
Sparse linear solvers

Laura Grigori

ALPINES
INRIA and LJLL, UPMC

On sabbatical at UC Berkeley

March 2015

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Sparse Cholesky factorization for SPD matrices
Combinatorial tools: undirected graphs, elimination trees
Parallel Cholesky factorization
Lower bounds for sparse Cholesky factorization

Sparse LU factorization
Combinatorial tools: directed and bipartite graphs
LU factorization on parallel machines

2 of 59

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Sparse Cholesky factorization for SPD matrices

Sparse LU factorization

3 of 59

Sparse matrices and graphs

� Most matrices arising from real applications are sparse.
� A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure : Nonzero structure of the matrix

4 of 59

Sparse matrices and graphs

� Most matrices arising from real applications are sparse.

� GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

5 of 59

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

� Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure : Nonzero structure of the matrix Figure : Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

6 of 59

http://www.cise.ufl.edu/research/sparse/matrices/

Symmetric sparse matrices and graphs

� The structure of a square symmetric matrix A with nonzero diagonal can
be represented by an undirected graph G (A) = (V ,E) with

� n vertices, one for each row/column of A
� an edge (i , j) for each nonzero aij , i > j

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3

4 5 6

7 8 9

G (A)

Notation: upper case (A) - matrices; lower case (aij) - elements

7 of 59

Nonsymmetric sparse matrices and graphs

� The structure of a nonsymmetric matrix A of size n × n can be
represented by

� a directed graph G(A) = (V ,E) with
� n vertices, one for each column of A
� an edge from i to j for each nonzero aij

� a bipartite graph H(A) = (V ,E) with
� 2n vertices, for n rows and n columns of A
� an edge (i ′, j) for each nonzero aij

� a hypergraph (not described further in this class)

A G(A) H(A)

54321

1’

3’

2’

4’

5’

x x

x x

x

x

x x

x

x

1 2

3

45

1’

2’

4’

5’

3’

1

2

4

3

5

8 of 59

Computing with sparse matrices - guiding principles

� Store nonzero elements

A =


1.1 1.3

2.2 2.4
3.2 3.5

4.1 4.4
5.1 5.3 5.5


� Compressed sparse formats by columns (CSC), rows (CSR), or coordinates
� For A of size n × n, CSC uses one aray of size n + 1 and two arrays of size

nnz(A):

ColPtr
(

1 4 6 8 10 12
)

RowInd
Vals

(
1 4 5 2 3 1 5 2 4 3 5
1.1 4.1 5.1 2.2 3.2 1.3 5.3 2.4 4.4 3.5 5.5

)
� Compute flops only on nonzeros elements

� Identify and exploit parallelism due to the sparsity of the matrix

9 of 59

Sparse linear solvers

Direct methods of factorization
� For solving Ax = b, least squares problems

� Cholesky, LU, QR, LDLT factorizations

� Limited by fill-in/memory consumption and scalability

Iterative solvers

� For solving Ax = b, least squares, Ax = λx , SVD

� When only multiplying A by a vector is possible

� Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods

10 of 59

Examples of direct solvers

A non-complete list of solvers and their characteristics:

� PSPASES: for SPD matrices, distributed memory.

http://www-users.cs.umn.edu/~mjoshi/pspases/

� UMFPACK / SuiteSparse (Matlab, Google Ceres) - symmetric/unsymmetric,

LU, QR, multicores/GPUs.

http://faculty.cse.tamu.edu/davis/suitesparse.html

� SuperLU: unsymmetric matrices, shared/distributed memory.

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

� MUMPS: symmetric/unsymmetric, distributed memory.

http://mumps.enseeiht.fr/

� Pardiso (Intel MKL): symmetric/unsymmetric, shared/distributed memory.

http://www.pardiso-project.org/

For a survey, see http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf.

11 of 59

http://www-users.cs.umn.edu/~mjoshi/pspases/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://mumps.enseeiht.fr/
http://www.pardiso-project.org/
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

Plan

Sparse linear solvers

Sparse Cholesky factorization for SPD matrices
Combinatorial tools: undirected graphs, elimination trees
Parallel Cholesky factorization
Lower bounds for sparse Cholesky factorization

Sparse LU factorization

12 of 59

To get started: algebra of LU factorization

LU factorization
Compute the factorization PA = LU

Example
Given the matrix

A =

3 0 3
6 7 0
9 12 3


The first step of the LU factorization is performed as

M1 =

 1
−2 1
−3 1

 , M1A =

3 0 3
0 7 −6
0 12 −6


Fill-in elements
Are elements which are zero in A, but become nonzero in L or U (as −6
above).

13 of 59

Sparse LU factorization

Right looking factorization of A by rows
for k = 1 : n − 1 do

Permute row i and row k, where aik is element of maximum magnitude in A(k : n, k)
for i = k + 1 : n st aik 6= 0 do

/* store in place lik */
aik = aik/akk
/* add a multiple of row k to row i */
for j = k + 1 : n st akj 6= 0 do

aij = aij − aik ∗ akj
end for

end for

end for

Observations
� The order of the indices i , j , k can be changed, leading to different

algorithms:
� computing the factorization by rows, by columns, or by sub-matrices,
� using a left looking, right looking, or multifrontal approach.

14 of 59

Sparse LU factorization with partial pivoting

Factorization by columns
for k = 1 : n − 1 do

Permute row i and row k, where aik is element of maximum magnitude in
A(k : n, k)

for i = k + 1 : n st aik 6= 0 do
aik = aik/akk

end for
for j = k + 1 : n st akj 6= 0 do

for i = k + 1 : n st aik 6= 0 do
aij = aij − aikakj

end for
end for

end for

15 of 59

A simpler case first: SPD matrices

A is symmetric and positive definite (SPD) if

� A = AT ,

� all its eigenvalues are positive,

� or equivalently, A has a Cholesky factorization, A = LLT .

Some properties of an SPD matrix A

� There is no need to pivot for accuracy (just performance) during the
Cholesky factorization.

� For any permutation matrix P, PAPT is also SPD.

16 of 59

Sparse Cholesky factorization

� The algebra can be written as:

A =

(
a11 AT

21

A21 A22

)
=

(√
a11

A21./
√

a11 L22

)
·
(√

a11 AT
21./
√

a11

LT
22

)
� Compute and store only the lower triangular part since U = LT .

Algorithm
for k = 1 : n − 1 do

akk =
√
akk

/* factor(k) */
for i = k + 1 : n st aik 6= 0 do

aik = aik/akk
end for
for i = k + 1 : n st aik 6= 0 do

update(k, i)
for j = i : n st akj 6= 0 do

aij = aij − aikajk
end for

end for

end for

17 of 59

Filled graph G+(A)

� Given G (A) = (V ,E), G+(A) = (V ,E+) is defined as:
there is an edge (i , j) ∈ G+(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� Definition holds also for directed graphs (LU factorization).

� G (L + LT) = G+(A), ignoring cancellations.

� G+(A) is chordal (every cycle of length at least four has a chord, an edge
connecting two non-neighboring nodes).

� Conversely, if G (A) is chordal, then there is a perfect elimination order,
that is a permutation P such that G (PAPT) = G+(PAPT).

� References: [Parter, 1961, Rose, 1970, Rose and Tarjan, 1978]

18 of 59

Filled graph G+(A)

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x



1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G +(A)

19 of 59

Steps of sparse Cholesky factorization

1. Order rows and columns of A to reduce fill-in

2. Symbolic factorization: based on eliminaton trees

� Compute the elimination tree (in nearly linear time in nnz(A))
� Allocate data structure for L
� Compute the nonzero structure of the factor L, in O(nnz(L)

3. Numeric factorization

� Exploit memory hierarchy
� Exploit parallelism due to sparsity

4. Triangular solve

20 of 59

Order columns/rows of A

Strategies applied to the graph of A for Cholesky,
Strategies applied to the graph of ATA for LU with partial pivoting.

Local strategy: minimum degree [Tinney/Walker ’67]

� Minimize locally the fill-in.

� Choose at each step (for 1 to n) the node of minimum degree.

Global strategy: graph partitioning approach

� Nested dissection [George, 1973]
� First level: find the smallest possible

separator S , order last
� Recurse on A and B

� Multilevel schemes [Barnard/Simon ’93,
Hendrickson/Leland ’95, Karypis/Kumar
’95].

21 of 59

Nested dissection on our 9× 9 structured matrix

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x

x x x
x x x

x x x x

x x x x
x x x x x

x x x x


,

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



7 8 9

3

6

1 2

4 5

G(A)

7 8 9

3

6

1 2

4 5

G +(A)

9

8

7

3

1 2

6

4 5

T (A)

22 of 59

Elimination tree (etree)

Definition ([Schreiber, 1982] and also [Duff, 1982])
Given A = LLT , the etree T (A) has the same node set as G (A), and k is
the parent of j iff

k = min{i > j : lij 6= 0}

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



9

8

7

3

1 2

6

4 5

T (A)

23 of 59

Elimination tree (etree)

Definition ([Schreiber, 1982] and also [Duff, 1982])
Given A = LLT , the etree T (A) has the same node set as G (A), and k is
the parent of j iff

k = min{i > j : lij 6= 0}

Properties (ignoring cancellations), for more details see e.g.
[Liu, 1990]

� T (A) is a spanning tree of the filled graph G+(A).

� T (A) is the result of the transitive reduction of the directed graph G (LT).

� T (A) of a connected graph G (A) is a depth first search tree of G+(A)
(with specific tie-breaking rules).

24 of 59

Structure of rows/columns of L and the etree

� The structure of the ith row of L is a pruned subtree rooted at i , Tr (i).
� Let T (i) be the subtree rooted at i .
� Node j ∈ Tr (i) is a leaf iff aij 6= 0 and for all k ∈ T (j), aik 6= 0.

� The structure of the ith column of L is given by

AdjG(A)(T (i)) ∪ {i},
where Adj denotes the set of adjacent nodes in G (A) of the nodes of the
subtree rooted at i , T (i).
� Example column 6: AdjG(A)(T (6)) = AdjG(A){4, 5, 6} = {7, 8, 9}

1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x

x x x x x x

x x x
x x x

x x x x x x

x x x x x x x
x x x x x

x x x x x x x



9

8

7

3

1 2

6

4 5

T (A)

9

8

7

3

2

6

5

Row 9: Tr (9)
25 of 59

Elimination tree (contd)

Complexity

� Can be computed in O(nnz(A)α(nnz(A), n)), where α() is the inverse of
Ackerman’s function.

� Can be used to

� compute # nonzeros of each column/row of L (same complexity),

� identify columns with similar structure (supernodes), (same complexity)

� compute nonzero structure of L, in O(nnz(L))

26 of 59

Column dependencies and the elimination tree

� If ljk 6= 0, then

� Factor(k) needs to be computed before Factor(j).
� k is an ancestor of j in T (A).

� Columns belonging to disjoint subtrees can be factored independently.

� Topological orderings of T (A) (that number children before their parent)

� preserve the amount of fill, the flops of the factorization, the structure of
T (A)

� postordering most used in practice

27 of 59

Nested dissection and separator tree

Separator tree:

� Combines together nodes belonging to a same separator, or to a same
disjoint graph

Some available packages (see also lecture 14 on graph partitioning):

� Metis, Parmetis
(http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

� Scotch, Ptscotch (www.labri.fr/perso/pelegrin/scotch/)

28 of 59

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
www.labri.fr/perso/pelegrin/scotch/

Numeric factorization - multifrontal approach

� Driven by the separator tree of A, a supernodal elimination tree.

� The Cholesky factorization is performed during a postorder traversal of
the separator tree.

� At each supernode k :

� A frontal matrix Fk is formed by rows and columns involved at step k of
factorization:
� rows that have their first nonzero in column k of A,
� contribution blocks (part of frontal matrices) from children in T (A).

� The new frontal matrix is obtained by an extend-add operation.

� The first rows/columns of Fk corresponding to supernode k are factored.

29 of 59

Numeric factorization - an example

9

8

7

3

1 2

6

4 5

F1 =


1 3 7

1 x
3 x x
7 x x x

 →


1 3 7

1 l
3 l f
7 l f f

 F2 =


2 3 9

2 x
3 x x
9 x x x

 →


2 3 9

2 l
3 l f
9 l f f



F3 =


3 7 8 9

3 x
7 x x
8 x x x
9 x x x x

 →


3 7 8 9

3 l
7 l f
8 l f f
9 l f f f



F{7,8,9} =


7 8 9

7 x
8 x x
9 x x x

 →


7 8 9

7 l
8 l l
9 l l l

L + LT =



1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x



Notation used for frontal matrices Fk :

� x - elements obtained by the extend-add operation,
� l - elements of L computed at node k, f - elements of frontal matrix that will be passed to parent of node k.

30 of 59

Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989]

Subtree to subcube mapping

1. Assign all the processors to the root.

2. Assign to each subtree half of the

processors.

3. Go to Step 1 for each subtree which is

assigned more than one processor.

The figure displays the process grid used by

PSPASES.

19

9

8

7

3

1 2

6

4 5

18

...

[
0
] [

1
] [

2
] [

3
]
[
2 3

][
0 1

]

[
0 1
2 3

]

[
0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Process grid

31 of 59

Numeric factorization - PSPASES [Gupta et al., 1995]

� Subtree to subcube mapping and bitmask based cyclic distribution:

Starting at the last level of the separator tree (bottom up traversal), let
i = 1

for each two consecutive layers k , k − 1, based on value of i-th LSB of
column/row indices

� For layer k:
Map all even columns to subcube with lower processor numbers
Map all odd columns to subcube with higher processor numbers

� For layer k − 1:
Map all even rows to subcube with lower processor numbers
Map all odd rows to subcube with higher processor numbers

� Let i = i + 1

PSPASES uses a bitmask based block-cyclic distribution.
32 of 59

Numeric factorization - PSPASES [Gupta et al., 1995]

� Based on subtree to subcube mapping [George et al., 1989].

� Extend-add operation requires each processor to exchange half of its data with a

corresponding processor from the other half of the grid.

19

9

8

7

3

1 2

6

4 5

18

...

F1 :


1 3 7

1 0
3 0 0
7 0 0 0

 [
0
]

F2 :


2 3 9

2 1
3 1 1
9 1 1 1

 [
1
]

0 ↔ 1

F3 :


3 7 8 9

3 1
7 1 1
8 1 1 0
9 1 1 0 1

 [0 1
] 2 ↔ 3

F6 :


6 7 8 9

6 3
7 3 3
8 3 3 2
9 3 3 2 3

 [2 3
]

0 ↔ 2
1 ↔ 3

F{7,8,9} :


7 8 9

7 3
8 1 0
9 3 2 3

 [0 1
2 3

]

0 ↔ 4
2 ↔ 6
1 ↔ 5
3 ↔ 7

F19 :
(19

19 x
) [

0 1 4 5
2 3 6 7

]

[
4 5
6 7

]

Data distribution, process grid and

data exchange pattern

33 of 59

Performance results on Cray T3D

Results from [Gupta et al., 1995]

34 of 59

Performance - break-down of the various phases

35 of 59

Lower bounds on communication for sparse LA

� More difficult than the dense case
� For example computing the product of two (block) diagonal matrices

involves no communication in parallel

� Lower bound on communication from dense linear algebra is loose

� Very few existing results:
� Lower bounds for parallel multiplication of sparse random matrices

[Ballard et al., 2013]
� Lower bounds for Cholesky factorization of model problems

[Grigori et al., 2010]

36 of 59

Lower bounds on communication for Cholesky

� Consider A of size ks × ks results from a finite difference operator on a
regular grid of dimension s ≥ 2 with ks nodes.

� Its Cholesky L factor contains a dense lower triangular matrix of size
ks−1 × ks−1.

7 8 9

3

6

1 2

4 5

G +(A)

L + LT =



1 2 3 4 5 6 7 8 9

1 x x x
2 x x x
3 x x x x x x
4 x x x
5 x x x
6 x x x x x x
7 x x x x x x x
8 x x x x x
9 x x x x x x x



� Computing the Cholesky factorization of the ks−1 × ks−1 matrix
dominates the computation and the communication.

37 of 59

Lower bounds on communication

� This result applies more generally to matrix A whose graph G = (V ,E),
|V | = n has the following property for some l :

� if every set of vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at
least l vertices in V −W ,

� then the Cholesky factor of A contains a dense l × l submatrix.

38 of 59

Lower bounds on communication

For the Cholesky factorization of a ks × ks matrix resulting from a finite
difference operator on a regular grid of dimension s ≥ 2 with ks nodes:

#words ≥ Ω

(
W√
M

)
, #messages ≥ Ω

(
W

M3/2

)

� Sequential algorithm
� W = k3(s−1)/3 and M is the fast memory size

� Work balanced parallel algorithm executed on P processors

� W = k3(s−1)

3P
and M ≈ nnz(L)/P

39 of 59

Performance modelling for structured grids

� n × n matrices from 2D
√
n ×
√
n and from 3D n1/3 × n1/3 × n1/3 grids

� Counts given for level l in the separator tree (root node labeled 0)

� + separators used

Problem level l level l nnz update nnz(L) flops
sep. subgrid matrix to lvl l − 1

2D grid 2
√
n

2l

√
n

2l
×
√
n

2l
O
(

n
4l

)
O(n log4 n) O(n3/2)

3D grid 3n2/3

4l
n1/3

2l
× n1/3

2l
× n1/3

2l
O(n4/3

24l) O(n4/3) O(n2)

Table : For level l : number of nodes in the separator, size of the subgrids
obtained, number of nonzeros of the update matrix to be passed to level l − 1.

40 of 59

Why / how PSPASES attains optimality

� For each node in the separator tree, the communication in the Cholesky
factorization dominates the communication in the extend-add step.

� Optimal dense Cholesky factorization needs to be used for each
multifrontal matrix (n × n, P procs).

� optimal block size - minimize communication while increasing flops by a
lower order term

b =
n√
P

log−2
2

√
P

41 of 59

Optimal sparse Cholesky factorization

� Results for n × n matrix resulting from 2D and 3D regular grids.

� Analysis assumes local memory per processor is M = O(n log n/P)- 2D
case and M = O(n4/3/P)- 3D case.

PSPASES PSPASES with Lower bound
optimal layout

2D grids

flops O
(

n3/2

P

)
O
(

n3/2

P

)
Ω
(

n3/2

P

)
words O(n√

P
) O

(
n√
P

log P
)

Ω
(

n√
P log n

)
messages O(

√
n) O

(√
P log3 P

)
Ω

(√
P

(log n)3/2

)
3D grids

flops O
(

n2

P

)
O
(

n2

P

)
Ω
(

n2

P

)
words O(n4/3

√
P

) O
(

n4/3
√

P
log P

)
Ω
(

n4/3
√

P

)
messages O(n2/3) O

(√
P log3 P

)
Ω
(√

P
)

42 of 59

Optimal sparse Cholesky factorization: summary

� PSPASES with an optimal layout attains the lower bound in parallel for
2D/3D regular grids:

� Uses nested dissection to reorder the matrix

� Distributes the matrix using the subtree-to-subcube algorithm

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization

� Sequential multifrontal algorithm attains the lower bound

� The factorization of every dense multifrontal matrix is performed using an
optimal dense Cholesky factorization

43 of 59

Plan

Sparse linear solvers

Sparse Cholesky factorization for SPD matrices

Sparse LU factorization
Combinatorial tools: directed and bipartite graphs
LU factorization on parallel machines

44 of 59

Structure prediction for A = LU

� A is square, unsymmetric, and has a nonzero diagonal.

� Nonzero structure of L and U can be determined prior to the numerical
factorization from the structure of A [Rose and Tarjan, 1978].

Filled graph G+(A):

� edges from rows to columns for all nonzeros of A (G (A)),

� add fill edge i → j if there is a path from i to j in G (A) through lower
numbered vertices.

Fact: G (L + U) = G (A), ignoring cancellations

45 of 59

Sparse LU factorization with partial pivoting

Compute PrAPc = LU where:

� A is large, sparse, nonsymmetric

� Columns reordered to reduce fill-in

� Rows reordered during the factorization by partial pivoting

Observations
− Symbolic and numeric factorizations are interleaved.

� A structure prediction step allows to compute upper bounds of the
structure of L and U.

� These bounds are tight for strong Hall matrices (irreducible matrices
which cannot be permuted to block upper triangular forms).

46 of 59

Structure prediction for sparse LU factorization

1. Compute an upper bound for the structure of L and U
Filled column intersection graph G+

∩ (A): Cholesky factor of ATA

� G (U) ⊆ G+
∩ (A) and G (L) ⊆ G+

∩ (A)

2. Predict potential dependencies between column computations
Column elimination tree T∩(A): spanning tree of G+

∩ (A).

47 of 59

Different pivoting strategies

� Challenging to obtain good performance for sparse LU with partial
pivoting on distributed memory computers

� dynamic data structures

� dependencies over-estimated

� Many problems can be solved with restricted/no pivoting and a few steps
of iterative refinement.

⇒ motivation for SuperLU DIST which implements LU with static pivoting

48 of 59

SuperLU DIST [Li and Demmel, 2003]

1. Scale and permute A to maximize diagonal

A1 = PrDrADc

2. Order equations and variables to reduce fill-in

A2 = P2A1P
T
2

3. Symbolic factorization.
� Identify supernodes, set up data structures and allocate memory for L,U.

4. Numerical factorization - LU with static pivoting
� During the factorization A2 = LU, replace tiny pivots by

√
ε||A||

5. Triangular solutions - usually less than 5% total time.

6. If needed, use a few steps of iterative refinement

49 of 59

Symbolic factorization

� Complexity of symbolic factorization:
� Greater than nnz(L + U), but much smaller than flops(LU).
� No nice theory as in the case of symmetric matrices/chordal graphs.
� Any algorithm which computes the transitive closure of a graph can be used.

� Why it is difficult to parallelize?
� Algorithm is inherently sequential.
� Small computation to communication ratio.

� Why do we need to parallelize ?
� Memory needs = matrix A plus the factors L and U

⇒ Memory bottleneck for very large matrices

50 of 59

Parallel symbolic factorization [Grigori et al., 2007]

Goals

� Decrease the memory needs.

� Prevent this step from being a computational bottleneck of the
factorization.

Approach

� Use a graph partitioning approach to partition the matrix.

� Exploit parallelism given by this partition and by a block cyclic
distribution of the data.

� Identify dense separators, dense columns of L and rows of U to decrease
computation.

51 of 59

Matrix partition and distribution

P0 P P P1 2 3

P0 P1 P3P2

P0 P3

P0 P1 P2 P3 Level 0

Level 1

Level 2

lastfirst

first

last

Separator tree - Exhibits computational dependencies
If node j updates node k, then j belongs to subtree rooted at k.
Algorithm

1. Assign all the processors to the root.

2. Distribute the root (1D block cyclic along the diagonal) to processors in
the set.

3. Assign to each subtree half of the processors.

4. Go to Step 1 for each subtree which is assigned more than one processor.

52 of 59

Numeric factorization

� Supernodes (dense submatrices in L and U).

� Static pivoting (GESP) + iterative refinement.

� Parallelism from 2D block cyclic data distribution, pipelined right looking
factorization.

53 of 59

SuperLU DIST 2.5 and 3.0 on Cray XE6

Figure : Accelerator, n=2.7M, fill=12x Figure : DNA, n = 445K, fill= 609x

� Version 2.5 - described in this lecture

� Version 3.0 - uses scheduling during numeric factorization

� Red part - computation time

� Blue/black part - communication/idle time

� Scheduling leads to up to 2.6 speedup

Courtesy of X. S. Li, LBNL
54 of 59

Experimental results (contd)

� Computing selected elements of A−1 by using LU factorization

� Electronic structure theory, disordered graphene system with 8192 atoms

� n = 331K , nnz(A) = 349M, nnz(L) = 2973M

� Edison: Cray XC30, 24 cores - two Intel Ivy Bridge procs per node, 1 MPI process per

core, square grid of procs.

64 121 256 576 1024 2116 4096
Number of processors

10

100

t (
s)

Running times on DGGraphene_8192
LU factorization
SelInv P2p
Symbolic factorization

Courtesy of M. Jacquelin, arXiv:1404.0447
55 of 59

arXiv:1404.0447

Conclusions

� Direct methods of factorization are very stable, but have limited
scalability (up to hundreds/a few thousands of cores).

� Open problems:
� Develop more scalable algorithms.
� Identify lower bounds on communication for other operations: LU, QR, etc.

56 of 59

References (1)

Ballard, G., Buluc, A., Demmel, J., Grigori, L., Schwartz, O., and Toledo, S. (2013).

Communication optimal parallel multiplication of sparse random matrices.
In In Proceedings of ACM SPAA, Symposium on Parallelism in Algorithms and Architectures.

Duff, I. S. (1982).

Full matrix techniques in sparse gaussian elimination.
In Springer-Verlag, editor, Lecture Notes in Mathematics (912), pages 71–84.

George, A. (1973).

Nested dissection of a regular finite element mesh.
SIAM Journal on Numerical Analysis, 10:345–363.

George, A., Liu, J. W.-H., and Ng, E. G. (1989).

Communication results for parallel sparse Cholesky factorization on a hypercube.
Parallel Computing, 10(3):287–298.

Gilbert, J. R. and Peierls, T. (1988).

Sparse partial pivoting in time proportional to arithmetic operations.
SIAM J. Sci. and Stat. Comput., 9(5):862–874.

Golub, G. H. and Van Loan, C. F. (2012).

Matrix Computations.
Johns Hopkins University Press, 4th edition.

Grigori, L., David, P.-Y., Demmel, J., and Peyronnet, S. (2010).

Brief announcement: Lower bounds on communication for direct methods in sparse linear algebra.
Proceedings of ACM SPAA.

57 of 59

References (2)

Grigori, L., Demmel, J., and Li, X. S. (2007).

Parallel symbolic factorization for sparse LU factorization with static pivoting.
SIAM Journal on Scientific Computing, 29(3):1289–1314.

Gupta, A., Karypis, G., and Kumar, V. (1995).

Highly scalable parallel algorithms for sparse matrix factorization.
IEEE Transactions on Parallel and Distributed Systems, 8(5).

Li, X. S. and Demmel, J. W. (2003).

SuperLU DIST: A Scalable Distributed-memory Sparse Direct Solver for Unsymmetric linear systems.
ACM Trans. Math. Software, 29(2).

Liu, J. W. H. (1990).

The role of elimination trees in sparse factorization.
SIAM. J. Matrix Anal. & Appl., 11(1):134 – 172.

N.J.Higham (2002).

Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.

Parter, S. (1961).

The use of linear graphs in gaussian elimination.
SIAM Review, pages 364–369.

Rose, D. J. (1970).

Triangulated graphs and the elimination process.
Journal of Mathematical Analysis and Applications, pages 597–609.

58 of 59

References (3)

Rose, D. J. and Tarjan, R. E. (1978).

Algorithmic aspects of vertex elimination on directed graphs.
SIAM J. Appl. Math., 34(1):176–197.

Schreiber, R. (1982).

A new implementation of sparse gaussian elimination.
ACM Trans. Math. Software, 8:256–276.

59 of 59

	Sparse linear solvers
	Sparse matrices and graphs
	Classes of linear solvers

	Sparse Cholesky factorization for SPD matrices
	Combinatorial tools: undirected graphs, elimination trees
	Parallel Cholesky factorization
	Lower bounds for sparse Cholesky factorization

	Sparse LU factorization
	Combinatorial tools: directed and bipartite graphs
	LU factorization on parallel machines

