
Communication avoiding
LU and QR factorizations

Laura Grigori
ALPINES

INRIA Rocquencourt - LJLL, UPMC
On sabbatical at UC Berkeley

Page 2

Motivation - the communication wall

•  Time to move data >> time per flop
•  Gap steadily and exponentially growing over time

“Getting up to speed, The future of supercomputing” 2004, data from 1995-2004
“We are going to hit the memory wall, unless something basic changes”
 [W. Wulf, S. McKee, 95]

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%

DRAM 23% 5.5%

Page 3

Compelling numbers (1)

DRAM bandwidth:
•  Mid 90’s ~ 0.2 bytes/flop – 1 byte/flop
•  Past few years ~ 0.02 to 0.05 bytes/flop

DRAM latency:
•  DDR2 (2007) ~ 120 ns 1x
•  DDR4 (2014) ~ 45 ns 2.6x in 7 years
•  Stacked memory ~ similar to DDR4

Time/flop
•  2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
•  2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

Source: J. Shalf, LBNL

Page 4

The role of numerical linear algebra
•  Challenging applications often rely on solving linear algebra problems
•  Linear systems of equations
 Solve Ax = b, where A ∈ Rnxn, b ∈ Rn , x ∈ Rn

•  Direct methods
 PA = LU, then solve PTLUx = b
 LU factorization is backward stable,

•  Iterative methods
•  Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}

such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied,
 where Lk is a subspace of dimension k and r0=Ax0-b.
•  Convergence depends on and the eigenvalue distribution (for SPD

matrices).

€

PA −
)
L ⋅

)
U

∞
 is small, close to machine epsilon in practice

€

κ(A)

Page 5

Least Square (LS) Problems
•  Given , solve .
•  Any solution of the LS problem satisfies the normal equations:

•  Given the QR factorization of A

 if rank(A) = rank(R) = n, then the LS solution is given by

•  The QR factorization is column-wise backward stable

mnm bA RR ∈∈ × ,

€

minx Ax − b 2

€

AT Ax = ATb

 matrix orthogonal is
matrix ngular upper tria is

 matrix, real is
 where

0
mmQ
nnR

nmnmA
R

QA
×

×

≥×

⎥
⎦

⎤
⎢
⎣

⎡
=

€

Rx = QTb()(1: n)

€

A − ˆ Q ̂ R
2
 is small, close to machine epsilon in practice

Page 6

Approaches for reducing communication

•  Tuning
•  Overlap communication and computation, at most a factor of 2 speedup

•  Same numerical algorithm,
 different schedule of the computation

•  Block algorithms for NLA
•  Barron and Swinnerton-Dyer, 1960
•  ScaLAPACK, Blackford et al 97

•  Cache oblivious algorithms for NLA
•  Gustavson 97, Toledo 97, Frens and
 Wise 03, Ahmed and Pingali 00

•  Same algebraic framework, different numerical algorithm
•  The approach used in CA algorithms
•  More opportunities for reducing communication, may affect stability

Page 7

Motivation

•  The communication problem needs to be taken into account
higher in the computing stack

•  A paradigm shift in the way the numerical algorithms are
devised is required

•  Communication avoiding algorithms - a novel perspective for
numerical linear algebra
•  Minimize volume of communication
•  Minimize number of messages
•  Minimize over multiple levels of memory/parallelism
•  Allow redundant computations (preferably as a low order term)

Page 8

Communication Complexity of
Dense Linear Algebra

•  Matrix multiply, using 2n3 flops (sequential or parallel)
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
•  Lower bound on Bandwidth = Ω (#flops / M1/2)
•  Lower bound on Latency = Ω (#flops / M3/2)

€

I −B
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

=

I
A I

I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟
.
I −B

I AB
I

⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟

•  Same lower bounds apply to LU using reduction
•  Demmel, LG, Hoemmen, Langou 2008

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 9

Sequential algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky

LU

QR

RRQR

•  Only several references shown for block algorithms (LAPACK),
 cache-oblivious algorithms and communication avoiding algorithms
•  CA algorithms exist also for SVD and eigenvalue computation

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

[Frens, Wise, 03], 3x flops
 [Demmel, LG, Hoemmen, Langou, 08]

[Ballard et al, 14]
[Demmel, LG, Gu, Xiang 11]

uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

Page 10

2D Parallel algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
[Ballard et al, 14]

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

•  Only several references shown, block algorithms (ScaLAPACK) and
 communication avoiding algorithms
•  CA algorithms exist also for SVD and eigenvalue computation

•  If memory per processor = n2 / P, the lower bounds become
 #words_moved ≥ Ω (n2 / P1/2), #messages ≥ Ω (P1/2)

L	

U	

A(ib)	

Q	

R	

A(ib)	

Page 11

Scalability of communication optimal algorithms
•  2D communication optimal algorithms, M = 3⋅n2/P

 (matrix distributed over a P1/2-by- P1/2 grid of processors)
TP = O (n3 / P) γ + Ω (n2 / P1/2) β + Ω (P1/2) α
•  Isoefficiency: n3 ∝ P1.5 and n2 ∝ P
•  For GEPP, n3 ∝ P2.25 [Grama et al, 93]

•  3D communication optimal algorithms, M = 3⋅P1/3(n2/P)
 (matrix distributed over a P1/3-by- P1/3-by- P1/3 grid of processors)

 TP = O (n3 / P) γ + Ω (n2 / P2/3) β + Ω (log(P)) α
•  Isoefficiency: n3 ∝ P and n2 ∝ P2/3

•  2.5D algorithms with M = 3⋅c⋅(n2/P), and 3D algorithms exist for matrix
multiplication and LU factorization

•  References: Dekel et al 81, Agarwal et al 90, 95, Johnsson 93, McColl and Tiskin 99,
Irony and Toledo 02, Solomonik and Demmel 2011

 E - the ratio between execution time on a single processor and total execution time
summed over P processors.
Isoefficiency - how the amount of computation must scale with P to keep E constant.

Page 12

2.5D algorithms for LU, QR
•  Assume c>1 copies of data, memory per processor is M ≈ c⋅(n2/P)

•  For matrix multiplication
•  The bandwidth is reduced by a factor of c1/2

•  The latency is reduced by a factor of c3/2
•  Perfect Strong Scaling regime, given P such that M = 3n2 /P
 T(cP) = T(P)/c

•  For LU, QR
•  The bandwidth can be reduced by a factor of c1/2

•  But then the latency will increase by a factor of c1/2

•  Thm [Solomonik et al]: Perfect Strong Scaling impossible for LU,
because

 Latency*Bandwidth = Ω(n2)
•  Conjecture: this applies to other factorizations as QR, RRQR, etc.

Page 13

2.5D LU with and without pivoting

•  2.5D algorithms with M = 3⋅c⋅(n2/P), and 3D algorithms exist for matrix
multiplication and LU factorization

•  References: Dekel et al 81, Agarwal et al 90, 95, Johnsson 93, McColl and Tiskin 99,
Irony and Toledo 02, Solomonik and Demmel 2011 (data presented below)

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

T
im

e
 (

se
c)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Page 14

The algebra of LU factorization

•  Compute the factorization PA = LU

•  Given the matrix

 Let

€

A =

3 1 3
6 7 3
9 12 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

M1A =

1
−2 1
−3 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, M1A =

3 1 3
0 5 −3
0 9 −6

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Page 15

The need for pivoting
•  For stability avoid division by small elements, otherwise ||A-LU||

can be large
•  Because of roundoff error

•  For example

 has an LU factorization if we permute the rows of A

•  Partial pivoting allows to bound all elements of L by 1.

€

A =

0 3 3
3 1 3
6 2 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

PA =

6 2 3
0 3 3
3 1 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

1
1

0.5 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

6 2 3
3 3
1.5

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Page 16

LU with partial pivoting – BLAS 2 algorithm

•  Algorithm using BLAS 1/2 operations

Source slide: J. Demmel

for i = 1 to n-1
 Let A(j,i) be of elt. of max magnitude in A(i+1:n,i)
 Permute rows i and j
 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
 … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
 - A(i+1:n , i) * A(i , i+1:n)
 … BLAS 2 (rank-1 update)

for i = 1 to n-1
 Let A(j,i) be elt. of max magnitude in A(i+1:n,i)
 Permute rows i and j
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Page 17

Block LU factorization – obtained by delaying updates

•  Matrix A of size nxn is partitioned as

•  The first step computes LU with partial pivoting of the first block:

•  The factorization obtained is:

•  The algorithm continues recursively on the trailing matrix A22
1

€

A =
A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ , where A11 is b × b

€

P1
A11
A21

⎛

⎝
⎜

⎞

⎠
⎟ =

L11
L21

⎛

⎝
⎜

⎞

⎠
⎟ U11

€

P1A =
L11

L21 In−b

⎛

⎝
⎜

⎞

⎠
⎟
U11 U12

A22
1

⎛

⎝
⎜

⎞

⎠
⎟ , where

U12 = L11
−1A12

A22
1 = A22 − L21U12

Page 18

Block LU factorization – the algorithm

1.  Compute LU with partial pivoting of the first panel

2.  Pivot by applying the permutation matrix P1 on the entire matrix

3.  Solve the triangular system to compute a block row of U

4.  Update the trailing matrix

5.  The algorithm continues recursively on the trailing matrix

€

P1
A11
A21

⎛

⎝
⎜

⎞

⎠
⎟ =

L11
L21

⎛

⎝
⎜

⎞

⎠
⎟ U11

€

P1A = A

€

U12 = L12
−1A 12

€

A 22
1 = A 22 − L21U12

€

A 22
1

Page 19

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b
 A(ib)	 = A(ib:n, ib:n)

 (1) Compute panel factorization
 - find pivot in each column, swap rows

 (2) Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

L	

U	

A(ib)	

L	

U	

A(ib+b)	

L	

U	

A(ib)	

L	

U	

A(ib)	

)log(2 rPnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

#messages

Page 20

General scheme for
QR factorization by Householder transformations

The Householder matrix

 has the following properties:
•  is symmetric and orthogonal,
 Hi

2 = I,
•  is independent of the scaling of hi,
•  it reflects x about the hyperplane

•  For QR, we choose a Householder matrix that allows to annihilate
the elements of a vector x, except first one.

€

Hi = I −τ ihihi
T

€

span(hi)
⊥

€

hi

€

x

€

span(hi)
⊥

Page 21

General scheme for
QR factorization by Householder transformations

•  Apply Householder transformations to annihilate subdiagonal entries

•  For A of size mxn, the factorization can be written as:

€

A =

x x x x
x x x x
x x x x
x x x x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= H1

x x x x
0 x x x
0 x x x
0 x x x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= H1

1
˜ H 2

⎛

⎝
⎜

⎞

⎠
⎟

x x x x
0 x x x
0 0 x x
0 0 x x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

= H1H2

1
1

˜ H 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x x x x
0 x x x
0 0 x x
0 0 0 x

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= H1H2H3R = QR

Page 22

Compact representation for Q

•  Orthogonal factor Q can be represented implicitly as

•  Example for b=2:

€

Q = H1H2KHb = (I −τ1h1h1
T)K(I −τbhbhb

T) = I −YTYT , where

Y = h1 h2 K hb()

€

Y = (h1 h2), T =
τ1 -τ1h1

T h2τ2

τ2

⎛

⎝
⎜

⎞

⎠
⎟

	 T	 Y	 YT	 I	

Page 23

Algebra of block QR factorization

Matrix A of size nxn is partitioned as

Block QR algebra

The first step of the block QR factorization algorithm computes:

The algorithm continues recursively on the trailing matrix A22
1

€

A =
A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ , where A11 is b × b

€

Q1
T A =

R11 R12
A22
1

⎡

⎣
⎢

⎤

⎦
⎥

Page 24

Block QR factorization

Block QR algebra:
1.  Compute panel factorization:

2.  Compute the compact representation:

3.  Update the trailing matrix:

4.  The algorithm continues recursively on the trailing matrix.

€

A =
A11 A12
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟ =Q1

R11 R12
A22

1

⎛

⎝
⎜

⎞

⎠
⎟

€

A11

A12

⎛

⎝
⎜

⎞

⎠
⎟ = Q1

R11⎛

⎝
⎜

⎞

⎠
⎟ , Q1 = H1H2...Hb

€

Q1 = I −Y1T1Y1
T

€

I −Y1T1
TY1

T() A12A22
⎛

⎝
⎜

⎞

⎠
⎟ =

A12
A22

⎛

⎝
⎜

⎞

⎠
⎟ −Y1 T1

T Y1
T A12
A22

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ =

R12
A22
1

⎛

⎝
⎜

⎞

⎠
⎟

	 T1	 Y1	 Y1T	 I	

Page 25

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	

•  QR decomposition of m x b matrix W, m >> b
•  P processors, block row layout

•  Classic Parallel Algorithm
•  Compute Householder vector for each column
•  Number of messages ∝ b log P

•  Communication Avoiding Algorithm
•  Reduction operation, with QR as operator
•  Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 26

Parallel TSQR

QR

	 R00	 V00`
	 W0

	

R10	 V10
	 W1

	

R20	 V20
	 W2

	

R30	 V30
	 W3

	

R00	

R10	
V01

	 R01	

R20	

R30	
V11

	 R11	

P0	

P1	

P2	

P3	

V02
	 R02	 R01	

R11	

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
 Becker, Patterson, 02

Page 27

Q is represented implicitly as a product
Output: {Q00, Q10, Q00, Q20, Q30, Q01, Q11, Q02, R02}

€

W =

W0

W1

W2

W3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Q00R00
Q10R10
Q20R20
Q30R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Q00

Q10
Q20

Q30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

R00
R10
R20
R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

€

R00
R10
R20
R30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
Q01R01
Q11R11

⎛

⎝
⎜

⎞

⎠
⎟ =

Q01

Q11

⎛

⎝
⎜

⎞

⎠
⎟ .
R01
R11

⎛

⎝
⎜

⎞

⎠
⎟ 0202

11

01 RQ
R
R

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

Page 28
Q is represented implicitly as a product

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

30

20

10

00

30

20

10

00

3

2

1

0

.

R
R
R
R

Q
Q

Q
Q

W
W
W
W

W

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11

01

11

01

30

20

10

00

.
R
R

Q
Q

R
R
R
R

0202
11

01 RQ
R
R

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Flexibility of TSQR and CAQR algorithms

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

W	 =	 	

W0	
W1	
W2	
W3	

R01	
R02	

R00	

R03	
Sequen8al:	

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R01	

R01	
R11	

R02	

R11	
R03	

Dual	 Core:	

Reduc8on	 tree	 will	 depend	 on	 the	 underlying	 architecture,	
could	 be	 chosen	 dynamically	

Page 29

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

CAQR

Page 30

QR for General Matrices
•  Cost of CAQR vs ScaLAPACK’s PDGEQRF

•  n x n matrix on P1/2 x P1/2 processor grid, block size b
•  Flops: (4/3)n3/P + (3/4)n2b log P/P1/2 vs (4/3)n3/P
•  Bandwidth: (3/4)n2 log P/P1/2 vs same
•  Latency: 2.5 n log P / b vs 1.5 n log P

•  Close to optimal (modulo log P factors)
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,
•  Choose b near n / P1/2 (its upper bound)
•  Bandwidth lower bound:
 Ω(n2 /P1/2) – just log(P) smaller
•  Latency lower bound:
 Ω(P1/2) – just polylog(P) smaller

Page 31

Performance of TSQR vs Sca/LAPACK

•  Parallel
•  Intel Xeon (two socket, quad core machine), 2010

•  Up to 5.3x speedup (8 cores, 105 x 200)
•  Pentium III cluster, Dolphin Interconnect, MPICH, 2008

•  Up to 6.7x speedup (16 procs, 100K x 200)
•  BlueGene/L, 2008

•  Up to 4x speedup (32 procs, 1M x 50)
•  Tesla C 2050 / Fermi (Anderson et al)

•  Up to 13x (110,592 x 100)
•  Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
•  QR computed locally using recursive algorithm (Elmroth-Gustavson) –

enabled by TSQR

•  Results from many papers, for some see [Demmel, LG, Hoemmen,
Langou, SISC 12], [Donfack, LG, IPDPS 10].

Page 32

Modeled Speedups of CAQR vs ScaLAPACK

Petascale	 	
	 	 	 	 	 	 up	 to	 22.9x	

IBM	 Power	 5	
	 	 	 	 	 	 up	 to	 9.7x	

“Grid”	
	 	 	 	 	 	 up	 to	 11x	

	 Petascale	 machine	 with	 8192	 procs,	 each	 at	 500	 GFlops/s,	 a	 bandwidth	 of	 4	 GB/s.	
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ

Page 33

Algebra of TSQR

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	 Parallel:	

P0	

P1	

P2	

P3	

TSQR-HR CAQR

Page 34

Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

can be re-written as an LU factorization

€

W =QR = (I −YTY1
T)R

€

W − R =Y (−TY1
T)R

Q − I =Y (−TY1
T)

I	 Q	
-‐	 T	 Y	 Y1T	

Page 35

Reconstruct Householder vectors TSQR-HR

1.  Perform TSQR
2.  Form Q explicitly (tall-skinny orthonormal factor)
3.  Perform LU decomposition: Q - I = LU

4.  Set Y = L
5.  Set T = -U Y1

-T

€

I −YTYT = I −
Y1
Y2

⎡

⎣
⎢

⎤

⎦
⎥ T Y1

T Y2
T[]

	 T	 Y	 YT	 I	

I	 Q	
-‐	 T	 Y	 Y1T	

Page 36

Strong scaling

•  Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
•  Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
•  Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime
Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.

 1x

7x

6x

1x

3.7x
2.7x

Page 37

Weak scaling QR on Hopper

•  Matrix of size 15K-by-15K to 131K-by-131K
•  Hopper: Cray XE6 supercomputer (NERSC) – dual socket 12-

core Magny-Cours Opteron (2.1 GHz)

Page 38

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∏

∏

∏

∏

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Π

30

20

10

00

30

20

10

00

30

20

10

00

3

2

1

0

.

0

U
U
U
U

L
L

L
L

W
W
W
W

W

4444 34444 21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∏

∏
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Π

11

01

11

01

11

01

30

20

10

00

..

1

U
U

L
L

U
U
U
U

43421
{ 020202

11

01

2

UL
U
U

∏

∏=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Page 39

Obvious generalization of TSQR to LU

•  Block parallel pivoting:
•  uses a binary tree and is optimal in the parallel case

•  Block pairwise pivoting:
•  uses a flat tree and is optimal in the sequential case
•  introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a

system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
•  used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W	 =	 	

W0	
W1	
W2	
W3	

U00	
U10	
U20	
U30	

U01	

U11	

U02	

W=	 	

W0	
W1	
W2	
W3	

U01	
U02	

U00	

U03	

Page 40

Stability of the LU factorization
•  The backward stability of the LU factorization of a matrix A of size n-by-n

 depends on the growth factor

 where aij
k are the values at the k-th step.

•  gW ≤ 2n-1 , attained for Wilkinson matrix

 but in practice it is on the order of n2/3 -- n1/2

•  Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

 - the multipliers in L are small,

 - the correction introduced at each elimination step is of rank 1.

€

gW =
maxi, j ,k aij

k

maxi, j aij

€

ˆ L ⋅ ˆ U
∞
≤ (1+ 2(n2 − n)gw) A ∞

€

A = diag(±1)

1 0 0 L 0 1
−1 1 L 0 1
−1 −1 1 O 0 1
M M O O M M

−1 −1 L −1 1 1
−1 −1 L −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Page 41

Block parallel pivoting

•  Unstable for large number of processors P

•  When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 42

Block pairwise pivoting

•  Results shown for random matrices
•  Will become unstable for large matrices W=	 	

W0	
W1	
W2	
W3	

U01	
U02	

U00	

U03	

Page 43

Tournament pivoting - the overall idea

•  At each iteration of a block algorithm

 , where

•  Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

•  Permute the pivots to top, ie compute PA.
•  Compute LU with no pivoting of W, update trailing matrix.

€

W =
A11
A21

⎛

⎝
⎜

⎞

⎠
⎟

€

A =
A11 A21
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟

€

}
}

b
n − b

€

b n − b
} }

€

PA =
L11
L21 In−b

⎛

⎝
⎜

⎞

⎠
⎟
U11 U12

A22 − L21U12

⎛

⎝
⎜

⎞

⎠
⎟

Page 44

Tournament pivoting for a tall skinny matrix
1)  Compute GEPP factorization of each Wi., find permutation

2)  Perform log2(P) times GEPP factorizations of 2b-by-b rows, find permutations

3)  Compute LU factorization with no pivoting of the permuted matrix:

€

W =

W0

W1

W2

W3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Π00L00U00

Π10L10U10

Π20L20U20

Π30L30U30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

€

A00
A10
A20
A30

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∏01L01U01

∏11L11U11

⎛

⎝
⎜

⎞

⎠
⎟

€

A01
A11

⎛

⎝
⎜

⎞

⎠
⎟ =∏02

∏2

{L02U02

€

Π2
TΠ1

TΠ0
TW = LU

Pick b pivot rows, form A00

Same for A10

Same for A20

Same for A30

Pick b pivot rows, form A01

Same for A11

€

Π0

€

Π1,Π2

Page 45

Tournament pivoting

time

P0	

P1	

P2	

P3	

€

2 4
0 1
2 0
1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

2 0
0 0
4 1
1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π1L1U1

€

0 1
1 4
0 0
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U2

€

2 1
0 2
1 0
4 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π3L3U3

€

2 4
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 0
⎛

⎝
⎜

⎞

⎠
⎟

€

1 4
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
0 2
⎛

⎝
⎜

⎞

⎠
⎟

€

2 4
2 0
4 1
2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U0

€

1 4
0 2
4 2
0 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π2L2U 2

€

4 1
2 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 2
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

4 1
2 4
4 2
1 4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=Π0L0U 0

€

4 1
1 4
⎛

⎝
⎜

⎞

⎠
⎟

€

W0

€

Π0
TW0

€

W0

€

Π0
T
W 0

€

W 0

€

Π0
TW 0

€

W1

€

Π1
TW1

€

W2

€

Π2
TW2

€

W2

€

Π2
T
W 2

€

W3

€

Π3
TW3

Good pivots for
factorizing W

Page 46

Growth factor for binary tree based CALU

•  Random matrices from a normal distribution
•  Same behaviour for all matrices in our test, and |L| <= 4.2

Page 47

Stability of CALU (experimental results)

Summer School Lecture 4 47

•  Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

•  See [LG, Demmel, Xiang, SIMAX 2011] for details
•  BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 48

Our “proof of stability” for CALU
•  CALU as stable as GEPP in following sense:
 In exact arithmetic, CALU process on a matrix A is equivalent to GEPP

process on a larger matrix G whose entries are blocks of A and zeros.

•  Example of one step of tournament pivoting:

•  Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).

€

A =

A11 A12
A21 A22
A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

€

G =

A11 A12
A21 A21

−A31 A32

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A11	
A21	
A31	

A11	

A21	
A11	

tournament pivoting:

Page 49

LU factorization and low rank matrices
•  For low rank matrices, the factorization of A1 computed as following might not

be stable
 Compute PA=LU by using GEPP L(k+1:end,k) = A(k+1:end,k)/A(k,k)
 Permute the matrix A1=PA
 Compute LU with no pivoting A1=L1U1 L(k+1:end,k) = L(k+1:end,k)* (1/A(k,k))

•  Example A = randn(6,3)*randn(3,5), max(abs(L)) = 1, max(abs(L1)) = 1015

€

After 4 steps of factorization of A1 we obtain :

A1
4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 4.9e − 32
−0.3264 −0.7514 −0.4597 1.7778 −7.4e −17

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

€

After 4 steps of factorization of PA we obtain :

PA4 =

1.0000
0.1729 1.0000
0.6061 0.8608 1.0000
0.5776 0.0543 0.3264 1.0000
0.4789 −0.2877 −0.1545 2.3333 2.3e −16
−0.3264 −0.7514 −0.4597 1.7778 8.3e −17

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅

4.4766 3.0163 −4.7390 4.2180 −0.8164
−1.5439 −0.4703 1.9267 1.0925

1.6149 2.3623 0.3167
9.9e −16 1.6e −16

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

Schur complement after 4 elimination steps

Page 50

LU_PRRP: LU with panel rank revealing pivoting

•  Pivots are selected by using strong rank revealing QR on each panel
•  The factorization after one panel elimination is written as

 A21 A11
-1 is computed through strong rank revealing QR

 and max(|A21 A11
-1|)ij ≤ f

•  LU_PRRP and CALU_PRRP stable for pathological cases (Wilkinson
matrix) and matrices from two real applications (Voltera integral
equation - Foster, a boundary value problem - Wright) on which GEPP
fails.

A. Khabou, J. Demmel, LG, M. Gu, 2012

€

PA =
A11 A12
A21 A22

⎛

⎝
⎜

⎞

⎠
⎟ =

Ib
A21A11

−1 In−b

⎛

⎝
⎜

⎞

⎠
⎟
A11 A12

A22 − A21A11
−1A12

⎛

⎝
⎜

⎞

⎠
⎟

Page 51

Growth factor in exact arithmetic
•  Matrix of size m-by-n, reduction tree of height H=log(P).
•  (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, SIMAX 2013)
•  “In practice” means observed/expected/conjectured values.

•  For a matrix of size 107-by-107 (using petabytes of memory)
 n1/2 = 103.5

•  When will Linpack have to use the QR factorization for solving linear systems ?

Better bounds

CALU GEPP CALU_PRRP LU_PRRP

Upper bound 2n(log(P)+1)-1 2n-1 (1+2b)(n/b)log(P) (1+2b)(n/b)

In practice n2/3 -- n1/2 n2/3 -- n1/2 (n/b)2/3 -- (n/b)1/2 (n/b)2/3 -- (n/b)1/2

Page 52

CALU – a communication avoiding LU factorization
•  Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square

blocks of size b.

For ib = 1 to n-1 step b
 A(ib)	 = A(ib:n, ib:n)

 (1) Find permutation for current panel using TSLU

 (2) Apply all row permutations (pdlaswp)
 - broadcast pivot information along the rows of the grid

 (3) Compute panel factorization (dtrsm)

 (4) Compute block row of U (pdtrsm)
 - broadcast right diagonal part of L of current panel

 (5) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

L	

U	

A(ib)	

L	

U	

A(ib+b)	

L	

U	

A(ib)	

L	

U	

A(ib)	

)log/(2 rPbnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

Page 53

LU for General Matrices

•  Cost of CALU vs ScaLAPACK’s PDGETRF
•  n x n matrix on P1/2 x P1/2 processor grid, block size b
•  Flops: (2/3)n3/P + (3/2)n2b / P1/2 vs (2/3)n3/P + n2b/P1/2
•  Bandwidth: n2 log P/P1/2 vs same
•  Latency: 3 n log P / b vs 1.5 n log P+ 3.5n logP / b

•  Close to optimal (modulo log P factors)
•  Assume: O(n2/P) memory/processor, O(n3) algorithm,
•  Choose b near n / P1/2 (its upper bound)
•  Bandwidth lower bound:
 Ω(n2 /P1/2) – just log(P) smaller
•  Latency lower bound:
 Ω(P1/2) – just polylog(P) smaller

Page 54

 Performance vs ScaLAPACK

•  Parallel TSLU (LU on tall-skinny matrix)
•  IBM Power 5

•  Up to 4.37x faster (16 procs, 1M x 150)
•  Cray XT4

•  Up to 5.52x faster (8 procs, 1M x 150)

•  Parallel CALU (LU on general matrices)
•  Intel Xeon (two socket, quad core)

•  Up to 2.3x faster (8 cores, 10^6 x 500)
•  IBM Power 5

•  Up to 2.29x faster (64 procs, 1000 x 1000)
•  Cray XT4

•  Up to 1.81x faster (64 procs, 1000 x 1000)

•  Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Page 55

CALU and its task dependency graph

•  The matrix is partitioned into blocks of size T x b.
•  The computation of each block is associated with a task.

Page 56

Scheduling CALU’s Task Dependency Graph
•  Static scheduling

+ Good locality of data - Ignores noise

•  Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality
 - Can have large dequeue overhead

Page 57

Lightweight scheduling

•  Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
•  One example is work stealing

•  Goal:
•  Design a tunable strategy that is able to provide a good trade-off between load

balance, data locality, and dequeue overhead.
•  Provide performance consistency

•  Approach: combine static and dynamic scheduling
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Data layout/scheduling Static Dynamic Static/(%dynamic)

Column Major Layout (CM) √

Block Cyclic Layout (BCL) √ √ √

2-level Block Layout (2l-BL) √ √ √

Design space

S. Donfack, LG, B. Gropp, V. Kale,IPDPS 2012

Page 58

Lightweight scheduling

•  A self-adaptive strategy to provide
•  A good trade-off between load balance, data locality, and dequeue overhead.
•  Performance consistency
•  Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
•  A thread executes in priority its

statically assigned tasks
•  When no task ready, it picks a

ready task from the dynamic part
•  The size of the dynamic part is

guided by a performance model

Page 59

Best performance of CALU on multicore architectures

•  Reported performance for PLASMA uses LU
 with block pairwise pivoting.
•  GPU data courtesy of S. Donfack

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 60

Parallel write avoiding algorithms
Need to avoid writing suggested by emerging memory technologies, as NVMs:
•  Writes more expensive (in time and energy) than reads
•  Writes are less reliable than reads

Some examples:
•  Phase Change Memory: Reads 25 us latency
 Writes: 15x slower than reads (latency and bandwidth)
 consume 10x more energy
•  Conductive Bridging RAM - CBRAM
 Writes: use more energy (1pJ) than reads (50 fJ)
•  Gap improving by new technologies such as XPoint and other FLASH

alternatives, but not eliminated

Page 61

Parallel write-avoiding algorithms

•  Matrix A does not fit in DRAM (of size M), need to use NVM (of size n2 / P)

•  Two lower bounds on volume of communication
•  Interprocessor communication: Ω (n2 / P1/2)
•  Writes to NVM: n2 / P

#words
interprocessor comm.

#writes NVM

Left-looking O((n3 log2 P) / (P M1/2)) O(n2 / P)
Right-looking O((n2 log P) / P1/2) O((n2 log2 P) /P1/2)

•  Result: any three-nested loop algorithm (matrix multiplication, LU,..), must
asymptotically exceed at least one of these lower bounds
•  If Ω (n2 / P1/2) words are transferred over the network, then Ω (n2 / P2/3) words must be

written to NVM !

•  Parallel LU: choice of best algorithm depends on hardware parameters

Page 62

Conclusions

•  Many previous results
•  Only several cited, many references given in the papers
•  Flat trees algorithms for QR factorization, called tiled algorithms used in the context of

•  Out of core - Gunter, van de Geijn 2005
•  Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra (2007, 2008),

Quintana-Orti, Quintana-Orti, Chan, van Zee, van de Geijn (2007, 2008)

Page 63

References

Results presented from:
•  J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal parallel and sequential

QR and LU factorizations, UCB-EECS-2008-89, 2008, SIAM journal on Scientific Computing, Vol. 34,
No 1, 2012.

•  L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian elimination, Proceedings of the
IEEE/ACM SuperComputing SC08 Conference, November 2008.

•  L. Grigori, J. Demmel, and H. Xiang, CALU: a communication optimal LU factorization algorithm, SIAM.
J. Matrix Anal. & Appl., 32, pp. 1317-1350, 2011.

•  M. Hoemmen’s Phd thesis, Communication avoiding Krylov subspace methods, 2010.
•  L. Grigori, P.-Y. David, J. Demmel, and S. Peyronnet, Brief announcement: Lower bounds on

communication for sparse Cholesky factorization of a model problem, ACM SPAA 2010.
•  S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding LU and QR

factorizations to multicore architectures, Proceedings of IEEE International Parallel & Distributed
Processing Symposium IPDPS, April 2010.

•  S. Donfack, L. Grigori, W. Gropp, and V. Kale, Hybrid static/dynamic scheduling for already optimized
dense matrix factorization , Proceedings of IEEE International Parallel & Distributed Processing
Symposium IPDPS, 2012.

•  A. Khabou, J. Demmel, L. Grigori, and M. Gu, LU factorization with panel rank revealing pivoting and its
communication avoiding version, LAWN 263, SIAM Journal on Matrix Analysis, in revision, 2012.

•  L. Grigori, S. Moufawad, Communication avoiding ILU0 preconditioner, Inria TR 8266, 2013.
•  J. Demmel, L. Grigori, M. Gu, H. Xiang, Communication avoiding rank revealing QR factorization with

column pivoting, 2013.

