operatorname{div}(\kappa(x) \nabla u) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega_{D} \\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega_{N}
\end{aligned}
$$

discretized on a 3D grid, where
$\kappa(x)=\left\{\begin{array}{l}10^{3} *\left(\left[10 * x_{2}\right]+1\right), \text { if }\left[10 * x_{i}\right]=\operatorname{Omod}(2), i=1,2,3, \\ 1, \\ \text { otherwise } .\end{array}\right.$
3D Anisotropic layers - ANI3D

- Ω divided into 10 layers parallel to $z=0$, of size 0.1
- in each layer, the coefficients are constants (κ_{x} equal to $1,10^{2}$ or 10^{4}, $\left.\kappa_{y}=10 \kappa_{x}, \kappa_{z}=1000 \kappa_{x}\right)$.

Test cases (contd)

Linear elasticity 3D problem

$$
\begin{aligned}
\operatorname{div}(\sigma(u))+f & =0 & & \text { on } \Omega \\
u & =u_{D} & & \text { on } \partial \Omega_{D} \\
\sigma(u) \cdot n & =g & & \text { on } \partial \Omega_{N}
\end{aligned}
$$

Figure: The distribution of Young's modulus

- $u \in \mathbb{R}^{d}$ is the unknown displacement field, f is some body force.
- Young's modulus E and Poisson's ratio ν take two values, $\left(E_{1}, \nu_{1}\right)=\left(2 \cdot 10^{11}, 0.25\right)$, and $\left(E_{2}, \nu_{2}\right)=\left(10^{7}, 0.45\right)$.
- Cauchy stress tensor $\sigma(u)$ is given by Hooke's law, defined by E and ν.

Test cases

Matrices
Generated with FreeFem ++ .

matrix	$n(A)$	$n n z(A)$	Description
SKY3D	8000	53600	Skyscraper
ANI3D	8000	53600	Anisotropic Layers
ELAST3D	11253	373647	Linear Elasticity P1 FE

Convergence of different CG versions

	CG		SRE-CG		
Pa	Iter	Err	Iter	Err	
SKY3D					
8	902	$1 \mathrm{E}-5$	211	$1 \mathrm{E}-5$	
16	902	$1 \mathrm{E}-5$	119	$9 \mathrm{E}-6$	
32	902	$1 \mathrm{E}-5$	43	$4 \mathrm{E}-6$	

$|$| ANI3D | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4187 | $4 \mathrm{e}-5$ | 875 | $7 \mathrm{e}-5$ | |
| 4 | 4146 | $4 \mathrm{e}-5$ | 673 | $8 \mathrm{e}-5$ | |
| 8 | 4146 | $4 \mathrm{e}-5$ | 449 | $1 \mathrm{e}-4$ | |
| 16 | 4146 | $4 \mathrm{e}-5$ | 253 | $2 \mathrm{e}-4$ | |
| 32 | 4146 | $4 \mathrm{e}-5$ | 148 | $2 \mathrm{e}-4$ | |
| 64 | 4146 | $4 \mathrm{e}-5$ | 92 | $1 \mathrm{e}-4$ | |
| ELAST3D | | | | | |
| 2 | 1098 | $1 \mathrm{e}-7$ | 652 | $1 \mathrm{e}-7$ | |
| 4 | 1098 | $1 \mathrm{e}-7$ | 445 | $1 \mathrm{e}-7$ | |
| 8 | 1098 | $1 \mathrm{e}-7$ | 321 | $8 \mathrm{e}-8$ | |
| 16 | 1098 | $1 \mathrm{e}-7$ | 238 | $4 \mathrm{e}-8$ | |
| 32 | 1098 | $1 \mathrm{e}-7$ | 168 | $5 \mathrm{e}-8$ | |
| 64 | 1098 | $1 \mathrm{e}-7$ | 116 | $1 \mathrm{e}-8$ | |

Enlarged GMRES

- GMRES: find x in $\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\}$ minimizing $\|A x-b\|_{2}$
- Enlarged GMRES: find x in $\operatorname{span}\left\{T\left(r_{0}\right), A T\left(r_{0}\right), \ldots, A^{k} T\left(r_{0}\right)\right\}$ minimizing $\|A x-b\|_{2}$

GMRES

1: for $i=1$ to k do
2: $\quad w=A v_{i-1}$
3: block $\left(w, v_{0}, \ldots v_{i-1}\right)$
4: update v_{i}, H
5: end for
6: solve LSQ problem with H
CGS

\square
\square
\square
\square 5: $\quad\left[V_{i}, R\right]=\operatorname{TSQR}\left(\tilde{W}_{i}\right)$ 6: update H 7: end for 8: solve LSQ problem with H

Reference: H. Al Daas, LG, Henon, Ricoux, in preparation.

Enlarged GMRES

- GMRES: find x in $\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\}$ minimizing $\|A x-b\|_{2}$
- Enlarged GMRES: find x in $\operatorname{span}\left\{T\left(r_{0}\right), A T\left(r_{0}\right), \ldots, A^{k} T\left(r_{0}\right)\right\}$ minimizing $\|A x-b\|_{2}$

GMRES	Enlarged GMRES
1: for $i=1$ to k do	1: $r_{0}=A x_{0}-b, R_{0}=T\left(r_{0}\right)$
2: $\quad w=A v_{i-1}$	2: for $i=1$ to k do
3: block CGS	3: $\quad W_{i}=A V_{i-1}$
$\left(w, v_{0}, \ldots v_{i-1}\right)$	4: $\quad \tilde{W}_{i} \leftarrow \operatorname{block}$ CGS $\left(W_{k}, V_{0}, \ldots V_{i-1}\right)$
4: update v_{i}, H	5: $\quad\left[V_{i}, R\right]=\operatorname{TSQR}\left(W_{i}\right)$
5: end for	6: update H
6: solve LSQ problem with H	7: end for
	8: solve LSQ problem with H

Reference: H. Al Daas, LG, Henon, Ricoux, in preparation.

Enlarged GMRES

GMRES	Enlarged GMRES
1: for $i=1$ to k do	1: $r_{0}=A x_{0}-b, R_{0}=T\left(r_{0}\right)$
2: $\quad w=A v_{i-1}$	2: for $i=1$ to k do
3: block CGS	3: $\quad W_{i}=A V_{i-1}$
$\left(w, v_{0}, \ldots v_{i-1}\right)$	4: $\quad \tilde{W}_{i} \leftarrow$ block CGS $\left(W_{k}, V_{0}, \ldots V_{i-1}\right)$
4: update v_{i}, H	5: $\quad\left[V_{i}, R\right]=\operatorname{TSQR}\left(W_{W}\right)$
5: end for	6: update H
6: solve LSQ problem with H	7: end for
	8: solve LSQ problem with H

\# messages per iteration
O(1) from SpMV + O ($\log \mathrm{P}$) from block CGS
\# messages per iteration
O(1) from SpMV +
O ($\log \mathrm{P}$) from block CGS + TSQR

Enlarged GMRES: details

The method can be seen as solving t systems, $A X=T\left(r_{0}\right)$.

Detection of systems that converged:

- At iteration k, detect $A X(:, j)=T(r 0)(:, j)$
- Add only a subset of relevant vectors to the basis
- Eigenvalues and eigenvectors are well approximated when convergence is detected

Restarted enlarged GMRES + deflation

- Enlarged GMRES is restarted when the dimension of the basis becomes large with respect to the memory available
- Deflation recovers the most important information of the enlarged Krylov subspace from previous iterations before restart

Enlarged GMRES: experimental results (1)

Number of vectors added to the enlarged subspace per iteration.

Convergence for t varying between 2 and 32.

- Pressure matrix from reservoir modelling (Total), 83587 unknowns.
- Preconditioner: block Jacobi with 128 diagonal blocks.
- Restart when the dimension of the basis is 400.

Enlarged GMRES: experimental results (2)

Number of vectors added to the enlarged subspace per iteration.

Subsequent solves.

Method:

1. Enlarged GMRES (restart + deflation) used to solve $A x=b_{1}$
2. Solve $A x=b_{2}$ by using estimated eigenvalues and eigenvectors from ${ }_{4}$ previovious solve through deflation

Related work

- Block Krylov methods (O'Leary 1980): solve systems with multiple rhs

$$
A X=B
$$

by searching for an approximate solution $X_{k} \in X_{0}+\mathscr{K}_{k}\left(A, R_{0}\right)$,

$$
\mathscr{K}_{k}\left(A, R_{0}\right)=\text { block }-\operatorname{span}\left\{R_{0}, A R_{0}, A^{2} R_{0}, \ldots, A^{k-1} R_{0}\right\} .
$$

- coopCG (Bhaya et al, 2012): solve one system by starting with t different initial guesses, equivalent to solving

$$
A X=b * \operatorname{ones}(1, t)
$$

where X_{0} is a block-vector containing the t initial guesses.

References (1)

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).
Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.
Grigori, L., Moufawad, S., and Nataf, F. (2014).
Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

