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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.
� A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure : Nonzero structure of the matrix
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Sparse matrices and graphs

� Most matrices arising from real applications are sparse.

� GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse matrices and graphs

� Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Symmetric sparse matrices and graphs

� The structure of a square symmetric matrix A with nonzero diagonal can
be represented by an undirected graph G (A) = (V ,E ) with

� n vertices, one for each row/column of A
� an edge (i , j) for each nonzero aij , i > j
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Notation: upper case (A) - matrices; lower case (aij) - elements
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Sparse linear solvers

Direct methods of factorization
� For solving Ax = b, least squares problems

� Cholesky, LU, QR, LDLT factorizations

� Limited by fill-in/memory consumption and scalability

Iterative solvers

� For solving Ax = b, least squares, Ax = λx , SVD

� When only multiplying A by a vector is possible

� Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods
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Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0)

2. Petrov-Galerkin condition: rk ⊥ Lk

⇐⇒ (rk)ty = 0, ∀ y ∈ Lk

where
� x0 is the initial iterate, r0 is the initial residual,

� Kk (A, r0) = span{r0,Ar0,A2r0, ...,Ak−1r0} is the Krylov subspace of dimension k,

� Lk is a well-defined subspace of dimension k.
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One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

� Russian mathematician Alexei Krylov writes first paper, 1931.

� Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

� Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to

matrix computations (Householder), Quicksort, Fast multipole, FFT.
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Choosing a Krylov method

Source slide: J. Demmel
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Conjugate gradient (Hestenes, Stieffel, 52)

� A Krylov projection method for SPD matrices where Lk = Kk(A, r0).

� Finds x∗ = A−1b by minimizing the quadratic function

φ(x) =
1

2
(x)tAx − btx

5φ(x) = Ax − b = 0

� After j iterations of CG,

||x∗ − xj ||A ≤ 2||x − x0||A

(√
κ(A)− 1√
κ(A) + 1

)j

,

where x0 is starting vector, ||x ||A =
√
xTAx and κ(A) = |λmax(A)|/|λmin(A)|.
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Conjugate gradient

� Computes A-orthogonal search directions by conjugation of the residuals{
p1 = r0 = −5 φ(x0)
pk = rk−1 + βkpk−1

(1)

� At k-th iteration,

xk = xk−1 + αkpk = argminx∈x0+Kk (A,r0)φ(x)

where αk is the step along pk .

� CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rTk ri = 0, for all i 6= k ,

pTk Api = 0, for all i 6= k .
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CG algorithm

Algorithm 1 The CG Algorithm

1: r0 = b − Ax0, ρ0 = ||r0||22, p1 = r0, k = 1
2: while (

√
ρk > ε||b||2 and k < kmax ) do

3: if (k 6= 1) then
4: βk = (rk−1, rk−1)/(rk−2, rk−2)
5: pk = rk−1 + βkpk−1

6: end if
7: αk = (rk−1, rk−1)/(Apk , pk)
8: xk = xk−1 + αkpk
9: rk = rk−1 − αkApk

10: ρk = ||rk ||22
11: k = k + 1
12: end while
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Challenge in getting efficient and scalable solvers

� A Krylov solver finds xk+1 from x0 +Kk+1(A, r0) where

Kk+1(A, r0) = span{r0,Ar0,A2r0, ...,A
k r0},

such that the Petrov-Galerkin condition b − Axk+1 ⊥ Lk+1 is satisfied.

� Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

� Finds best solution xk+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

� Sparse matrix vector product
→ point-to-point communication

� Dot products for orthogonalization
→ global communication
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Ways to improve performance

� Improve the performance of sparse matrix-vector product.

� Improve the performance of collective communication.

� Change numerics - reformulate or introduce Krylov subspace algorithms
to:
� reduce communication,
� increase arithmetic intensity - compute sparse matrix-set of vectors product.

� Use preconditioners to decrease the number of iterations till convergence.
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Iterative solvers that reduce communication

Communication avoiding based on s-step methods

� Unroll k iterations, orthogonalize every k steps.

� A factor of O(k) less messages and bandwidth in sequential.

� A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

� Decrease the number of iterations to decrease the number of global
communication.

� Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.
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CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

� generate a set of vectors W for the Krylov subspace Kk(A, r0),

� (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References
� Van Rosendale ’83, Walker ’85, Chronopoulous and Gear ’89, Erhel ’93, Toledo ’95, Bai, Hu,

Reichel ’91 (Newton basis), Joubert and Carey ’92 (Chebyshev basis), etc.

� Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize
communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers,
preconditioners)
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CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel
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CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Source of following 11 slides: J. Demmel
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Matrix Powers Kernel

� Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel

� Ghost necessary data to avoid communication

� Example: A tridiagonal, n = 32, k = 3

� Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·

∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...
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Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

� Parallel: block-row partitioning based on (hyper)graph partitioning,

� Sequential: top-to-bottom processing based on traveling salesman
problem.
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Challenges and research opportunities

Length of the basis k is limited by

� Size of ghost data

� Loss of precision

Preconditioners: lots of recent work

� Highly decoupled preconditioners:
Block Jacobi

� Hierarchical, semiseparable matrices
(M. Hoemmen, J. Demmel)

� CA-ILU0, deflation (Carson, Demmel,
Knight)

!A!different!polynomial!basis!does!converge:!
        [p1(A)x,…,pk(A)x] 
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Performance

� Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]

� Used both optimizations:
� sequential (moving data from DRAM to chip)
� parallel (moving data between cores on chip)
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Performance (contd)
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Enlarged Krylov methods [Grigori et al., 2014]

� Partition the matrix into t domains

� split the residual rk−1 into t vectors corresponding to the t domains,

r0 → T (r0) =



∗ 0 0

.

.

.

.

.

.

.

.

.
∗ 0 0
0 ∗ 0

.

.

.

.

.

.

.

.

.
0 ∗ 0

.
.
.

0 0 ∗
.
.
.

.

.

.

.

.

.
0 0 ∗


� generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Ts(r0),ATs(r0),A2Ts(r0), ...,Ak−1Ts(r0)}

� search for the solution of the system Ax = b in Kt,k(A, r0)
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Properties of enlarged Krylov subspaces

� The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

� For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly
increasing by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

� The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) ( ... ( Kt,kmax−1(A, r0) ( Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0
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Properties of enlarged Krylov subspaces: stagnation

� Let Kpmax = Kpmax+q and Kt,kmax = Kt,kmax+q for q > 0. Then

kmax ≤ pmax .

� The solution of the system Ax = b belongs to the subspace x0 + Kt,kmax .
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Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 + Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

� At each iteration, the new approximate solution xk is found by
minimizing φ(x) = 1

2 (x)tAx − btx over x0 + Kt,k :

φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k(A, r0)}
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Convergence analysis

Given

� A is an SPD matrix, x∗ is the solution of Ax = b

� ||ek ||A = ||x∗ − xk ||A is the k th error of CG

� ||ek ||A = ||x∗ − xk ||A is the k th error of enlarged methods

� CG converges in K iterations

Result
Enlarged Krylov methods converge in K iterations, where K ≤ K ≤ n.

||ek ||A = ||x∗ − xk ||A ≤ ||ek ||A
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LRE-CG: Long Recurrence Enlarged CG

� Use the entire basis to approximate the new solution

� Qk = [W1W2 . . .Wk ] is an n × tk matrix containing the basis vectors of
Kt,k

� At each k th iteration, approximate the solution as

xk = xk−1 + Qkαk

such that
φ(xk) = min{φ(x),∀x ∈ x0 + Kt,k}

� Either xk is the solution, or t new basis vectors and the new
approximation xk+1 = xk + Qk+1αk+1 are computed.
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SRE-CG: Short recurrence enlarged CG

� By A-orthonormalizing the basis vectors Qk = [W1,W2, . . .Wk ], we
obtain a short recurrence enlarged CG.

� Given that Qt
k−1rk−1 = 0, we obtain the recurrence relations:

αk = W t
k rk−1,

xk = xk−1 + Wkαk ,

rk = rk−1 − AWkαk ,

� Wk needs to be A-orthormalized only against Wk−1 and Wk−2.
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SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm

Input: A, b, x0, ε, kmax

Output: xk , the approximate solution of the system Ax = b
1: r0 = b − Ax0, ρ0 = ||r0||22, k = 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax ) do

3: if k==1 then
4: Let W1 = T (r0), A-orthonormalise its vectors
5: else
6: Let Wk = AWk−1

7: A-orthonormalise Wk against Wk−1 and Wk−2 if k > 2
8: A-orthonormalise the vectors of Wk

9: end if
10: αk = (W t

k rk−1)
11: xk = xk−1 + Wkαk

12: rk = rk−1 − AWkαk

13: ρk = ||rk ||22
14: k = k+1
15: end while34 of 46



SRE-CG: cost on t processors

Cost of k̄ iterations of CG is:

Total Flops ≈ 2nnz · k̄/t + 4nk̄/t
# words ≈ O(k̄) (from SpMV)

# messages ≈ 2 k log(t) + O(k) (from SpMV)

Cost of k iterations of SRE-CG is:

Total Flops ≈ 2nnz · k + O(ntk)
# words ≈ kt2log(t) + O(k) (from SpMV)

# messages ≈ klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster (k = k̄/t)
⇒ SRE-CG has a factor of k̄/k less global communication.
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Test cases: boundary value problem

3D Skyscraper Problem - SKY3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi ] = 0mod(2), i = 1, 2, 3,
1, otherwise.

3D Anisotropic layers - ANI3D

� Ω divided into 10 layers parallel to z = 0, of size 0.1

� in each layer, the coefficients are constants (κx equal to 1, 102 or 104,
κy = 10κx , κz = 1000κx).
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Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure : The distribution
of Young’s modulus

� u ∈ Rd is the unknown displacement field, f is some body force.

� Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

� Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.
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Test cases

Matrices
Generated with FreeFem++.

matrix n(A) nnz(A) Description
SKY3D 8000 53600 Skyscraper
ANI3D 8000 53600 Anisotropic Layers
ELAST3D 11253 373647 Linear Elasticity P1 FE
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Convergence of different CG versions

CG SRE-CG
Pa Iter Err Iter Err

SKY3D
8 902 1E-5 211 1E-5

16 902 1E-5 119 9E-6
32 902 1E-5 43 4E-6

ANI3D
2 4187 4e-5 875 7e-5
4 4146 4e-5 673 8e-5
8 4146 4e-5 449 1e-4

16 4146 4e-5 253 2e-4
32 4146 4e-5 148 2e-4
64 4146 4e-5 92 1e-4

ELAST3D
2 1098 1e-7 652 1e-7
4 1098 1e-7 445 1e-7
8 1098 1e-7 321 8e-8

16 1098 1e-7 238 4e-8
32 1098 1e-7 168 5e-8
64 1098 1e-7 116 1e-8
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Enlarged GMRES

� GMRES: find x in span{r0,Ar0, ...,Ak r0} minimizing ||Ax − b||2
� Enlarged GMRES: find x in span{T (r0),AT (r0), ...,AkT (r0)} minimizing
||Ax − b||2

GMRES
1: for i = 1 to k do
2: w = Avi−1

3: block CGS
(w , v0, . . . vi−1)

4: update vi ,H
5: end for
6: solve LSQ problem with H

Enlarged GMRES
1: r0 = Ax0 − b, R0 = T (r0)
2: for i = 1 to k do
3: Wi = AVi−1

4: W̃i ← block CGS (Wk ,V0, . . .Vi−1)
5: [Vi ,R] = TSQR(W̃i )
6: update H
7: end for
8: solve LSQ problem with H

Reference: H. Al Daas, LG, Henon, Ricoux, in preparation.
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Enlarged GMRES

GMRES
1: for i = 1 to k do
2: w = Avi−1

3: block CGS
(w , v0, . . . vi−1)

4: update vi ,H
5: end for
6: solve LSQ problem with H

Enlarged GMRES
1: r0 = Ax0 − b, R0 = T (r0)
2: for i = 1 to k do
3: Wi = AVi−1

4: W̃i ← block CGS (Wk ,V0, . . .Vi−1)
5: [Vi ,R] = TSQR(W̃i )
6: update H
7: end for
8: solve LSQ problem with H

# messages per iteration
O(1) from SpMV +
O (log P) from block CGS

# messages per iteration
O(1) from SpMV +
O (log P) from block CGS +
TSQR
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Enlarged GMRES: details

The method can be seen as solving t systems, AX = T (r0).

Detection of systems that converged:

� At iteration k , detect AX (:, j) = T (r0)(:, j)

� Add only a subset of relevant vectors to the basis

� Eigenvalues and eigenvectors are well approximated when convergence is
detected

Restarted enlarged GMRES + deflation

� Enlarged GMRES is restarted when the dimension of the basis becomes
large with respect to the memory available

� Deflation recovers the most important information of the enlarged Krylov
subspace from previous iterations before restart
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Enlarged GMRES: experimental results (1)

Number of vectors added to the
enlarged subspace per iteration.

Convergence for t varying between 2
and 32.

� Pressure matrix from reservoir modelling (Total), 83587 unknowns.
� Preconditioner: block Jacobi with 128 diagonal blocks.
� Restart when the dimension of the basis is 400.
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Enlarged GMRES: experimental results (2)

Number of vectors added to the
enlarged subspace per iteration.

Subsequent solves.

Method:
1. Enlarged GMRES (restart + deflation) used to solve Ax = b1

2. Solve Ax = b2 by using estimated eigenvalues and eigenvectors from
previous solve through deflation
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Related work

� Block Krylov methods (O’Leary 1980): solve systems with multiple rhs

AX = B,

by searching for an approximate solution Xk ∈ X0 + Kk(A,R0),

Kk(A,R0) = block − span{R0,AR0,A
2R0, ...,A

k−1R0}.

� coopCG (Bhaya et al, 2012): solve one system by starting with t different
initial guesses, equivalent to solving

AX = b ∗ ones(1, t)

where X0 is a block-vector containing the t initial guesses.

45 of 46



References (1)

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.

Grigori, L., Moufawad, S., and Nataf, F. (2014).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

46 of 46


	Sparse linear solvers
	Sparse matrices and graphs
	Classes of linear solvers

	Krylov subspace methods
	Conjugate gradient method

	Iterative solvers that reduce communication
	CA solvers based on s-step methods
	Enlarged Krylov methods




