
Part 2: Communication Costs of
Tensor Decompositions

Grey Ballard

CS 294/Math 270: Communication-Avoiding Algorithms
UC Berkeley

March 28, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 



Plan

Introduction to tensor decompositions [KB09]
nomenclature and notation
popular decompositions: CP and Tucker

We’re seeking comm-optimal sequential and parallel algorithms
few known lower bounds
few standard libraries or HPC implementations

Many flavors of problems
dense or sparse
sequential or parallel
CP or Tucker (or alternatives like tensor train)
choices of mathematical algorithm

We’ll do two case studies of parallel algorithms
computing CP decomposition of sparse tensor [KU15]
computing Tucker decomposition of dense tensor [ABK15]

Grey Ballard CA Algorithms 1



Plan

Introduction to tensor decompositions [KB09]
nomenclature and notation
popular decompositions: CP and Tucker

We’re seeking comm-optimal sequential and parallel algorithms
few known lower bounds
few standard libraries or HPC implementations

Many flavors of problems
dense or sparse
sequential or parallel
CP or Tucker (or alternatives like tensor train)
choices of mathematical algorithm

We’ll do two case studies of parallel algorithms
computing CP decomposition of sparse tensor [KU15]
computing Tucker decomposition of dense tensor [ABK15]

Grey Ballard CA Algorithms 1



Plan

Introduction to tensor decompositions [KB09]
nomenclature and notation
popular decompositions: CP and Tucker

We’re seeking comm-optimal sequential and parallel algorithms
few known lower bounds
few standard libraries or HPC implementations

Many flavors of problems
dense or sparse
sequential or parallel
CP or Tucker (or alternatives like tensor train)
choices of mathematical algorithm

We’ll do two case studies of parallel algorithms
computing CP decomposition of sparse tensor [KU15]
computing Tucker decomposition of dense tensor [ABK15]

Grey Ballard CA Algorithms 1



Plan

Introduction to tensor decompositions [KB09]
nomenclature and notation
popular decompositions: CP and Tucker

We’re seeking comm-optimal sequential and parallel algorithms
few known lower bounds
few standard libraries or HPC implementations

Many flavors of problems
dense or sparse
sequential or parallel
CP or Tucker (or alternatives like tensor train)
choices of mathematical algorithm

We’ll do two case studies of parallel algorithms
computing CP decomposition of sparse tensor [KU15]
computing Tucker decomposition of dense tensor [ABK15]

Grey Ballard CA Algorithms 1



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Tensors

Vector 
N = 1 

Matrix 
N = 2 

3rd-Order Tensor 
N = 3 

4th-Order Tensor 
N = 4 

5th-Order Tensor 
N = 5 

An N th-order tensor has N modes
Notation convention: vector v, matrix M, tensor T

Grey Ballard CA Algorithms 2



Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

A tensor can be decomposed into the fibers of each mode
(fix all indices but one)

Grey Ballard CA Algorithms 3



Slices

458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

⟨X, Y ⟩ =

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that ⟨X, X ⟩ = ∥X ∥2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1

a
(2)
i2

· · · a(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though

D
ow

nl
oa

de
d 

09
/0

5/
13

 to
 1

98
.2

06
.2

19
.3

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

A tensor can also be decomposed into the slices of each mode
(fix one index)

Grey Ballard CA Algorithms 4



Unfoldings

A tensor can be reshaped into matrices,
called unfoldings or matricizations, for different modes

(fibers form columns, slices form rows)

Grey Ballard CA Algorithms 5



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Low-rank approximations of tensors

Tensor “decompositions” are usually low-rank approximations

They generalize matrix approximations from two viewpoints
sum of outer products (think PCA)
product of two rectangular matrices (think high-variance subspaces)

Some applications seek true decompositions, but less common

Grey Ballard CA Algorithms 6



Sum of outer products

Matrix:

Tensor:

This is known as the CANDECOMP/PARAFAC (CP) decomposition

Grey Ballard CA Algorithms 7



CP Notation

T ≈ u1 ◦ v1 ◦w1 + · · ·+ uR ◦ vR ◦wR, T ∈ RI×J×K

T ≈ JU,V,WK , U ∈ RI×R,V ∈ RJ×R,W ∈ RK×R are factor matrices

tijk ≈
R∑

r=1

uir vjr wkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Grey Ballard CA Algorithms 8

Notation convention: scalar dimension N, index n with 1 ≤ n ≤ N



Applications of CP

CP often used like PCA for multi-dimensional data
interpretable components separated from noise

Sample applications
chemometrics [AB03]

data is excitation wavelengths × emission wavelengths × time
components correspond to chemical species’ signatures

neuroscience [AABB+07]
data is electrode × frequency × time
components help to describe origin of a seizure

text analysis [BBB08]
data is term × author × time
components discover conversations

Grey Ballard CA Algorithms 9



High-variance subspaces

Matrix:

Tensor:

This is known as the Tucker decomposition

Grey Ballard CA Algorithms 10



Tucker Notation

T ≈ G×1 U×2 V×3 W T ∈ RI×J×K ,G ∈ RP×Q×R is core tensor

T ≈ JG;U,V,WK , U ∈ RI×P ,V ∈ RJ×Q,W ∈ RK×R are factor matrices

tijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr uipvjqwkr , 1 ≤ i ≤ I,1 ≤ j ≤ J,1 ≤ k ≤ K

Grey Ballard CA Algorithms 11



Tensor-Times-Matrix (TTM)

Tensor version:
Y = X×2 M

Y ∈ RI×Q×K X ∈ RI×J×K M ∈ RQ×J

Matrix version:
Y(2) = MX(2)

Y(2) ∈ RQ×IK X(2) ∈ RJ×IK

Element version:

yiqk =
J∑

j=1

mqjxijk

TTM is matrix multiplication with certain unfolding

Grey Ballard CA Algorithms 12



Applications of Tucker

Tucker can be viewed as a richer form of CP, so it’s also used like PCA
a diagonal core tensor corresponds to a CP decomposition

Sample Application
Computer vision: TensorFaces [VT02]

facial recognition system benefiting from varying lighting,
expression, viewpoint

Tucker is typically more efficient than CP for compression
Sample Application

Visual data compression [BRP15]
image, video, and 3D volume data

Grey Ballard CA Algorithms 13



Ambiguities

There are several ambiguities that have to be handled carefully

CP scaling ambiguity

T ≈
R∑

r=1

ur ◦ vr ◦wr → T ≈
R∑

r=1

λr · ur ◦ vr ◦wr

where ‖ur‖2 = ‖vr‖2 = ‖wr‖2 = 1

Tucker basis ambiguity

T ≈ G×1 U×2 V×3 W

where UTU = IP , VTV = IQ, WTW = IR

Grey Ballard CA Algorithms 14



Survey Paper

Notation can be a huge obstacle to working with tensors,
standardization can help

I recommend following the conventions of the following paper:

Tensor Decompositions and Applications
Tammy Kolda and Brett Bader

SIAM Review 2009
http://epubs.siam.org/doi/abs/10.1137/07070111X

Grey Ballard CA Algorithms 15

http://epubs.siam.org/doi/abs/10.1137/07070111X


Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



CP Optimization Problem

For fixed rank R, we want to solve

min
U,V,W

∥∥∥∥∥X−
R∑

r=1

ur ◦ vr ◦wr

∥∥∥∥∥

which is a nonlinear, nonconvex optimization problem

in the matrix case, the SVD gives us the optimal solution

in the tensor case, uniqueness/convergence to optimum not guaranteed

Grey Ballard CA Algorithms 16



Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear least squares problem:

min
V

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥

or equivalently
min

V

∥∥∥X(2) − V(Ŵ� Û)T
∥∥∥

F

where � is the Khatri-Rao product, a column-wise Kronecker product

ALS works by alternating over factor matrices, updating one at a time
by solving the corresponding linear least squares problem

Grey Ballard CA Algorithms 17



CP-ALS

Repeat
1 Solve U(VTV ∗WTW) = X(1)(W� V) for U
2 Normalize columns of U
3 Solve V(UTU ∗WTW) = X(2)(W� U) for V
4 Normalize columns of V
5 Solve W(UTU ∗ VTV) = X(3)(V� U) for W
6 Normalize columns of W and store norms in λ

Linear least squares problems solved via normal equations
using identity (A� B)T(A� B) = ATA ∗ BTB,

where ∗ is element-wise product

Grey Ballard CA Algorithms 18



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Matricized Tensor Times Khatri-Rao Product

CP-ALS spends most of its time in MTTKRP (dense or sparse)
corresponds to setting up the right-hand-side of normal equations
M(V ) = X(2)(W� U), for example

In the dense case, it usually makes sense to
1 form Khatri-Rao product explicitly
2 call dense matrix multiplication

In the sparse case, it usually make sense [BK07] to use

element-wise formula m(V )
jr =

I∑

i=1

K∑

k=1

xijkuir wkr

row-wise formula m(V )
j,: =

I∑

i=1

K∑

k=1

xijk (ui,: ∗ wk ,:)

Grey Ballard CA Algorithms 19



Matricized Tensor Times Khatri-Rao Product

CP-ALS spends most of its time in MTTKRP (dense or sparse)
corresponds to setting up the right-hand-side of normal equations
M(V ) = X(2)(W� U), for example

In the dense case, it usually makes sense to
1 form Khatri-Rao product explicitly
2 call dense matrix multiplication

In the sparse case, it usually make sense [BK07] to use

element-wise formula m(V )
jr =

I∑

i=1

K∑

k=1

xijkuir wkr

row-wise formula m(V )
j,: =

I∑

i=1

K∑

k=1

xijk (ui,: ∗ wk ,:)

Grey Ballard CA Algorithms 19



Matricized Tensor Times Khatri-Rao Product

CP-ALS spends most of its time in MTTKRP (dense or sparse)
corresponds to setting up the right-hand-side of normal equations
M(V ) = X(2)(W� U), for example

In the dense case, it usually makes sense to
1 form Khatri-Rao product explicitly
2 call dense matrix multiplication

In the sparse case, it usually make sense [BK07] to use

element-wise formula m(V )
jr =

I∑

i=1

K∑

k=1

xijkuir wkr

row-wise formula m(V )
j,: =

I∑

i=1

K∑

k=1

xijk (ui,: ∗ wk ,:)

Grey Ballard CA Algorithms 19



Coarse-Grain Distribution for CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

Rows of each factor matrices are distributed across processors

Each tensor nonzero is copied to each process that will need it

Grey Ballard CA Algorithms 20



Coarse-Grain Distribution for CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

i

j

k ∗
xijk

Rows of each factor matrices are distributed across processors
Each tensor nonzero is copied to each process that will need it

Grey Ballard CA Algorithms 20



Coarse-Grain Parallelization for MTTKRP [KU15]

To update V, need to compute M(V ) = X(2)(W� U)

Let Ip, Jp,Kp be the subset of rows of U,V,W owned by processor p

Main loop:
for each j ∈ Jp

for each nonzero xijk in slice j
m(V )

j,: ← m(V )
j,: + xijk · (ui,: ∗ wk ,:)

In the inner loop, ui,: or wk ,: require communication if i /∈ Ip or k /∈ Kp

Grey Ballard CA Algorithms 21



Fine-Grain Distribution of CP-ALS [KU15]

U

P1

P2

P3

P4

↓
I
↑

←R→

V

P1
P2
P3

P4
↓
J
↑

←R→

W

P1

P2

P3

P4

↓
K
↑

←R→

X

∗

∗

∗

∗

∗

∗

Rows of each factor matrices are distributed across processors
Tensor nonzeros are distributed across processors

Grey Ballard CA Algorithms 22



Fine-Grain Parallelization for MTTKRP [KU15]

To update V, need to compute M(V ) = X(2)(W� U)

Let Xp be the subset of nonzeros of X owned by processor p
Let Ip, Jp,Kp be the subset of rows of U,V,W owned by processor p

Main loop:
for each xijk ∈ Xp

m(V )
j,: ← m(V )

j,: + xijk · (ui,: ∗ wk ,:)

In the inner loop, ui,: or wk ,: require communication if i /∈ Ip or k /∈ Kp

After the loop, m(V )
j,: for j /∈ Jp needs to be sent to owner processor

Grey Ballard CA Algorithms 23



Minimizing Communication

Algorithms defined for any distributions of factor matrices / tensor

Distributions determine computational load balance and
communication costs

Finding optimal distribution for each algorithm is a hypergraph
partitioning problem (subject to load balance constraint)

Even if hypergraph is optimally partitioned, no guarantees that
either algorithm is communication optimal

Grey Ballard CA Algorithms 24



Coarse-Grain vs Fine-Grain

Coarse-Grain
Owner computes: communicates
only inputs within MTTKRP
Requires replication of X
Generalizes row-wise algorithm
for SpMV (for multiple vectors)

Fine-Grain
Communicates inputs and
outputs within MTTKRP
No replication of X
Generalizes fine-grain
algorithm for SpMV

Grey Ballard CA Algorithms 25



Performance Comparison [KU15]

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

Number of MPI processes

A
v
e
ra

g
e
 t

im
e
 (

in
 s

e
c
o

n
d

s
) 

p
e
r 

C
P

−
A

L
S

 i
te

ra
ti

o
n

 

 
ht−finegrain−hp

ht−finegrain−random

ht−coarsegrain−hp

ht−coarsegrain−block

DFacTo

(a) Time on Netflix

1 2 4 8 16 32 64 128 256 512 1024
10

−1

10
0

10
1

10
2

Number of MPI processes

A
v
e
ra

g
e
 t

im
e
 (

in
 s

e
c
o

n
d

s
) 

p
e
r 

C
P

−
A

L
S

 i
te

ra
ti

o
n

 

 
ht−finegrain−hp

ht−finegrain−random

ht−coarsegrain−hp

ht−coarsegrain−block

DFacTo

(b) Time on NELL-B

1 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

180

Number of MPI processes

S
p

e
e
d

u
p

 o
v
e
r 

th
e
 s

e
q

u
e
n

ti
a
l 
e
x
e
c
u

ti
o

n
 o

f 
a
 C

P
−

A
L

S
 i
te

ra
ti

o
n

 

 
ht−finegrain−hp

ht−finegrain−random

ht−coarsegrain−hp

ht−coarsegrain−block

(c) Speedup on Flickr

1 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

160

Number of MPI processes

S
p

e
e
d

u
p

 o
v
e
r 

th
e
 s

e
q

u
e
n

ti
a
l 
e
x
e
c
u

ti
o

n
 o

f 
a
 C

P
−

A
L

S
 i
te

ra
ti

o
n

 

 
ht−finegrain−hp

ht−finegrain−random

ht−coarsegrain−hp

ht−coarsegrain−block

(d) Speedup on Delicious

Figure 2: Time for parallel CP-ALS iteration on Netflix and NELL-B, and speedups on Flickr and Delicious.

Table 2: Statistics for the computation and communication
requirements in one CP-ALS iteration for 512-way partition-
ings of the Netflix tensor.

Mode
Comp. load Comm. volume Num. msg.

Max Avg Max Avg Max Avg
ht-finegrain-hp

1 196672 196251 21079 6367 734 316
2 196672 196251 18028 5899 1022 1016
3 196672 196251 3545 2492 1022 1018

ht-finegrain-random
1 197507 196251 272326 252118 1022 1022
2 197507 196251 29282 22715 1022 1022
3 197507 196251 7766 4300 1013 1003

ht-coarsegrain-hp
1 364181 196251 302001 136741 511 511
2 349123 196251 59523 12228 511 511
3 737570 196251 23524 2000 511 507

ht-coarsegrain-block
1 198602 196251 239337 142006 448 447
2 367966 196251 33889 12458 511 445
3 737570 196251 24659 2049 511 394

on up to 1024 cores. The experiments showed that the pro-
posed fine-grain MTTKRP can achieve the best performance
with respect to other alternatives with a good partitioning,
reaching up to 194x speedups on 512 cores.

In our analysis and experiments, we identified the com-
munication latency as the dominant hindrance for further
scalability of the fastest proposed method. We will inves-
tigate this in the future. We also note that the size of the
hypergraphs that we build can cause discomfort to all ex-
isting partitioning tools. Methods that partition huge hy-
pergraphs e�ciently and e↵ectively are needed for handling
larger tensors than those treated in this work.

During the revision process, we have come across to a new
study called DMS on distributed memory tensor factoriza-
tion [30] which uses SPLATT formulation. The communica-
tion is based on all-to-all primitives. The current versions of
the two codes (ours using MPI, DMS using OpenMP+MPI)
do not allow a useful comparison. We plan to update our
codes and do a comparison in the near future.

6. ACKNOWLEDGMENTS
This work was performed using HPC resources from GENCI-

[TGCC/CINES/IDRIS] (Grant 2015-100570). Additional
computational resources were used from the PSMN com-

puting center at ENS Lyon.

7. REFERENCES
[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable

optimization approach for fitting canonical tensor
decompositions. Journal of Chemometrics,
25(2):67–86, February 2011.

[2] C. A. Andersson and R. Bro. The N-way toolbox for
MATLAB. Chemometrics and Intelligent Laboratory
Systems, 52(1):1–4, 2000.

[3] C. J. Appellof and E. Davidson. Strategies for
analyzing data from video fluorometric monitoring of
liquid chromatographic e✏uents. Analytical
Chemistry, 53(13):2053–2056, 1981.

[4] C. Aykanat, B. B. Cambazoglu, and B. Uçar.
Multi-level direct K-way hypergraph partitioning with
multiple constraints and fixed vertices. Journal of
Parallel and Distributed Computing, 68:609–625, 2008.

[5] B. W. Bader and T. G. Kolda. E�cient MATLAB
computations with sparse and factored tensors. SIAM
Journal on Scientific Computing, 30(1):205–231,
December 2007.

[6] B. W. Bader, T. G. Kolda, et al. Matlab tensor
toolbox version 2.6. Available online, February 2015.

[7] J. Bennett and S. Lanning. The netflix prize. In
Proceedings of KDD cup and workshop, volume 2007,
page 35, 2007.

[8] R. H. Bisseling and W. Meesen. Communication
balancing in parallel sparse matrix-vector
multiplication. Electronic Transactions on Numerical
Analysis, 21:47–65, 2005.

[9] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an
architecture for never-ending language learning. In
AAAI, volume 5, page 3, 2010.

[10] J. D. Carroll and J.-J. Chang. Analysis of individual
di↵erences in multidimensional scaling via an N-way
generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[11] Ü. V. Çatalyürek and C. Aykanat.
Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE
Transactions on Parallel and Distributed Systems,
10(7):673–693, Jul 1999.

[12] Ü . V. Çatalyürek and C. Aykanat. PaToH: A
Multilevel Hypergraph Partitioning Tool, Version 3.0.

Grey Ballard CA Algorithms 26



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Tucker Optimization Problem

For fixed ranks P,Q,R, we want to solve

min
X̂

∥∥∥X− X̂
∥∥∥

2
=

I∑

i=1

J∑

j=1

K∑

k=1

(xijk − x̂ijk )
2 subject to X̂ = JG;U,V,WK

which turns out to be equivalent to

max
U,V,W

‖G‖ subject to G = X×1 UT ×2 VT ×3 WT

which is a nonlinear, nonconvex optimization problem

Grey Ballard CA Algorithms 27



Higher-Order Orthogonal Iteration (HOOI)

Fixing all but one factor matrix, we have a matrix problem:

max
V

∥∥∥X×1 Û
T ×2 VT ×3 Ŵ

T
∥∥∥

or equivalently
max

V

∥∥∥VTY(2)

∥∥∥
F

where Y = X×1 Û
T ×3 Ŵ

T

HOOI works by alternating over factor matrices, updating one at a time
by computing leading left singular vectors

Grey Ballard CA Algorithms 28



Sequentially Truncated Higher-Order SVD

HOOI is very sensitive to initialization

Truncated Higher-Order SVD (T-HOSVD) typically used

ST-HOSVD [VVM12] is more efficient than T-HOSVD, works by
initializing with identity matrices U = II , V = IJ , W = IK
applying one iteration of HOOI
where ranks P,Q,R can be chosen based on error tolerance

Grey Ballard CA Algorithms 29



ST-HOSVD Algorithm

1 S(1) ← X(1)XT
(1)

2 U = leading eigenvectors of S(1)

3 Y = X×1 U
4 S(2) ← Y(2)YT

(2)

5 V = leading eigenvectors of S(2)

6 Z = Y×2 V
7 S(3) ← Z(3)ZT

(3)

8 W = leading eigenvectors of S(3)

9 G = Z×3 W

Left singular vectors of A computed as eigenvectors of ATA

Grey Ballard CA Algorithms 30



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Parallel Block Tensor Distribution

For N-mode tensor, use logical N-mode processor grid
Proc. grid: PI × PJ × PK = 3× 5× 2

← J →

←
I
→

←
K
→

Local tensors have dimensions I
PI
× J

PJ
× K

PK

Grey Ballard CA Algorithms 31



Unfolded Tensor Distribution

Key idea: each unfolded matrix is 2D block distributed
Proc. grid: PI × PJ × PK = 3× 5× 2

← IK →

↓

J

↑

X(2)

Logical mode-2 2D processor grid: PJ × PIPK
Local unfolded matrices have dimensions J

PJ
× IK

PIPK

Grey Ballard CA Algorithms 32



Kernel Matrix Computations

Key computations in ST-HOSVD are
Gram: computing X(2)XT

(2)

TTM: computing Y(2) = VTX(2)

These are just matrix computations, done for each mode in sequence
can determine lower bound/opt. alg. for individual computations
how to minimize communication across all computations?

Grey Ballard CA Algorithms 33



Parameter Tuning

1x
1x

1x
38

4

1x
1x

16
x2

4

1x
1x

2x
19

2

1x
1x

4x
96

1x
1x

8x
48

1x
2x

12
x1

6
1x

4x
8x

12
2x

2x
8x

12
2x

4x
6x

8

4x
4x

4x
6

6x
4x

4x
40

1

2

3

4

5 TTM
Evecs
Gram

12
34

13
24

13
42

21
34

23
14

23
41

31
24

31
42

32
14

32
41

34
12

34
21

0

0.5

1

1.5

2

2.5 TTM
Evecs
Gram

Varying processor grid for tensor of
size 384×384×384×384 with

reduced size of 96×96×96×96.

Varying mode order for tensor of
size 25×250×250×250 with

reduced size 10×10×100×100.

Grey Ballard CA Algorithms 34



Parallel Scaling

181 256 625 1296

5
10

15
19
.2

Number of Nodes

G
FL

O
P

S
Pe

rC
or

e

ST-HOSVD

1 2 4 8 16 32 64 128256512

2−
4

2−
3

2−
2

2−
1

20

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

ST-HOSVD

Weak scaling for
200k×200k×200k×200k
tensor with reduced size

20k×20k×20k×20k ,
using k4 nodes for 1 ≤ k ≤ 6.

Strong scaling for
200×200×200×200

tensor with reduced size
20×20×20×20,

using 2k nodes for 0 ≤ k ≤ 9.

Grey Ballard CA Algorithms 35



Application: Compression of Scientific Simulation Data

We applied ST-HOSVD to compress multidimensional data from
numerical simulations of combustion, including the following data sets:

HCCI:
Dimensions: 672× 672× 33× 627
672× 672 spatial grid, 33 variables over 627 time steps
Total size: 70 GB

TJLR:
Dimensions: 460× 700× 360× 35× 16
460× 700× 360 spatial grid, 35 variables over 16 time steps
Total size: 520 GB

SP:
Dimensions: 500× 500× 500× 11× 50
500× 500× 500 spatial grid, 11 variables over 50 time steps
Total size: 550GB

Grey Ballard CA Algorithms 36



Application: Compression of Scientific Simulation Data

10−6 10−5 10−4 10−3 10−2

10
0

10
1

10
2

10
3

10
4

Relative Normwise Error

C
om

pr
es

si
on

R
at

io

HCCI
TJLR
SP

Compression ratio: IJK
PQR+IP+JQ+KR Relative Normwise Error: ‖X−X̂‖‖X‖

Grey Ballard CA Algorithms 37



Outline

1 Tensor Notation

2 Tensor Decompositions

3 Computing CP via Alternating Least Squares
Mathematical Background
Parallel Algorithm for Sparse Tensors

4 Computing Tucker via Sequentially Truncated Higher-Order SVD
Mathematical Background
Parallel Algorithm for Dense Tensors

5 Open Problems



Numerical Questions

CP-ALS solves least squares problems using normal equations
ST-HOSVD computes singular vectors using the Gram matrix

Are there applications that require better numerical stability?
Can more numerically stable methods be implemented efficiently?

Grey Ballard CA Algorithms 38



CA Questions

What are the communication lower bounds for MTTKRP?
the computation can be expressed as nested loops
is there a tradeoff between computation and communicaton?

What are the communication lower bounds for ST-HOSVD?
we’ve already improved the comm. costs of the published algorithm
can the parameter tuning problems be solved analytically?

Grey Ballard CA Algorithms 39



For more details:

Scalable Sparse Tensor Decompositions in
Distributed Memory Systems

Oguz Kaya and Bora Uçar
International Conference for High Performance Computing,

Networking, Storage and Analysis 2015
http://doi.acm.org/10.1145/2807591.2807624

Parallel Tensor Compression for Large-Scale Scientific Data
Woody Austin, Grey Ballard, and Tamara G. Kolda

International Parallel and Distributed Processing Symposium 2016
http://arxiv.org/abs/1510.06689

Grey Ballard CA Algorithms 40

http://doi.acm.org/10.1145/2807591.2807624
http://arxiv.org/abs/1510.06689


References I

Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent
Yener.
Multiway analysis of epilepsy tensors.
Bioinformatics, 23(13):i10–i18, 2007.

C. M. Andersen and R. Bro.
Practical aspects of parafac modeling of fluorescence
excitation-emission data.
Journal of Chemometrics, 17(4):200–215, 2003.

Woody Austin, Grey Ballard, and Tamara G. Kolda.
Parallel tensor compression for large-scale scientific data.
Technical Report 1510.06689, arXiv, 2015.
To appear in IPDPS.

Grey Ballard CA Algorithms 41



References II

Brett W. Bader, Michael W. Berry, and Murray Browne.
Survey of Text Mining II: Clustering, Classification, and Retrieval, chapter
Discussion Tracking in Enron Email Using PARAFAC, pages 147–163.
Springer London, London, 2008.

Brett W. Bader and Tamara G. Kolda.
Efficient MATLAB computations with sparse and factored tensors.
SIAM Journal on Scientific Computing, 30(1):205–231, December 2007.

Rafael Ballester-Ripoll and Renato Pajarola.
Lossy volume compression using tucker truncation and thresholding.
The Visual Computer, pages 1–14, 2015.

T. G. Kolda and B. W. Bader.
Tensor decompositions and applications.
SIAM Review, 51(3):455–500, September 2009.

Grey Ballard CA Algorithms 42



References III

Oguz Kaya and Bora Uçar.
Scalable sparse tensor decompositions in distributed memory systems.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, pages
77:1–77:11, New York, NY, USA, 2015. ACM.

M. Alex O. Vasilescu and Demetri Terzopoulos.
Computer Vision — ECCV 2002: 7th European Conference on Computer
Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I,
chapter Multilinear Analysis of Image Ensembles: TensorFaces, pages
447–460.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen.
A new truncation strategy for the higher-order singular value
decomposition.
SIAM Journal on Scientific Computing, 34(2):A1027–A1052, 2012.

Grey Ballard CA Algorithms 43


	Tensor Notation
	Tensor Decompositions
	Computing CP via Alternating Least Squares
	Mathematical Background
	Parallel Algorithm for Sparse Tensors

	Computing Tucker via Sequentially Truncated Higher-Order SVD
	Mathematical Background
	Parallel Algorithm for Dense Tensors

	Open Problems

