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From scalable analytics to predictions



Time domain analytics
Rewinding on time domain analytics

Synchronously observed process (Xt)t∈Z ∈ Rd

I Tolerate a few missing observations

Second order stationarity:
I E (Xt) = µX ∈ Rd (constant)
I γX (t, h) = Cov(Xt ,Xt+h) is only a function of h
I h→ γX (h) ∈ Rdxd is the autocovariance function.

Want to estimate a linear time dependency model:
I Xt = A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + εt



Copy based communication avoidance
Rewinding on time domain analytics

Cross-correlation or locally dependent likelihood based analysis can
rely on simple padding strategies

I Parallelism with respect to time axis
F Only copy a necessary look ahead and look back region

I Parallelism with respect to space
F Parallel model calibration with predictor surrounded by “helper data”

region



Overlapping blocks for time axis parallelism
Rewinding on time domain analytics

Figure: Overlapping blocks for short memory models



Overlapping blocks for spatial domain parallelism
Rewinding on time domain analytics

Figure: Overlapping blocks for local spatial dependencies



Analyzing autoregressive models
Rewinding on time domain analytics

In discrete time:
I Model is Xt = A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + εt .

If the process is second order stationary then
I Autocovariance function is well defined: Γ(h) = E

(
XtXT

t−h
)

I Γ̂ (h) = 1
N−h−1 ∑

N−h
n=1 XtXT

t−h is a consistent estimator of Γ(h)

LLRi⇒j (X ) = ∑h≥0 Γi ,j (h)

∑h≤0 Γi ,j (h) reveals which of the i and j components of X
is a linear causator of the other

I Causation here is understood in terms of ability to predict the future of
a component based on the observation of the past of another



Estimating autoregressive models
Rewinding on time domain analytics

Want to estimate the matrices A1 ... Ap in
I Xt = A1Xt−1 + A2Xt−2 + . . .+ ApXt−p + εt .

Yule-Walker equations:

I


Γ̂ (0) Γ̂ (1) · · · ̂Γ(p−1)

Γ̂ (−1)
. . . . . .

...
...

. . . . . . Γ̂ (1)
̂Γ(−(p−1)) · · · Γ̂ (−1) Γ̂ (0)




AT
1

AT
2
...

AT
p

=


Γ̂ (1)

Γ̂ (2)
...

Γ̂ (p)


Solving this block Toeplitz system yields consistent estimators of the
parameters of the model



Analyzing regularly observed time series at scale
Rewinding on time domain analytics

How to we compute the estimator Γ̂ (h) = 1
N−h−1 ∑

N−h
n=1 XtXT

t−h
without shared memory?

I By creating a padding of h between computation node

Distributed overlapping data structures:
I Overlapping blocks



Overlapping blocks for time axis parallelism

Figure: Overlapping blocks for short memory models



Power spectrum of a time series
Stochastic processes in the frequency domain

Consider the Fourier transform of (Xt):
(

X̂λ = ∑
T
t=1 Xte−2iπtλ

)
The power spectrum of a time series is the Fourier transform of its
autocovariance function:

I I (λ ) = ∑|h|<n γ (h)e−2iπhλ (it is a d×d matrix where d is the
dimension of the system).

It is also the covariance of the Fourier transform of the signal
I I (λ ) = X̂λ X̂ ∗

λ

One can consider it is a signature of a multivariate time series



Distribution of the power spectrum
Stochastic processes in the frequency domain

Consider a set of frequencies λ1, . . . ,λm

As the number of samples T increases, Î (λ1), . . . , Î (λm) jointly
converge in distribution toward independent random matrices

I ̂I (λ )∼WkW ∗
k where Wk is a complex Gaussian variable with

distribution Nc (0, I (λ ))

If λ1 6= λ2, Cov
(
̂Ipq (λ1), ̂Irs (λ2)

)
= O

( 1
n
)



Study in frequency domain as a form of compressing
projection
Stochastic processes in the frequency domain

Cross correlation in time domain:
γ (h) = E

(
XtXT

t+h

)
, h ∈ {−H . . .H}

Power spectrum in frequency domain:

I (λ ) = E
(

X̂λ X̂λ

T)
, λ ∈

[
−1

2 ,
1
2

]
The Fourier transform X̂λ is the result of the projection of (Xt) onto
the λ th element of the discrete Fourier basis, Pλ (Xt).

I (λ ) = E
(

Pλ (Xt)Pλ (Xt)T
)
, λ ∈

[
−1

2 ,
1
2

]
Sufficient information is contained in the series of projections
(Pλ (Xt))

λ∈[− 1
2 ,

1
2 ].

I Compressed representation of process (on the driver)

(
Pλk (Xt)

)
k={1...K}



Exploratory data analysis in frequency domain
Stochastic processes in the frequency domain

Let (xt) and (yt) two univariate processes
I We now study the series of correlations

I (λ ) = E
(

Pλ

([
xt
yt

])
Pλ

([
xt
yt

])T
)

=

(
Ixx (λ ) Ixy (λ )
Iyx (λ ) Iyy (λ )

)
I Two quantities of interest:

F Coherency: ∣∣Ixy (λ )
∣∣√

Ixx (λ ) Iyy (λ )

F Phase:
angle(Ixy (λ ))

I Detection of seasonality: clear spikes in the spectrum
I Detection of lag: high coherency at all frequencies and phase increases

linearly. Not really handy for a human...



Example with two lagged signals with different sampling
rates
Stochastic processes in the frequency domain

Power spectrum Cross-covariance
(covariances of Fourier transforms) (Inverse Fourier transform)

Figure: Frequency domain and time domain detection of lag between two correlated Brownian
motions (lag = −12) with random time stamps. The first signal has 9000 samples. The second
signal has 6000 samples.



Time series data as it is, not as we want it
Time series for “wild” data

“Wild data”
I Unsorted
I Sampled at random (random timestamps)

Computing a Fourier transform is still trivial in that context with a map
reduce operation:

Pλ (xt) = ∑
t

xte−2iπtλ

Pλ (yt) = ∑
t

yte−2iπtλ

Cross Covariance(x ,y)h =
1
K

K

∑
k=1

Pλk (x)Pλk (y)∗ e−2π ihλk



Modern age for Time Series: big data
Time series for “wild” data

Data is scattered across a data center or collected by a distributed
sensor network

Data center Sensor Network

Figure: Distributed time series analysis



Another issue with actual data
Time series for “wild” data

Let (xt) and (yt) two univariate independent Brownian motions.
I Let us compute their cross-correlation naively
I No bias, empirical average is 0
I But variance is very high.

Two methods to address the issue:
I Differentiation (∆xt = xt −xt−1), (∆yt = yt −yt−1)
I Then compute cross-correlation
I Needs sorted data.
I Compute differentiation in frequency domain

∆̂x f = x̂f × if

Also valid for long range dependencies
I Fractional differentiation would require complete shuffling of the data
I ∆αxt = F (xt ,xt−1, . . . ,x−∞)

∆̂αxf = x̂f × (if )α



Going back to the time domain
Cross-correlogram estimation via the frequency domain

For linear causality inference, estimating a cross-correlogram in time
domain is most important

Figure: From spectrum to cross-correlogram



Fractional differentiation in frequency domain, Monte
Carlo experiments
Cross-correlogram estimation via the frequency domain

No differentiation Fractional differentiation in freq. domain
Spurious Cross correlation No spurious cross correlation

Figure: The red lines above indicate the 5% and 95% percentiles over the distribution of 1000
correlation computations with surrogate data. The blue lines indicate the average correlation.
The first signal has 9998 samples and the second 6000. Independent signals with random
irregular timestamps. Long range dependency with Hurst exponent 0.4. α = 0.9.



Number of projections and communication avoidance
Cross-correlogram estimation via the frequency domain

Compressing data with Fourier transforms is how we achieve
scalability

Figure: Communication needed = O (#projections)



Number of projections and variance
Cross-correlogram estimation via the frequency domain

Compressing the data has a statistical cost we pay in terms of variance

Figure: Empirical distributions of daily cross-correlogram of stock market price variations



Achieving scalability...
Cross-correlogram estimation via the frequency domain

A few thousand projections are enough, small communication cost
Communication time split up: 1 message of 103 doubles (as compared
to GB sized data set).
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Figure: Fourier projections as a communication avoidance mechanism



....while achieving consistency
Cross-correlogram estimation via the frequency domain

A few thousand projections are enough, small communication cost
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Figure: Empirical distributions of daily cross-correlogram of stock market price variations



Inference of causality at scale
Cross-correlogram estimation via the frequency domain

A few thousand projections are enough, small communication cost
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Figure: Empirical distributions of daily cross-correlogram of stock market price variations



Back to the Yule-Walker equations
Continuous model estimation

We estimate
I γxx (0) = E (xtxt), γxx (∆t) = E (xtxt−∆t) , ... ,

γxx (h∆t) = E (xtxt−h∆t)
I γyy (0) = E (ytyt), γyy (∆t) = E (ytyt−∆t) , ... ,

γyy (h∆t) = E (ytyt−h∆t)
I γxy (0) = E (xtyt), γxy (∆t) = E (xtyt−∆t) , ... ,

γxy (h∆t) = E (xtyt−h∆t)

I Γ(h) =

[
γxx (h) γxy (h)

γxy (−h) γyy (h)

]
We solve the corresponding Yule-Walker equations

I


Γ̂ (0) Γ̂ (1) · · · ̂Γ(p−1)

Γ̂ (−1)
. . . . . .

...
...

. . . . . . Γ̂ (1)
̂Γ(−(p−1)) · · · Γ̂ (−1) Γ̂ (0)




AT
1

AT
2
...

AT
p

=


Γ̂ (1)

Γ̂ (2)
...

Γ̂ (p)


And what do we get? What model are we implicitly trying to infer?



Continuous time autoregressive models
Continuous model estimation

Convolution type stochastic Volterra equations (cf. Anna
Karczewska’s monograph)

I Xt = X0 +
∫ t

s=0 φ (s)Xt−sds +
∫ t

s=0 σ (s)dWs , t > 0

We estimate the convolution kernel φ (s)

In cross-asset arbitrage,
I dyt = (φ ?dx)t + σ (t)dWt
I We estimate γxx (h), γyy (h) and γxy (h) on a discrete grid
I We solve the corresponding Yule-Walker equations
I We get an estimate of φ (h) on the same discrete grid



Inference of convolution kernel at scale
Continuous model estimation

1000 projections are enough, small communication cost
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Figure: Empirical distributions of kernel estimates with correlated and lagged Brownian
motions observed at random asynchronously, Fourier transforms



Inference with Hayashi-Yoshida estimator
Continuous model estimation

Cross-correlation between randomly observed processes is estimates
with another (less scalable) method
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Figure: Empirical distributions of kernel estimates with correlated and lagged Brownian
motions observed at random asynchronously, Hayashi-Yoshida



Turning a convolution equation into a predictive tool
Continuous model estimations

Reinject observed values of X into
I Xt = X0 +

∫ t
s=0 φ (s)Xt−sds +

∫ t
s=0 σ (s)dWs , t > 0

Interpolate the kernel, not the process



Conclusion
Wrapping up

3 main issues with actual time series data:
I Distributed in a partitioned memory
I Long memory
I Irregularly spaced asynchronous timestamps

We addressed them:
I We estimated φ although consistent estimators are only available when

considering the cross-correlogram of (unobserved) increments
I We overcame the irregular sampling and the long memory issue in a

single step thanks to frequency domain analytics
I This method scales trivially.


