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Plan

Eigenvalue and singular value decompositions of dense matrices
want to compute most/all of the values and (possibly) the vectors
iterative solvers for large sparse matrices another CA topic

We’re seeking comm-optimal sequential and parallel algorithms
known lower bounds (in most cases)
standard LAPACK/ScaLAPACK algorithms not optimal

Many flavors of problems
EVD of symmetric matrix
EVD of nonsymmetric square matrix
SVD of general (rectangular) matrix
generalized versions
subsets of values/vectors desired

Overall approach is two-phase reduction to condensed form
based on orthogonal (similarity) transformations
alternative “divide-and-conquer” approaches another CA topic
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Outline

1 EVD/SVD via Reduction to Condensed Form

2 Standard Algorithms

3 Two-Phase Approach
Full to Band(-Hessenberg)
Band Reduction

4 Open Problems



Canonical Forms for Real Matrices

EVD of symmetric matrix

A = V ΛV T

Λ is diagonal (eigenvalues) and V is orthogonal (eigenvectors)

SVD of general rectangular matrix

A = UΣV T

Σ is diagonal (sing. values) and U,V are orthogonal (sing. vectors)

EVD of nonsymmetric square matrix

A = UTUT

Real Schur form: T is almost triangular and U is orthogonal
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Computational and Numerical Considerations

Canonical forms are based on orthogonal transformations
algorithms that apply orthogonal (similarity) transformations remain
numerically stable

Computing canonical forms requires iterative algorithms
unlike LU or QR decomposition, for example
computation depends on numerical values

Reducing to condensed forms before applying iterative methods
saves computation (and usually communication)

iterating on dense matrices is expensive
there are direct methods for reducing to simpler/sparser forms

Grey Ballard CA Algorithms 3



Condensed Forms for Real Matrices

EVD of symmetric matrix

A = QTQT ← A = V ΛV T

T is tridiagonal and Q is orthogonal

SVD of general rectangular matrix

A = QUBQT
V ← A = UΣV T

B is bidiagonal and QU ,QV are orthogonal

EVD of nonsymmetric square matrix

A = QHQT ← A = UTUT

H is Hessenberg and Q is orthogonal

Grey Ballard CA Algorithms 4



Symmetric EVD via Tridiagonalization

We typically compute the symmetric EVD with 3 steps:

1

3
2

1 Reduction-to-tridiagonal via orthogonal similarity transformations

A = QTQT

2 Solve the symmetric tridiagonal eigenvalue problem

T = V ΛV T

3 Back-transformation of eigenvectors (if desired)

A = (QV )Λ(QV )T
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Householder Tridiagonalization
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For i = 1 to n − 2
1 compute Householder vector yi to annihilate column i
2 apply two-sided symmetric update

Ã = (I − τiyiyT
i ) · A · (I − τiyiyT

i )

cast as symmetric rank-2 update

Ã = A− yivT
i − viyT

i (BLAS 2)

End
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LAPACK Householder Tridiagonalization

Direct tridiagonalization performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
access

↑
access

↑
update

↑
update

↑
access

Panel factorization requires BLAS 2 (matrix-vector) operations
total of O(n3) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations
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Two-Phase Tridiagonalization (SBR)

Symmetric tridiagonalization can be done over two (or more) phases in
procedure known as Successive Band Reduction (SBR) [BLS00]:

1a 1b

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations
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Two-Phase Tridiagonalization (SBR)

Symmetric tridiagonalization can be done over two (or more) phases in
procedure known as Successive Band Reduction (SBR) [BLS00]:

1a

3b

1b

3a

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations

Two-phase back-transformation required for eigenvectors
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Two-Phase Performance Benefits

Two-phase tridiagonalization avoids communication bottlenecks of
direct approach

Sequential performance example

Direct approach suffers poor
cache performance

Two-phase approach already
available in MKL
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Software for Two-Phase Tridiagonalization

Two-phase tridiagonalization is proven to be effective in practice,
achieving better performance than direct tridiagonalization

despite requiring more flops for eigenvectors

Sequential
Successive Band Reduction [BLS00], Intel MKL

Multicore
PLASMA [LLD11], CA-SBR [BDK12]

GPU
MAGMA [HSG+13], Eigen-G [IYM14]

Distributed-memory parallel
ELPA [MBJ+14], Eigen-Exa [IYM11]

other work on two-phase reductions for SVD and nonsym. EVD
bidiagonal reduction [HKL13], Hessenberg reduction [KK11]
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Two-Phase Variants

Bidiagonalization can be done over two phases in a similar procedure:

1a

3b

1b

3a

As can reduction to Hessenberg:

1a

3b

1b

3a
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Basic Idea

Start with the Householder tridiagonalization algorithm:
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Interpret x’s as blocks (submatrices) instead of scalars
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Blocked Full-to-Band Algorithm

For i = 1 to n
b − 2

1 QR factorization to generate Yi and annihilate block column i
2 apply two-sided symmetric update

Ã = (I − YiTiY T
i ) · A · (I − YiT T

i Y T
i )

cast as symmetric rank-2b update

Ã = A− YiV T
i − ViY T

i

End
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Blocked Full-to-Band Algorithm

Full-to-band also performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
no access

↑
access

↑
update

↑
update

Panel factorization is tall-skinny QR factorization
total of O(n2b) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations
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Tall-Skinny QR (TSQR) Algorithm [DGHL12]

Grey Ballard CA Algorithms 15

Key benefit of TSQR:
one parallel reduction

Householder QR:
one reduction per column

Orthogonal factor stored implicitly
as tree of Householder vectors



Reconstructing Householder Vectors (TSQR-HR)

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − Sgn = LU
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T

Grey Ballard CA Algorithms 16



Leading Order Sequential Costs for Full-to-Band

Panel Factorization Flops Words Messages

Householder QR [BLS00] O
(

n3

M1

)
TSQR [LLD11] 4

3n3 O
(

n3
√

M

)
O
(

n3

M3/2

)
TSQR-HR [BDK15] O

(
n3

M3/2

)
Lower Bound [BDHS11] — Ω

(
n3
√

M

)
Ω
(

n3

M3/2

)
Sequential costs of full-to-band reduction of n × n matrix

to band matrix with bandwidth b � n,
where M is the size of the fast memory.
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Leading Order Parallel Costs for Full-to-Band

Panel Factorization Flops Words Messages

Householder QR [MBJ+14] O
(

n2
√

p

)
O (n log p)

TSQR 4
3

n3

p O
(

n2
√

p log p
)

O
(√

p log3 p
)

TSQR-HR [BDK15] O
(

n2
√

p

)
O
(√

p log2 p
)

Lower Bound∗ [BDHS11] — Ω
(

n2
√

p

)
Ω (
√

p)

Parallel costs of full-to-band reduction of n × n matrix
to band matrix with bandwidth b � n

distributed over p processors in 2D fashion.
∗ assumes local memory restricted to O(n2/p)
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ELPA Library Parallel Performance [MBJ+14]
Topical Review

9

ScaLAPACK routines pdsyevr and pzheevr for real and 
complex matrices, respectively. These routines are rather 
new and allow the extraction of only a part of all eigenvec-
tors, as ELPA does. Thus, the comparison is formally on 
equal footing. However, as shown in figure 3, the pdsyevr 
and pzheevr routines in MKL are not yet fully optimized. 
Thus, we also include (ii) performance results of the routines 
pdsyevd and pzheevd, which compute the full set of eigen-
vectors but show better scalability.

Both ELPA and MKL benchmarks were done with IBM 
MPI implementation version 1.3 for X86_64 systems. 
ELPA was built with the kernel routines optimized for AVX 
SandyBridge and IvyBridge processors.

In figure 3, we show scaling plots of MKL 11.0, ELPA 1, 
and ELPA 2 for both real and complex matrices of size 
N  =  5000 and 20 000. The computed fraction of the eigen-
vector spectrum is 100%, 50%, and 10%, respectively. 
Throughout the investigated core range (20 to 10 240 cores), 
ELPA 1 and ELPA 2 both show lower (better) execution times 
than pdsyevr and pzheevr in this version of MKL. For low 
processor counts, i.e. 20 and 40 cores, the time difference to 
MKL is in the range of 10% to 50% . However, with increas-
ing core count the difference becomes much larger. ELPA 1 
and ELPA 2 scale up to almost 5000 cores in the investigated 
setups, whereas MKL effectively stops scaling at ≈100 cores 
(N = 5000) and ≈1000 cores (N = 20 000), respectively. ELPA 
does not scale beyond ≈10 000 cores. However, the time to 

solution is still small and does not increase drastically beyond 
10 000 cores. For real-world applications, this behaviour is 
a critical feature. Even if the eigenvalue solver formally no 
longer scales, other parts of the calculation will continue to 
scale. The low overall execution time of ELPA in the limit 
of large processor counts will help push out the ‘crossover 
point’, i.e. the number of processors beyond which the eigen-
solver dominates the entire calculation.

We also show performance results of Intel’s MKL imple-
mentation of the ScaLAPACK pdsyevd and pzheevd rou-
tines for real and complexed valued matrices. These routines 
always compute all the eigenvectors, which implies that they 
have to perform worse than ELPA if only a fraction of the 
eigenvectors is needed. Although neither routine outperforms 
ELPA, it is interesting to see that these routines currently still 
show better scalability than the MKL routines that allow one 
to limit the calculation to only a fraction of the eigenvalue/
eigenvector pairs.

5.2. Role of the block-cyclic layout: powers of two

As explained in section 4.1 and shown in figure 2, ELPA relies 
on a processor grid that can in principle be rectangular and 
still maintain a lean communication pattern for certain opera-
tions (notably, the transposition of columns and rows). In the 
example and in the initial implementation of ELPA, this was 
first done for processor counts that are powers of two. Figure 4 

Figure 3. Scaling plots of ELPA and MKL 11.0 on the Intel SandyBridge Cluster. Measurements were done on ‘full’ nodes, of 20 cores 
(1 node), 40 cores, 80 cores ... up to 10 240 cores (512 nodes). Run times are shown for real matrices of size N = 5000 (a) and N = 20 000 
(c), and complex matrices for the same matrix sizes (b and d), respectively. For each matrix, fractions of 100%, 50%, and 10% of the 
eigenvector spectrum were calculated. Note that the ScaLAPACK/MKL routines pdsyed and pzheevd always compute all the 
eigenvectors.

J. Phys.: Condens. Matter 26 (2014) 213201
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Band-to-Tridiagonal Reduction

Maintaining band structure during orthogonal similarity
transformations is trickier than with full-to-band phase

Annihilating entries within band causes fill-in outside the band
Bulge-chasing process is required to maintain band structure

Ideas go back a long way:
Rutishauser [Rut63]
Schwarz [Sch63]
Murata and Horikoshi [MH75]
Kaufman [Kau84]
Bischof, Lang, and Sun [BLS00]
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Band-to-Tridiagonal Bulge Chasing
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constraint:
c + d ≤ b

b = bandwidth
c = columns
d = diagonals



1-Sweep Band-to-Tridiagonal [MH75]
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Murata/Horikoshi’s algorithm:
all diagonals annihilated

after one sweep

c = 1 column
d = b − 1 diagonals



Band-to-Bidiagonal Bulge Chasing
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Similar story for SVD:
use separate transformations

for left and right
(rows and columns)



How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory
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Communication-Avoiding SBR

CA-SBR balances the two techniques for getting data re-use

Theoretically optimal approach: cut bandwidth in half at every sweep
log b sweeps

Sequential and shared-memory implementation exist [BDK12]
number of sweeps is tuning parameter
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Leading Order Costs for Seq. Band-to-Tridiagonal

Algorithm Flops Words Messages

LAPACK [Kau00] 4n2b O(n2b) O(n2b)

CA-SBR 5n2b O
(

n2b2

M

)
O
(

n2b2

M2

)
Lower Bound — ? ?

Sequential costs of band-to-tridiagonal reduction of
n × n band matrix with bandwidth b <

√
M/3,

where M is the size of the fast memory.
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Performance Results in Shared Memory

Speedup of sequential CASBR over Intel’s Math Kernel Library
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Performance Results in Shared Memory

Speedup of parallel CASBR (10 threads) over sequential CASBR
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Distributed-Memory Parallel Distribution
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P2 
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Grey Ballard CA Algorithms 28

We use 1D
block or block-cyclic distribution

of columns to processors



Lang’s Algorithm [Lan93, Auc12]
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parallelization of Murata/Horikoshi’s:
eliminate one column at a time,

tridiagonal after one sweep

works like a bandsaw:
columns move left
Householder vectors move right
O(1) messages per column



Communication-Avoiding SBR [BDK15]
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cut bandwidth in half each sweep;
requires multiple sweeps

works like a sandbag relay:
each processor passes bulges along
O(p) messages per sweep



Leading Order Costs for Parallel Band-to-Tridiagonal

Algorithm Flops Words Messages

Lang’s [Lan93, Auc12]
O
(

n2b
p

)
O(nb)

O(n)

CA-SBR [BDK15] O(p log b)

Lower Bound — ? ?

Costs of band-to-tridiagonal reduction of
n × n band matrix with bandwidth b � n

distributed over p processors in 1D fashion.
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Back-Transformation for Eigenvectors

If only eigenvalues are desired, CA-SBR gives a theoretical net win,
but . . .

. . . what if we want eigenvectors?

we must accumulate all the orthogonal transformations from the
band-to-tridiagonal reduction
we generate O(n2) data per sweep
naively, we need O(n3) computation per sweep

In order to achieve O(p log b)� O(n) messages,
we need to take O(log b) sweeps instead of 1 sweep

tradeoff between latency cost and flops/bandwidth cost
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Open Mathematical Problem

In two-phase tridiagonalization, we compute the following matrices:

A = Q1BQ1
T = Q1(Q2TQT

2 )QT
1 = Q1Q2(V ΛV T )Q2

T QT
1

where A is dense, B is band, T is tridiagonal, Λ is diagonal

We can compute A, B, T , Λ, V stably and efficiently, we seek Q1Q2V

Can we compute
Q1Q2 from A and T ; or
Q2 from B and T

stably (as stable as direct tridiagonalization) and
efficiently (� O(n) messages)?
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Open Mathematical Problem

Problem: Given A and (similar) T , compute Q such that A = QTQT

Householder reconstruction established a connection between
A = QR and A = LU

Is there an analogous connection between
A = QTQT and A = LT̃LT (or A = LDLT )?

T̃ is tridiagonal from Aasen’s factorization

D is block-diagonal from Bunch-Kaufman’s factorization

Grey Ballard CA Algorithms 34



Open CA Problem

Two-phase tridiagonalization attains the communication lower bound
assuming local memory of O(n2/p)

Can you exploit the memory-communication tradeoff in the case of
EVD/SVD (like 2.5D matrix multiplication)?

We’re currently working on this

Grey Ballard CA Algorithms 35



Open Implementation Problems

Communication-optimal algorithms have not all been implemented

Shared-memory parallel implementation of CA band reduction showed
promising results

There are preliminary implementations of Householder reconstruction
for full-to-band in distributed memory

CA band reduction not implemented in distributed memory

Even less work on two-phase SVD and nonsymmetric EVD
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For more details:

Avoiding Communication in Successive Band Reduction
Grey Ballard, Jim Demmel, and Nick Knight

ACM Transactions on Parallel Computing 2015
http://doi.acm.org/10.1145/2686877
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Model of Distributed-Memory Parallel Computation

Memory

Cache

Memory

Cache

Memory

Cache

Memory

Cache

To analyze algorithms, we are interested in the following quantities
flops floating point operations

memory bandwidth cost words moved between memory and cache

interprocessor bandwidth cost words communicated between processors

latency cost messages communicated between processors
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