
.

Communication Lower Bounds and Optimal
Algorithms for Programs that Reference Arrays

James Demmel
UC Berkeley

Math and EECS Depts.

Joint work with
Michael Christ, Nicholas Knight, Thomas Scanlon, Katherine Yelick

1

Motivation: Why avoid communication?

• Communication = moving data

– Between levels of memory hierarchy

– Between processors over network

• Running time of an algorithm is sum of 3 terms:

– #flops * time per flop

– #words moved / bandwidth ... communication

– #messages * latency ... communication

• Time per flop � 1/bandwidth � latency

– Gaps growing exponentially

• Avoid communication to save time

• Same story for energy: Avoid communication to save energy

2

Example: Optimal Sequential Matmul

• Naive code

– for i=1:n, for j=1:n, for k=1:n, C(i, j)+ = A(i, k) ∗B(k, j)

– Moves Θ(n3) words between cache (size M < n2) and DRAM

• “Blocked” code

– Write A as n/b× n/b matrix of b× b blocks A[i, j]

– Ditto for B, C

– for i=1:n/b, for j=1:n/b, for k=1:n/b,
C[i, j]+ = A[i, k] ∗B[k, j] ... b× b matmul

• Thm [Hong,Kung]: Choosing b
<
≈ (M/3)1/2 attains lower bound:

#words moved = Ω(n3/M1/2)

•Where do 1/2’s come from?

3

New Theorem, applied to Matmul

• for i=1:n, for j=1:n, for k=1:n, C(i, j)+ = A(i, k) ∗B(k, j)

• Record array indices in matrix ∆

∆ =

i j k

A 1 0 1
B 0 1 1
C 1 1 0

• Let x = [xi, xj, xk]T , 1 = vector of 1’s

• Solve LP: maximize 1Tx such that ∆x ≤ 1

• Solution: x = [1/2, 1/2, 1/2], 1Tx = 3/2 ≡ sHBL

• Thm: #words moved = Ω(n3/MsHBL−1) = Ω(n3/M1/2).

• Attain by blocking index i by Θ(Mxi) = Θ(M1/2), ditto for j, k

4

New Theorem, applied to Direct n-Body

• for i=1:n, for j=1:n, F (i)+ = force(P (i), P (j))

• Record array indices in matrix ∆

∆ =

i j

F 1 0
P (i) 1 0
P (j) 0 1

• Let x = [xi, xj]

T , 1 = vector of 1’s

• Solve LP: maximize 1Tx such that ∆x ≤ 1

• Solution: x = [1, 1], 1Tx = 2 ≡ sHBL

• Thm: #words moved = Ω(n2/MsHBL−1) = Ω(n2/M1).

• Attain by blocking index i by Θ(Mxi) = Θ(M1), ditto for j

5

New Theorem, applied to Random Code

• for i1=1:n, ... , for i6=1:n,
A1(i1, i3, i6)+ = func1(A2(i1, i2, i4), A3(i2, i3, i5), A4(i3, i4, i6))
A5(i2, i6)+ = func2(A6(i1, i4, i5), A3(i3, i4, i6))

• Record array indices in 6× 6 matrix ∆

– one column per index i1,...,i6

– one row per distinct set of array subscripts A1, ..., A6

– ∆(i, j) = 1 if array subscript i has index j, else 0

• Let x = [x1, ..., x6]T , 1 = vector of 1’s

• Solve LP: maximize 1Tx such that ∆x ≤ 1

• Solution: x = [2/7, 3/7, 1/7, 2/7, 3/7, 4/7], 1Tx = 15/7 ≡ sHBL

• Thm: #words moved = Ω(n6/MsHBL−1) = Ω(n6/M8/7).

• Attained by block sizes M2/7, M3/7, M1/7, M2/7, M3/7, M4/7

6

Summary of Results (1/3)

• Extend communication lower bound proof from linear algebra to
any program with

– Inner loop iterations indexed by (i1, ..., id)

– Arrays in inner loop subscripted by linear functions of indices

– Ex: A(i1, i2 − i1, 3i1 − 4i2 + 7i4, ...), B(pntr(i5 + 6i6)), ...

– Can be dense or sparse, sequential or parallel, ...

• Based on recent generalization of Hölder, Loomis-Whitney,
Brascamp-Lieb inequalities by Bennett/Carbery/Christ/Tao

– Need to count lattice points, not volumes

– Get linear program with one inequality per subgroup H ≤ Zd

– Solution of linear program (HBL-LP) is sHBL
– Thm: #words moved = Ω(#loop iterations/MsHBL−1)

7

Summary of Results (2/3)

• Can we write down the lower bound?

– One inequality per subgroup H ≤ Zd, but still finitely many!

– Thm (Bad news): Writing down all inequalities in HBL-LP
⇐⇒ Hilbert’s 10th Problem over Q

– Thm (Good news): Another LP has same solution, is decidable
(but expensive, so far)

– Thm (Better news): “Easy” to write down HBL-LP explicitly
in many cases of interest

∗When subscripts are just subsets of indices

∗When #arrays at most 3 (Dedekind)

∗When #loop indices at most 4

∗When #subscripts ∈ {1,#loop indices− 1}
– Possible class project: implement special cases

8

Summary of Results (3/3)

• Can we attain the lower bound?

– Depends on loop dependencies

– Best case: none, or reductions (like matmul)

– Thm: When subscripts are just subsets of indices, the solution
x of dual HBL-LP tells us the optimal tile sizes Mx1,...,Mxd

– Ex: linear algebra, n-body, “random code”, database join, ...

– Conjecture: always attainable (modulo dependencies)

– Possible class projects (details later)

∗ See if special cases on previous slide attainable

∗ Incorporate dependencies into LP, to optimize communica-
tion subject to dependencies

∗ Incorporate into a real compiler...

9

Outline

1. Lower bound proof for direct linear algebra using
Loomis-Whitney

2. Hölder-Brascamp-Lieb Linear Program (HBL-LP)

• Continuous case, then discrete case

3. Applying lower bound to more general code

4. Decidability of lower bound

•Where Hilbert’s 10th Problem over Q arises, how to avoid it

5. Special Case: When subscripts are just subsets of indices

•Why HBL-LP simpler, why dual tells us optimal algorithm

6. Conclusions and Open Problems

10

Proof for Direct Linear Algebra (3 Nested Loops)

11

Geometric Model

12

Loomis-Whitney

13

Loomis-Whitney

14

Summary of Lower Bound Proof for 3 Nested Loops

•M = fast memory size, G = total number of flops

• Break instruction stream into segments of M loads/stores

• =⇒ 2M words of data available during segment

• Use Loomis Whitney to bound F = #multiplies/segment by

F ≤ (#A entries)1/2 · (#B entries)1/2 · (#C entries)1/2

≤ (2M)3/2 = O(M3/2)

• F ·#segments≥ G =⇒#segments ≥ G/F

• #loads/stores = M · #segments ≥MG/F = Ω(G/M1/2)

• Result independent of dependencies (so works for LU, etc)

• Result independent of G (so works for sparse, parallel etc)

• Bound decreases with M =⇒ replication may help (2.5D algs)

15

First Extension Strategy

• Loomis-Whitney =⇒ Hölder-Brascamp-Lieb (HBL)

• Volume of E ⊂ R3 =⇒ Volume of E ⊂ Rd

• Projections from (i, j, k) to (i, j), (i, k), (k, j) =⇒
any linear projections φ1, ..., φm

• vol(E) ≤ (area(Eij))
1/2 · (area(Eik))1/2 · (area(Ejk))1/2 =⇒

vol(E) ≤ C ·
∏m
i=1 vol(φi(E))si

Where do we get exponents si and C <∞?

16

Continuous HBL

Continuous HBL Linear Program (C-HBL-LP):

dim(Rd) = d =

m∑
i=1

si · dim(φi(Rd)) =

m∑
i=1

si · di

and for all subspaces H ≤ Rd, dim(H) ≤
∑m
i=1 si · dim(φi(H))

Note: There exist infinitely many H , but only finitely many
possible constraints in C-HBL-LP (at most (d + 1)m+1)

Thm (B/C/C/T): si ≥ 0 satisfy C-HBL-LP if and only if
∃ C <∞ such that for all fi : Rdi → [0,∞) in L1/si∫
Rd

m∏
i=1

fi(φi(x))dx ≤ C ·
m∏
i=1

(

∫
Rdi

[fi(y)]1/sidy)si = C ·
m∏
i=1

‖fi‖1/si

17

Continuous HBL - Special case (1/3)

dim(Rd) = d =

m∑
i=1

si · dim(φi(Rd)) =

m∑
i=1

si · di

and for all subspaces H ≤ Rd, dim(H) ≤
∑m
i=1 si · dim(φi(H))

Thm (B/C/C/T): si ≥ 0 satisfy C-HBL-LP if and only if
∃ C <∞ such that for all fi : Rdi → [0,∞) in L1/si∫

Rd

m∏
i=1

fi(φi(x))dx ≤ C ·
m∏
i=1

‖fi‖1/si

Hölder’s Inequality: Choose all φi = identity, so
∑m
i=1 si = 1

‖
m∏
i=1

fi(x)‖1 ≤ C
m∏
i=1

‖fi‖1/si ... can show C = 1

18

Continuous HBL - Special case (2/3)

dim(Rd) = d =

m∑
i=1

si · dim(φi(Rd)) =

m∑
i=1

si · di (*)

and for all subspaces H ≤ Rd, dim(H) ≤
∑m
i=1 si · dim(φi(H))

Thm (B/C/C/T): si ≥ 0 satisfy C-HBL-LP if and only if
∃ C <∞ such that for all fi : Rdi → [0,∞) in L1/si∫

Rd

m∏
i=1

fi(φi(x))dx ≤ C ·
m∏
i=1

‖fi‖1/si

Brascamp-Lieb Inequality: Given only (*), C maximized by
fi(x) = exp(−xTAix) for some s.p.d. Ai (C could be ∞)

19

Continuous HBL - Special case (3/3)

dim(Rd) = d =

m∑
i=1

si · dim(φi(Rd)) =

m∑
i=1

si · di

and for all subspaces H ≤ Rd, dim(H) ≤
∑m
i=1 si · dim(φi(H))

Thm (B/C/C/T): si ≥ 0 satisfy C-HBL-LP if and only if
∃ C <∞ such that for all fi : Rdi → [0,∞) in L1/si∫

Rd

m∏
i=1

fi(φi(x))dx ≤ C ·
m∏
i=1

‖fi‖1/si

Loomis-Whitney & beyond: Given bounded E ⊂ Rd,
fi = indicator function of φi(E),

vol(E) ≤ C ·
m∏
i=1

(vol(φi(E)))si

20

Illustration of C-HBL-LP

21

But we want to count lattice points ≡ loop iterations

22

Second Extension Strategy: Discrete HBL (1/2)

• Count lattice points instead of volumes:

– Lattice points correspond to loop iterations

(i, j, k)←→ C(i, j)+ = A(i, k) ∗B(k, j)

– Projected lattice points correspond to array entries

(i, j)←→ C(i, j), etc

• Vector space Rd =⇒ abelian group Zd under addition

• Subspaces H ≤ Rd =⇒ subgroups H ≤ Zd

• Linear projection φi =⇒ group homomorphism φi

• Subspace φi(H) =⇒ subgroup φi(H)

• dim(H) =⇒ rank(H), dim(φi(H)) =⇒ rank(φi(H))

• Like C-HBL-LP, but all H , φi are integer, not real

23

Second Extension Strategy: Discrete HBL (2/2)

Discrete HBL Linear Program (D-HBL-LP):
for all subgroups H ≤ Zd, rank(H) ≤

∑m
i=1 si · rank(φi(H))

Note: There exist infinitely many H , but only finitely many
possible constraints in D-HBL-LP (at most (d + 1)m+1)

Thm (B/C/C/T): si ≥ 0 satisfy D-HBL-LP if and only if
for any finite set E ⊂ Zd its cardinality |E| is bounded by

|E| ≤
m∏
i=1

|φi(E)|si ... C = 1!

We want tightest bound when |φi(E)| ≤ 2M , i.e. |E| ≤ (2M)
∑m
i=1 si

=⇒ Compute sHBL ≡ min
∑m
i=1 si subject to D-HBL-LP

Thm: #words moved = Ω(#iterations/MsHBL−1)

24

Some ideas in the proof of Discrete HBL (1/2)

∀H ≤ Zd, rank(H) ≤
∑m
i=1 si·rank(φi(H))⇐⇒ |E| ≤

∏m
i=1 |φi(E)|si

• Necessity

– For any H ≤ Zd, let En be n× n× · · · × n “brick” in H

– |En| = Θ(nrank(H)) and |φi(En)| = O(nrank(φi(H)))

Θ(nrank(H)) = |En| ≤
m∏
i=1

|φi(En)|si

= O(

m∏
i=1

nsi·rank(φi(H))) = O(n
∑n
i=1 si·rank(φi(H)))

25

Some ideas in the proof of Discrete HBL (2/2)

∀H ≤ Zd, rank(H) ≤
∑m
i=1 si·rank(φi(H))⇐⇒ |E| ≤

∏m
i=1 |φi(E)|si

• Sufficiency (hard part)

– Suffices to consider extreme points s = [s1, ..., sm] of polytope
defined by D-HBL-LP

– Induction over d

– Def: H ≤ Zd critical if rank(H) =
∑m
i=1 si · rank(φi(H))

– Given V ≤ Zd and s extreme point, then either
∃ critical {0} < H < V (induction on H) or s ∈ {0, 1}m

26

Applying Bounds to More General Code (1/5)

• General model:

for all I ∈ Z ⊂ Zd, in some order
inner loop(I, A1(φ1(I)), ..., Am(φm(I)))

• Ex: LU inner loop: A(i, j) = A(i, j)− L(i, k) ∗ U(k, j)

– Ok to ignore loop scaling columns of L

– Ok to overwrite A: L(i, k) = A(i, k) for i > k, ditto for U

– Same idea applies to BLAS, Cholesky, LDLT , ...

– Same idea applies to tensor contractions

– QR, eig, SVD need another idea

27

Applying Bounds to More General Code (2/5)

• General model:

for all I ∈ Z ⊂ Zd, in some order
inner loop(I, A1(φ1(I)), ..., Am(φm(I)))

• Ex: Computing B = Ak (k odd)
for i1 = 1 : bk/2c, C = A ·B, B = A · C
• Imperfectly nested loops

• Can’t just omit B = A · C; infinite data reuse possible, so any
lower bound ∝ |Z| must be 0; leads to infeasible HBL-LP

• Solution: impose reads/writes : let Â[1] = A, then
for i1 = 2 : k, Â[i1] = Â[1] ∗ Â[i1 − 1]

• Apply lower bound to new code, subtract added #reads/writes

• #words moved = Ω(kn3/M1/2 − kn2) = Ω(kn3/M1/2)

28

Applying Bounds to More General Code (3/5)

• General model:

for all I ∈ Z ⊂ Zd, in some order
inner loop(I, A1(φ1(I)), ..., Am(φm(I)))

• Ex: Database join

for i1 = 1 : N1, for i2 = 1 : N2
if predicate(R(i1), S(i2)) = true,

output(i1, i2) = func(R(i1), S(i2))

– Write Z = ZT ∪ ZF , depending on predicate

– Apply lower bound to ZT , ZF separately, take max

– #words moved = Ω(max(|ZT |, |Z|/M))

29

Applying Bounds to More General Code (4/5)

• General model:

for all I ∈ Z ⊂ Zd, in some order
inner loop(I, A1(φ1(I)), ..., Am(φm(I)))

• Ex: Dense or sparse QR decomposition, using orthogonal trans-
formations

• Not one “algorithm,” many variations: un/blocked Givens/Householder,
order in which entries zeroed out, ...

• Blocking orth. trans. ⇒ imperfectly nested loops

– Challenge: output of first nest input to second, so need to bound
data reuse

30

Applying Bounds to More General Code (5/5)

• Dense or sparse QR decomposition, continued

• Thm 1: #words moved = Ω(#flops/M1/2) if

– Blocked Householder with any block sizes

– One Householder transform per column

• Thm 2: #words moved = Ω(#flops/M1/2) if

– “Forward Progress”: each entry zeroed out once

– Block size must be 1

• Conjecture: Forward Progress sufficient

• Generalizes to eigenvalue problems

31

Decidability of the Lower Bound (1/5)

• Recall Continuous HBL-LP: dim(Rd) = d =
∑m
i=1 si·dim(φi(Rd))

and ∀H ≤ Rd, dim(H) ≤
∑m
i=1 si · dim(φi(H))

• To write this down, need to solve:
Given rH , rH1

, ..., rHm, decide if ∃H ≤ Rd s.t.
dim(H) = rH , dim(φ1(H)) = rH1

,..., dim(φm(H)) = rHm

•Write H as d× d matrix

•Write each φi as di × d matrix

• Express rank conditions by (non)zero constraints on minors

• Tarski-decidable

– Enough to get upper bound on sHBL =⇒ valid lower bound
on communication (possibly too low)

32

Decidability of the Lower Bound (2/5)

•What about Discrete HBL-LP?
∀H ≤ Zd, rank(H) ≤

∑m
i=1 si · rank(φi(H))

• To write this down, need to solve:
Given rH , rH1

, ..., rHm, decide if ∃H ≤ Zd s.t.
rank(H) = rH , rank(φ1(H)) = rH1

,..., rank(φm(H)) = rHm

• Can encode with minors as before

• Thm: Whether any given system of polynomial equations with
rational coefficients has a rational solution or not can be encoded
by right choice of φ1, ..., φm.

• Cor: Being able to write down D-HBL-LP ⇐⇒
∃ decision procedure for Hilbert’s 10th Problem over Q
– Over Q instead of Z because all conditions homogeneous

33

Decidability of the Lower Bound (3/5)

•What about Discrete HBL-LP?
∀H ≤ Zd, rank(H) ≤

∑m
i=1 si · rank(φi(H))

• Constraints define polytope P in space of [s1, ..., sm] ∈ Rm

• Enough to get any subset of subgroups H defining P
• Let (H1, H2, H3, ...) be any enumeration of all H ≤ Zd

• Let Pi be polytope defined by (H1, ..., Hi)

• “Simple” decidability algorithm:

i = 0, repeat i = i + 1 until Pi = P

• Thm: Decidable whether a vertex of Pi in P
– Similar induction idea as before

• Better algorithm: which subgroups H to try first?

34

Decidability of the Lower Bound (4/5)

• Discrete HBL-LP: ∀H ≤ Zd, rank(H) ≤
∑m
i=1 si · rank(φi(H))

• Last slide used an enumeration (H1, H2, ...) of all H ≤ Zd

• But most Hj tell us little, unless Hj intersects kernel of φi,

otherwise rank(φi(Hj)) = min(rank(φi(Zd)), rank(Hj)),

• So why not just try Hj = kernels of φi, or “built from them”?

• Def: Lattice of subgroups of G, L(G1, ..., Gm), is formed by tak-
ing all possible finite intersections & sums of {G1, ..., Gm, {0}, G}
• Thm: Let {Ĥ1, Ĥ2, ...} be enumeration ofL(ker(φ1), ..., ker(φm)).

Let P̂i be polytope defined by (Ĥ1, ..., Ĥi). Then (potentially
much faster) decidability algorithm computes P correctly:

i = 0, repeat i = i + 1 until P̂i = P

35

Decidability of the Lower Bound (5/5)

• Discrete HBL-LP: ∀H ≤ Zd, rank(H) ≤
∑m
i=1 si · rank(φi(H))

• Recall: need to examine polytopes just from subsets of
L(ker(φ1), ..., ker(φm)).

• How big is this lattice? Infinite in general, but ...

• Thm. (Dedekind,1900) When m = 3, then
|L(ker(φ1), ..., ker(φ3))| ≤ 28

• Thm. When rank(G) ≤ 4, then
|L(ker(φ1), ..., ker(φm))| = O(m3)

• Thm. When all rank(φi(G)) ∈ {1, rank(G)− 1}, then
|L(ker(φ1), ..., ker(φm))| ≤ 2m

• Explicit descriptions of L(ker(φ1), ..., ker(φm)) in all cases above

36

Special Case: When subscripts are just
subsets of indices (1/3)

• Ex: linear algebra, N-body, database join, ...

– Matmul: (i, j, k) are indices, subscriptsA(i, k), B(k, j), C(i, j)

•Much simpler:

– Easy to write down Discrete HBL-LP to get lower bound

– Easy to attain lower bound (modulo dependencies):
Dual of Discrete HBL-LP gives optimal block sizes

– Basis of examples at start of talk

• Extends to subsets of unimodular transformations of indices

– Ex: subsets of (i, 2i + j, 3i + 2j + k)

37

Special Case: When subscripts are just
subsets of indices (2/3)

• i1, ..., id be indices, φ1,...,φm be projections

• Let ∆j,k = 1 if ik in range of φj, else 0

• Thm: Let s = [s1, ..., sm] minimize 1Ts ≡ sHBL such that
sT∆ ≥ 1T . Then
#words moved = Ω(#loop iterations/MsHBL−1)

• Proof idea

– Constraints sT∆ ≥ 1 are subset of Discrete HBL-LP,
for all H spanned by (0, ..., 0, 1, 0, ..., 0) (k-th entry = 1)

– Show this subset implies rank(H) ≤
∑m
j=1 sjrank(φj(H))

for all H ≤ Zd

38

Special Case: When subscripts are just
subsets of indices (3/3)

• i1, ..., id be indices, φ1,...,φm be projections

• Let ∆j,k = 1 if ik in range of φj, else 0

• Dual LP: Let x = [x1, ..., xd] maximize 1Tx ≡ sHBL such that
∆x ≤ 1T .

• Thm: The solution x of the Dual LP gives the optimal block sizes
to minimize communication: ik blocked by Mxk

• Proof idea

– Each constraint in ∆x ≤ 1 bounds number of entries of each
array by M

– 1Tx = sHBL says number of inner loop iterations per block is
MsHBL.

• Extends to parallel case, “n.5D” algorithms

39

Conclusions, possible class projects/open problems/theses/...

• Possible to derive decidable communication lower bounds for many
widely used algorithms that access arrays

• Possible to achieve these bounds in many cases, leading to faster
algorithms

• Possible projects/open problems/etc:

– Implement analyses to compute lower bounds

– Conjecture: Dual LP gives tiling for optimal algorithm in (spe-
cial) cases based on L(ker(φ1), ..., ker(φm)).

– Compilers use “polyhedral analysis” to characterize dependen-
cies; can this be combined with our optimal (polyhedral) tilings
to minimize communication subject to dependencies?

– Implement well-understood special cases in compiler, generate
optimal code, ...

40

Key to Success

41

Key to Success

Don’t Communic...

42

