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We’re seeking comm-optimal sequential and parallel algorithms
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CP or Tucker (or alternatives like tensor train)
choices of mathematical algorithm

We’ll do two case studies of parallel algorithms
computing CP decomposition of sparse tensor [KU15]
computing Tucker decomposition of dense tensor [ABK15]
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Tensors

Vector 
N = 1 

Matrix 
N = 2 

3rd-Order Tensor 
N = 3 

4th-Order Tensor 
N = 4 

5th-Order Tensor 
N = 5 

An N th-order tensor has N modes
Notation convention: vector v, matrix M, tensor T
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Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

A tensor can be decomposed into the fibers of each mode
(fix all indices but one)
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Slices

458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

⟨X, Y ⟩ =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that ⟨X, X ⟩ = ∥X ∥2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though
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A tensor can also be decomposed into the slices of each mode
(fix one index)
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Unfoldings

A tensor can be reshaped into matrices,
called unfoldings or matricizations, for different modes

(fibers form columns, slices form rows)

Grey Ballard CA Algorithms 5
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Low-rank approximations of tensors

Tensor “decompositions” are usually low-rank approximations

They generalize matrix approximations from two viewpoints
sum of outer products (think PCA)
product of two rectangular matrices (think high-variance subspaces)

Some applications seek true decompositions, but less common
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Sum of outer products

Matrix:

Tensor:

This is known as the CANDECOMP/PARAFAC (CP) decomposition
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CP Notation

T ≈ u1 ◦ v1 ◦w1 + · · ·+ uR ◦ vR ◦wR, T ∈ RI×J×K

T ≈ JU,V,WK , U ∈ RI×R,V ∈ RJ×R,W ∈ RK×R are factor matrices

tijk ≈
R∑

r=1

uir vjr wkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Grey Ballard CA Algorithms 8
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Applications of CP

CP often used like PCA for multi-dimensional data
interpretable components separated from noise

Sample applications
chemometrics [AB03]

data is excitation wavelengths × emission wavelengths × time
components correspond to chemical species’ signatures

neuroscience [AABB+07]
data is electrode × frequency × time
components help to describe origin of a seizure

text analysis [BBB08]
data is term × author × time
components discover conversations

Grey Ballard CA Algorithms 9



High-variance subspaces

Matrix:

Tensor:

This is known as the Tucker decomposition
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Tucker Notation

T ≈ G×1 U×2 V×3 W T ∈ RI×J×K ,G ∈ RP×Q×R is core tensor

T ≈ JG;U,V,WK , U ∈ RI×P ,V ∈ RJ×Q,W ∈ RK×R are factor matrices

tijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr uipvjqwkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Grey Ballard CA Algorithms 11



Tensor-Times-Matrix (TTM)

Tensor version:
Y = X×2 M

Y ∈ RI×Q×K X ∈ RI×J×K M ∈ RQ×J

Matrix version:
Y(2) = MX(2)

Y(2) ∈ RQ×IK X(2) ∈ RJ×IK

Element version:

yiqk =
J∑

j=1

mqjxijk

TTM is matrix multiplication with certain unfolding

Grey Ballard CA Algorithms 12



Applications of Tucker

Tucker can be viewed as a richer form of CP, so it’s also used like PCA
a diagonal core tensor corresponds to a CP decomposition

Sample Application
Computer vision: TensorFaces [VT02]

facial recognition system benefiting from varying lighting,
expression, viewpoint

Tucker is typically more efficient than CP for compression
Sample Application

Visual data compression [BRP15]
image, video, and 3D volume data

Grey Ballard CA Algorithms 13



Ambiguities

There are several ambiguities that have to be handled carefully

CP scaling ambiguity

T ≈
R∑

r=1

ur ◦ vr ◦wr → T ≈
R∑

r=1

λr · ur ◦ vr ◦wr

where ‖ur‖2 = ‖vr‖2 = ‖wr‖2 = 1

Tucker basis ambiguity

T ≈ G×1 U×2 V×3 W

where UTU = IP , VTV = IQ, WTW = IR

Grey Ballard CA Algorithms 14



Survey Paper

Notation can be a huge obstacle to working with tensors,
standardization can help

I recommend following the conventions of the following paper:

Tensor Decompositions and Applications
Tammy Kolda and Brett Bader

SIAM Review 2009
http://epubs.siam.org/doi/abs/10.1137/07070111X

Grey Ballard CA Algorithms 15
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CP Optimization Problem

For fixed rank R, we want to solve

min
U,V,W

∥∥∥∥∥X−
R∑

r=1

ur ◦ vr ◦wr

∥∥∥∥∥

which is a nonlinear, nonconvex optimization problem

in the matrix case, the SVD gives us the optimal solution

in the tensor case, uniqueness/convergence to optimum not guaranteed

Grey Ballard CA Algorithms 16



Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear least squares problem:

min
V

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥

or equivalently
min

V

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

where � is the Khatri-Rao product, a column-wise Kronecker product

ALS works by alternating over factor matrices, updating one at a time
by solving the corresponding linear least squares problem

Grey Ballard CA Algorithms 17



CP-ALS

Repeat
1 Solve U(VTV ∗WTW) = X(1)(W� V) for U
2 Normalize columns of U
3 Solve V(UTU ∗WTW) = X(2)(W� U) for V
4 Normalize columns of V
5 Solve W(UTU ∗ VTV) = X(3)(V� U) for W
6 Normalize columns of W and store norms in λ

Linear least squares problems solved via normal equations
using identity (A� B)T(A� B) = ATA ∗ BTB,

where ∗ is element-wise product

Grey Ballard CA Algorithms 18
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Matricized Tensor Times Khatri-Rao Product

CP-ALS spends most of its time in MTTKRP (dense or sparse)
corresponds to setting up the right-hand-side of normal equations
M(V ) = X(2)(W� U), for example

In the dense case, it usually makes sense to
1 form Khatri-Rao product explicitly
2 call dense matrix multiplication

In the sparse case, it usually make sense [BK07] to use

element-wise formula m(V )
jr =

I∑

i=1

K∑

k=1

xijkuir wkr

row-wise formula m(V )
j,: =

I∑

i=1

K∑

k=1

xijk (ui,: ∗ wk ,:)
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Coarse-Grain Distribution for CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

Rows of each factor matrices are distributed across processors

Each tensor nonzero is copied to each process that will need it
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Coarse-Grain Distribution for CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

i

j

k ∗
xijk

Rows of each factor matrices are distributed across processors
Each tensor nonzero is copied to each process that will need it
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Coarse-Grain Parallelization for MTTKRP [KU15]

To update V, need to compute M(V ) = X(2)(W� U)

Let Ip, Jp,Kp be the subset of rows of U,V,W owned by processor p

Main loop:
for each j ∈ Jp

for each nonzero xijk in slice j
m(V )

j,: ← m(V )
j,: + xijk · (ui,: ∗ wk ,:)

In the inner loop, ui,: or wk ,: require communication if i /∈ Ip or k /∈ Kp

Grey Ballard CA Algorithms 21



Fine-Grain Distribution of CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

∗

∗

∗

∗

∗

∗

Rows of each factor matrices are distributed across processors
Tensor nonzeros are distributed across processors
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Fine-Grain Parallelization for MTTKRP [KU15]

To update V, need to compute M(V ) = X(2)(W� U)

Let Xp be the subset of nonzeros of X owned by processor p
Let Ip, Jp,Kp be the subset of rows of U,V,W owned by processor p

Main loop:
for each xijk ∈ Xp

m(V )
j,: ← m(V )

j,: + xijk · (ui,: ∗ wk ,:)

In the inner loop, ui,: or wk ,: require communication if i /∈ Ip or k /∈ Kp

After the loop, m(V )
j,: for j /∈ Jp needs to be sent to owner processor

Grey Ballard CA Algorithms 23



Minimizing Communication

Algorithms defined for any distributions of factor matrices / tensor

Distributions determine computational load balance and
communication costs

Finding optimal distribution for each algorithm is a hypergraph
partitioning problem (subject to load balance constraint)

Even if hypergraph is optimally partitioned, no guarantees that
either algorithm is communication optimal

Grey Ballard CA Algorithms 24



Coarse-Grain vs Fine-Grain

Coarse-Grain
Owner computes: communicates
only inputs within MTTKRP
Requires replication of X
Generalizes row-wise algorithm
for SpMV (for multiple vectors)

Fine-Grain
Communicates inputs and
outputs within MTTKRP
No replication of X
Generalizes fine-grain
algorithm for SpMV

Grey Ballard CA Algorithms 25



Performance Comparison [KU15]
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(a) Time on Netflix

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

Number of MPI processes

A
v
e
ra

g
e
 t

im
e
 (

in
 s

e
c
o

n
d

s
) 

p
e
r 

C
P

−
A

L
S

 i
te

ra
ti

o
n

 

 
ht−finegrain−hp

ht−finegrain−random

ht−coarsegrain−hp

ht−coarsegrain−block

DFacTo

(b) Time on NELL-B
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(c) Speedup on Flickr
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(d) Speedup on Delicious

Figure 2: Time for parallel CP-ALS iteration on Netflix and NELL-B, and speedups on Flickr and Delicious.

Table 2: Statistics for the computation and communication
requirements in one CP-ALS iteration for 512-way partition-
ings of the Netflix tensor.

Mode
Comp. load Comm. volume Num. msg.

Max Avg Max Avg Max Avg
ht-finegrain-hp

1 196672 196251 21079 6367 734 316
2 196672 196251 18028 5899 1022 1016
3 196672 196251 3545 2492 1022 1018

ht-finegrain-random
1 197507 196251 272326 252118 1022 1022
2 197507 196251 29282 22715 1022 1022
3 197507 196251 7766 4300 1013 1003

ht-coarsegrain-hp
1 364181 196251 302001 136741 511 511
2 349123 196251 59523 12228 511 511
3 737570 196251 23524 2000 511 507

ht-coarsegrain-block
1 198602 196251 239337 142006 448 447
2 367966 196251 33889 12458 511 445
3 737570 196251 24659 2049 511 394

on up to 1024 cores. The experiments showed that the pro-
posed fine-grain MTTKRP can achieve the best performance
with respect to other alternatives with a good partitioning,
reaching up to 194x speedups on 512 cores.

In our analysis and experiments, we identified the com-
munication latency as the dominant hindrance for further
scalability of the fastest proposed method. We will inves-
tigate this in the future. We also note that the size of the
hypergraphs that we build can cause discomfort to all ex-
isting partitioning tools. Methods that partition huge hy-
pergraphs e�ciently and e↵ectively are needed for handling
larger tensors than those treated in this work.

During the revision process, we have come across to a new
study called DMS on distributed memory tensor factoriza-
tion [30] which uses SPLATT formulation. The communica-
tion is based on all-to-all primitives. The current versions of
the two codes (ours using MPI, DMS using OpenMP+MPI)
do not allow a useful comparison. We plan to update our
codes and do a comparison in the near future.
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Tucker Optimization Problem

For fixed ranks P,Q,R, we want to solve

min
X̂

∥∥∥X− X̂
∥∥∥

2
=

I∑

i=1

J∑

j=1

K∑

k=1

(xijk − x̂ijk )
2 subject to X̂ = JG;U,V,WK

which turns out to be equivalent to

max
U,V,W

‖G‖ subject to G = X×1 UT ×2 VT ×3 WT

which is a nonlinear, nonconvex optimization problem
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Higher-Order Orthogonal Iteration (HOOI)

Fixing all but one factor matrix, we have a matrix problem:

max
V

∥∥∥X×1 Û
T ×2 VT ×3 Ŵ

T
∥∥∥

or equivalently
max

V

∥∥∥VTY(2)

∥∥∥
F

where Y = X×1 Û
T ×3 Ŵ

T

HOOI works by alternating over factor matrices, updating one at a time
by computing leading left singular vectors

Grey Ballard CA Algorithms 28



Sequentially Truncated Higher-Order SVD

HOOI is very sensitive to initialization

Truncated Higher-Order SVD (T-HOSVD) typically used

ST-HOSVD [VVM12] is more efficient than T-HOSVD, works by
initializing with identity matrices U = II , V = IJ , W = IK
applying one iteration of HOOI
where ranks P,Q,R can be chosen based on error tolerance

Grey Ballard CA Algorithms 29



ST-HOSVD Algorithm

1 S(1) ← X(1)XT
(1)

2 U = leading eigenvectors of S(1)

3 Y = X×1 U
4 S(2) ← Y(2)YT

(2)

5 V = leading eigenvectors of S(2)

6 Z = Y×2 V
7 S(3) ← Z(3)ZT

(3)

8 W = leading eigenvectors of S(3)

9 G = Z×3 W

Left singular vectors of A computed as eigenvectors of ATA

Grey Ballard CA Algorithms 30
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Parallel Block Tensor Distribution

For N-mode tensor, use logical N-mode processor grid
Proc. grid: PI × PJ × PK = 3× 5× 2

← J →

←
I
→

←
K
→

Local tensors have dimensions I
PI
× J

PJ
× K

PK
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Unfolded Tensor Distribution

Key idea: each unfolded matrix is 2D block distributed
Proc. grid: PI × PJ × PK = 3× 5× 2

← IK →

↓

J

↑

X(2)

Logical mode-2 2D processor grid: PJ × PIPK
Local unfolded matrices have dimensions J

PJ
× IK

PIPK
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Kernel Matrix Computations

Key computations in ST-HOSVD are
Gram: computing X(2)XT

(2)

TTM: computing Y(2) = VTX(2)

These are just matrix computations, done for each mode in sequence
can determine lower bound/opt. alg. for individual computations
how to minimize communication across all computations?
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Parameter Tuning

1x
1x

1x
38

4

1x
1x

16
x2

4

1x
1x

2x
19

2

1x
1x

4x
96

1x
1x

8x
48

1x
2x

12
x1

6
1x

4x
8x

12
2x

2x
8x

12
2x

4x
6x

8

4x
4x

4x
6

6x
4x

4x
40

1

2

3

4

5 TTM
Evecs
Gram

12
34

13
24

13
42

21
34

23
14

23
41

31
24

31
42

32
14

32
41

34
12

34
21

0

0.5

1

1.5

2

2.5 TTM
Evecs
Gram

Varying processor grid for tensor of
size 384×384×384×384 with

reduced size of 96×96×96×96.

Varying mode order for tensor of
size 25×250×250×250 with

reduced size 10×10×100×100.
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Parallel Scaling
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Application: Compression of Scientific Simulation Data

We applied ST-HOSVD to compress multidimensional data from
numerical simulations of combustion, including the following data sets:

HCCI:
Dimensions: 672× 672× 33× 627
672× 672 spatial grid, 33 variables over 627 time steps
Total size: 70 GB

TJLR:
Dimensions: 460× 700× 360× 35× 16
460× 700× 360 spatial grid, 35 variables over 16 time steps
Total size: 520 GB

SP:
Dimensions: 500× 500× 500× 11× 50
500× 500× 500 spatial grid, 11 variables over 50 time steps
Total size: 550GB
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Application: Compression of Scientific Simulation Data
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Numerical Questions

CP-ALS solves least squares problems using normal equations
ST-HOSVD computes singular vectors using the Gram matrix

Are there applications that require better numerical stability?
Can more numerically stable methods be implemented efficiently?
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CA Questions

What are the communication lower bounds for MTTKRP?
the computation can be expressed as nested loops
is there a tradeoff between computation and communicaton?

What are the communication lower bounds for ST-HOSVD?
we’ve already improved the comm. costs of the published algorithm
can the parameter tuning problems be solved analytically?
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For more details:

Scalable Sparse Tensor Decompositions in
Distributed Memory Systems

Oguz Kaya and Bora Uçar
International Conference for High Performance Computing,

Networking, Storage and Analysis 2015
http://doi.acm.org/10.1145/2807591.2807624

Parallel Tensor Compression for Large-Scale Scientific Data
Woody Austin, Grey Ballard, and Tamara G. Kolda

International Parallel and Distributed Processing Symposium 2016
http://arxiv.org/abs/1510.06689
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