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From scalable analytics to predictions



Time domain analytics

Rewinding on time domain analytics

e Synchronously observed process (Xt),;, € RY
> Tolerate a few missing observations
@ Second order stationarity:

» E(X;)=uX €RY (constant)
» yX(t, h) = Cov(X¢, Xeip) is only a function of h
» h— yX(h) € R*? is the autocovariance function.

@ Want to estimate a linear time dependency model:

> Xt = A]_th]_ + A2Xt72 +...+ Apthp =+ Er



Copy based communication avoidance

Rewinding on time domain analytics

@ Cross-correlation or locally dependent likelihood based analysis can
rely on simple padding strategies
> Parallelism with respect to time axis
* Only copy a necessary look ahead and look back region
» Parallelism with respect to space

* Parallel model calibration with predictor surrounded by “helper data”
region



Overlapping blocks for time axis parallelism
Rewinding on time domain analytics
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Figure: Overlapping blocks for short memory models



Overlapping blocks for spatial domain parallelism
Rewinding on time domain analytics
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Figure: Overlapping blocks for local spatial dependencies



Analyzing autoregressive models

Rewinding on time domain analytics

@ In discrete time:
> Model is Xt = A]_Xt_]_ + A2Xt_2 +...+ ApXt—p + Et.
@ If the process is second order stationary then

» Autocovariance function is well defined: T (h) = E (X¢X,” )
» T(h)= 5725 IN" XX, is a consistent estimator of I'(h)

o LLRi—j(X)= %’h’zgim reveals which of the i and j components of X
<0 iy

is a linear causator of the other

» Causation here is understood in terms of ability to predict the future of
a component based on the observation of the past of another



Estimating autoregressive models

Rewinding on time domain analytics

@ Want to estimate the matrices A; ... A, in
> Xt = A]_Xt,]_ +A2Xt,2 “+... +ApXt7p + &;.

@ Yule-Walker equations:

o @ - e-nlray [r@
E : ALl | T@)

: o 3 B
r(=(p=1) - F(1 () A r(p)

@ Solving this block Toeplitz system yields consistent estimators of the
parameters of the model



Analyzing regularly observed time series at scale

Rewinding on time domain analytics

o How to we compute the estimator I'(h) = == LN X X,
without shared memory?

» By creating a padding of h between computation node
@ Distributed overlapping data structures:

> Overlapping blocks



Overlapping blocks for time axis parallelism
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Power spectrum of a time series

Stochastic processes in the frequency domain

Consider the Fourier transform of (X;): ()AQ =y, Xte*2"’”)‘)

@ The power spectrum of a time series is the Fourier transform of its
autocovariance function:

» 1(A) =X p<nv(h) e~ 2imhA (it is a d x d matrix where d is the
dimension of the system).

@ It is also the covariance of the Fourier transform of the signal
> 1(A) =X X;

@ One can consider it is a signature of a multivariate time series



Distribution of the power spectrum

Stochastic processes in the frequency domain

o Consider a set of frequencies A,...,An

@ As the number of samples T increases, /(A1),...,/(Am) jointly
converge in distribution toward independent random matrices

—

> [(A) ~ Wi W) where W is a complex Gaussian variable with
distribution N (0, /(1))

—

o If A1 # A3, Cov (I/;(Tl)v Irs (2‘2)) = O(%)



Study in frequency domain as a form of compressing
projection
Stochastic processes in the frequency domain
@ Cross correlation in time domain:
y(h)=E (tht1h> L he{—H...H}

@ Power spectrum in frequency domain:
~T 11
M) =E (XX ). he|-5 5
2°2
o The Fourier transform X; is the result of the projection of (Xt) onto
the A" element of the discrete Fourier basis, Py (X;).

_ T 11

)= (PP XOT) 2 € |5 5

o Sufficient information is contained in the series of projections
(P (Xt)),le[_%%]-

» Compressed representation of process (on the driver)



Exploratory data analysis in frequency domain

Stochastic processes in the frequency domain

@ Let (x¢) and (y;) two univariate processes

» We now study the series of correlations

w-e(n ([ Dn (5 ]))- (58 68)

» Two quantities of interest:

* Coherency:
by ()]
boc (A) lyy (2)
* Phase:
angle (ly, (1))
» Detection of seasonality: clear spikes in the spectrum

» Detection of lag: high coherency at all frequencies and phase increases
linearly. Not really handy for a human...



Example with two lagged signals with different sampling
rates
Stochastic processes in the frequency domain

Power spectrum Cross-covariance
(covariances of Fourier transforms)  (Inverse Fourier transform)

Spectrum 1 N_1 = 9000, N_2 = 6000 Spectrum 2 N_1 = 9000, N_2 = 6000

Cross-covarian: = Monte Carlo experiment results
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Figure: Frequency domain and time domain detection of lag between two correlated Brownian
motions (lag = —12) with random time stamps. The first signal has 9000 samples. The second
signal has 6000 samples.



Time series data as it is, not as we want it

Time series for “wild” data

o “Wild data”

> Unsorted
» Sampled at random (random timestamps)

Computing a Fourier transform is still trivial in that context with a map

reduce operation:
—2imtA
A (Xt) = the n
t

P (ye) = Z‘,)’tefzimﬂL
t

Cross Covariance(x,y),, Z Py, (x) Py, (y)* e~ 2%



Modern age for Time Series: big data

Time series for “wild” data

@ Data is scattered across a data center or collected by a distributed
sensor network

Data center Sensor Network
Physical raw data layout Physical raw data layout
in a data center on a distributed sensor network
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Figure: Distributed time series analysis



Another issue with actual data
Time series for “wild” data
o Let (x¢) and (y:) two univariate independent Brownian motions.

> Let us compute their cross-correlation naively
> No bias, empirical average is 0
» But variance is very high.

@ Two methods to address the issue:

\{

Differentiation (Axt = x¢ — x¢—1), (Ayr = yr — yi—1)
Then compute cross-correlation

Needs sorted data.

Compute differentiation in frequency domain

v

v

\4

AXf:)/(}XI.f

@ Also valid for long range dependencies

» Fractional differentiation would require complete shuffling of the data
> Agxe = F (Xe, X1, 00y Xoo)

—

Aoxr = 55 % (if)®



Going back to the time domain

Cross-correlogram estimation via the frequency domain

@ For linear causality inference, estimating a cross-correlogram in time
domain is most important
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Fractional differentiation in frequency domain, Monte
Carlo experiments

Cross-correlogram estimation via the frequency domain

No differentiation Fractional differentiation in freq. domain

Spurious Cross correlation No spurious cross correlation
Cross<correlation Monte Carlo experiment results Cross-corralation Monte Carlo experiment results

1 010

R T T TR

.l o e b S g

o s i
R 000 A G

R | W

x

d
-1.0 -0.10
-0 15 -10 -

Figure: The red lines above indicate the 5% and 95% percentiles over the distribution of 1000
correlation computations with surrogate data. The blue lines indicate the average correlation.
The first signal has 9998 samples and the second 6000. Independent signals with random
irregular timestamps. Long range dependency with Hurst exponent 0.4. o =0.9.



Number of projections and communication avoidance

Cross-correlogram estimation via the frequency domain

@ Compressing data with Fourier transforms is how we achieve
scalability

Distributed communication avoiding
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Number of projections and variance

Cross-correlogram estimation via the frequency domain

o Compressing the data has a statistical cost we pay in terms of variance
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Figure: Empirical distributions of daily cross-correlogram of stock market price variations



Achieving scalability...

Cross-correlogram estimation via the frequency domain

@ A few thousand projections are enough, small communication cost

e Communication time split up: 1 message of 10° doubles (as compared
to GB sized data set).

Influence of number of proj. JPM GS Mar 2012 Scalability with 10000 projections
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Figure: Fourier projections as a communication avoidance mechanism



....while achieving consistency
Cross-correlogram estimation via the frequency domain
@ A few thousand projections are enough, small communication cost
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Inference of causality at scale

Cross-correlogram estimation via the frequency domain

@ A few thousand projections are enough, small communication cost
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Figure: Empirical distributions of daily cross-correlogram of stock market price variations



Back to the Yule-Walker equations

Continuous model estimation
@ We estimate

> % (0) = E(xext), Yox (At) = E (XeXt—at)
Vox (hAt) = E(thttht)

> Yy (0) = E(Yt}/t)v Yy (At) = E(}/t}’tht) ,
Yy (hAt) = E(ytyi—hat)

> Yy (0) = E(xeyt), Yoy (At) = E(xtyt-at)
Yoy (hAL) = ngg}/t—hmz )

. _ | %x(h)  py(h
"= 1 5y Ry 7y (h)

@ We solve the corresponding Yule-Walker equations

ro) @ - -1 |rar (O
-y - - : ALl T
/\ o FE) T /\
(-1 - D re LA L LR

@ And what do we get? What model are we implicitly trying to infer?



Continuous time autoregressive models

Continuous model estimation

e Convolution type stochastic Volterra equations (cf. Anna
Karczewska's monograph)
> Xe=Xo+ [0 (s) Xe—sds+ [£ g0 (s)dWs, t >0
e We estimate the convolution kernel ¢ (s)
@ In cross-asset arbitrage,
dyt = (¢*dX)t+G(t) th
We estimate ¥ (h), ¥,y (h) and ¥, (h) on a discrete grid

We solve the corresponding Yule-Walker equations
We get an estimate of ¢ (h) on the same discrete grid

Yy VvV VY



Inference of convolution kernel at scale

Continuous model estimation

@ 1000 projections are enough, small

Linear prediction X=>X

Avg. est.
Actual

- 5%est
- 95% est.

Linear predictor X=>Y

Avg. est.
Actual
5% est.

- 95%est.

Figure: Empirical distributions of kernel estimates with correlated and lagged Brownian
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Inference with Hayashi-Yoshida estimator

Continuous model estimation

@ Cross-correlation between randomly observed processes is estimates
with another (less scalable) method
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Turning a convolution equation into a predictive tool

Continuous model estimations

@ Reinject observed values of X into
> Xe=Xo+ [Eo0(s) Xesds+ [Lgo(s)dWs, t >0

@ Interpolate the kernel, not the process



Conclusion
Wrapping up

@ 3 main issues with actual time series data:

» Distributed in a partitioned memory
» Long memory

> lrregularly spaced asynchronous timestamps
@ We addressed them:

» We estimated ¢ although consistent estimators are only available when
considering the cross-correlogram of (unobserved) increments

> We overcame the irregular sampling and the long memory issue in a
single step thanks to frequency domain analytics

» This method scales trivially.



