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Talk based on the papers

� [Demmel et al., 2012] Communication-optimal parallel and sequential QR
and LU factorizations, J. W. Demmel, L. Grigori, M. Hoemmen, and J.
Langou, SIAM Journal on Scientific Computing, Vol. 34, No 1, 2012.

� [Demmel et al., 2015] Communication avoiding rank revealing QR
factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J.
Matrix Analysis and Applications, 2015.

� Low rank approximation of a sparse matrix based on LU factorization
with column and row tournament pivoting, with S. Cayrols and J.
Demmel. Soon on arxiv.
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Motivation - the communication wall

� Time to move data >> time per flop
� Gap steadily and exponentially growing over time

Getting up to speed, The future of supercomputing 2004, data from
1995-2004.
We are going to hit the memory wall, unless something basic changes, [W.
Wulf, S. McKee, 95].
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Compelling numbers (1)

DRAM bandwidth:

� Mid 90’s 0.2 bytes/flop - 1 byte/flop

� Past few years 0.02 to 0.05 bytes/flop

DRAM latency:

� DDR2 (2007) 120 ns 1x

� DDR4 (2014) 45 ns 2.6x in 7 years

� Stacked memory similar to DDR4

Time/flop:

� 2006 Intel Yonah 2GHz x 2 cores (16 GFlops/chip) 1x

� 2015 Intel Haswell 3GHz x 24 cores (288 GFlops/chip) 18x in 9 years

Source: J. Shalf
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Compelling numbers (2)

Fetch from DRAM 1 byte of data

� 1988: compute 6 flops

� 2004: compute over 100 flops

� 2015: compute 920 flops

Receive from another processor 1 byte of data

� 2015: compute 4600 - 13616 flops

Example of a supercomputer today:

� Intel Haswell: 8 flops per cycle per core

� Interconnect: 0.25 µs to 3.7 µs MPI latency, 8GB/sec MPI bandwidth
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Approaches for reducing communication

Tuning

� Overlap communication and computation, at most a factor of 2 speedup

Same numerical algorithm, different schedule of the computation

� Block algorithms for NLA
� Barron and Swinnerton-Dyer, 1960
� ScaLAPACK, Blackford et al 97

� Cache oblivious algorithms for NLA
� Gustavson 97, Toledo 97, Frens and

Wise 03, Ahmed and Pingali 00
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Approaches for reducing communication

Same algebraic framework, different numerical algorithm

� The approach used in CA algorithms

� More opportunities for reducing communication, may affect stability
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Communication Complexity of Dense Linear Algebra

� Matrix multiply, using 2n3 flops (sequential or parallel)
� Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
� Lower bound on Bandwidth = Ω(#flops/M1/2)
� Lower bound on Latency = Ω(#flops/M3/2)

� Same lower bounds apply to LU using reduction
� Demmel, LG, Hoemmen, Langou 2008 I B

A I
I

 =

 I
A I

I

I −B
I AB

I

 (1)

� And to almost all direct linear algebra
� Ballard, Demmel, Holtz, Schwartz, 2009
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2D Parallel algorithms and communication bounds

� Memory per processor = n2/P, the lower bounds become
#words moved ≥ Ω(n2/P1/2), #messages ≥ Ω(P1/2)

� Only several references shown, block algorithms (ScaLAPACK) and
communication avoiding algorithms

� CA algorithms exist also for SVD and eigenvalue computation

11 of 58



2D Parallel algorithms and communication bounds

� Memory per processor = n2/P, the lower bounds become
#words moved ≥ Ω(n2/P1/2), #messages ≥ Ω(P1/2)

� Only several references shown, block algorithms (ScaLAPACK) and
communication avoiding algorithms

� CA algorithms exist also for SVD and eigenvalue computation

11 of 58



TSQR: QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker,

Patterson, 02
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Algebra of TSQR

� Classic QR: W = QR02 = (I − YTY T )R02

� Q is represented implicitly as a product

� Output: Q00,Q10,Q00,Q20,Q30,Q01,Q11,Q02,R02
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Algebra of TSQR
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Strong scaling

� Hopper: Cray XE6 (NERSC): 2 x 12-core AMD Magny-Cours (2.1 GHz)

� Edison: Cray CX30 (NERSC): 2 x 12-core Intel Ivy Bridge (2.4 GHz)

� Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime

� Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.
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Low rank matrix approximation

� Problem: given m × n matrix A, compute rank-k approximation ZW T ,
where Z is m × k and W T is k × n.

� Problem with diverse applications
� from scientific computing: fast solvers for integral equations, H-matrices
� to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn→ 2(m + n)k
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Low rank matrix approximation

� Best rank-k approximation Ak = UkΣkVk is rank-k truncated SVD of A
[Eckart and Young, 1936]

min
rank(Ãk )≤k

||A− Ãk ||2 = ||A− Ak ||2 = σk+1(A) (2)

min
rank(Ãk )≤k

||A− Ãk ||F = ||A− Ak ||F =

√√√√ n∑
j=k+1

σ2
j (A) (3)

Original image of size

919× 707

Rank-38 approximation,

SVD

Rank-75 approximation,

SVD

� Image source: https:

//upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg
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Low rank matrix approximation: trade-offs
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Rank revealing QR factorization

Given A of size m × n, consider the decomposition

APc = QR = Q

[
R11 R12

R22

]
, (4)

where R11 is k × k , Pc and k are chosen such that ||R22||2 is small and R11

is well-conditioned.

� Q(:, 1 : k) forms an approximate orthogonal basis for the range of A,

� Pc

[
R−1

11 R12

−I

]
is an approximate right null space of A.
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Rank revealing QR factorization

The factorization from equation (4) is rank revealing if

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σk+j(A)
≤ q1(k , n),

for 1 ≤ i ≤ k and 1 ≤ j ≤ min(m, n)− k , where

σmax(A) = σ1(A) ≥ . . . ≥ σmin(A) = σn(A)

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

||R−1
11 R12||max ≤ q2(k , n)

� Gu and Eisenstat show that given k and f , there exists a Pc such that
q1(k, n) =

√
1 + f 2k(n − k) and q2(k , n) = f .

� Factorization computed in O(mnk) flops.
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QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm
column norm vector: colnrm(j) = ||A(:, j)||2, j = 1 : n.
for j = 1 : n do

1. Pivot, choose column p of largest norm,
swap columns j and p in A and modify colnrm.

2. Compute Householder matrix Hj s.t.
HjA(j : m, j) = ±||A(j : m, j)||2e1.

3. Update A(j : m, j + 1 : n) = HjA(j : m, j + 1 : n).
4. Norm downdate colnrm(j + 1 : n)2− = A(j , j + 1 : n)2.

end for

Lower bounds on communication for dense LA
Matrix of size n × n distributed over P processors.

# words ≥ Ω

(
n2

√
P

)
, # messages ≥ Ω

(√
P
)
. (5)
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Tournament pivoting [Demmel et al., 2015]

One step of CA RRQR, tournament pivoting used to select k columns

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Permute Aji in leading positions,
compute QR with no pivoting

APc1 = Q1

(
R11 ∗

∗

)
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Select b columns from a tall and skinny matrix

Given W of size m × 2b, m >> b, b columns are selected as:

W = QR02 using TSQR
R02Pc = Q2R2 using QRCP
Return WPc(:, 1 : b)
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Reduction trees

Any shape of reduction tree can be used during CA RRQR, depending on
the underlying architecture.

� Binary tree:

A00 A10 A20 A30

↓ ↓ ↓ ↓
f (A00) f (A10) f (A20) f (A30)

↘ ↙ ↘ ↙
f (A01) f (A11)

↘ ↙
f (A02)

� Flat tree:

A00 A10 A20 A30

↓

��)

������) ���������)

f (A00)

↓
f (A01)

↓
f (A02)

↓
f (A03)

Notation: at each node of the reduction tree, f (Aij) returns the first b columns

obtained after performing (strong) RRQR of Aij .
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CA-RRQR - bounds for one tournament

Selecting b columns by using tournament pivoting reveals the rank of A (for
k = b) with the following bounds:

1 ≤ σi (A)

σi (R11)
,
σj(R22)

σb+j(A)
≤
√

1 + F 2
TP(n − b),

||R−1
11 R12||max ≤ FTP

� Binary tree of depth log2(n/b),

FTP ≤
1√
2b

(n/b)log2(
√

2fb) . (6)

The upper bound is a decreasing function of b when b >
√

n/(
√

2f ).

� Flat tree of depth n/b,

FTP ≤
1√
2b

(√
2fb
)n/b

. (7)
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Cost of CA-RRQR

Cost of CA-RRQR vs QR with column pivoting

n × n matrix on
√

P ×
√

P processor grid, block size b

Flops : 4n3/P + O(n2blogP/
√

P) vs (4/3)n3/P

Bandwidth : O(n2 log P/
√

P) vs same
Latency : O(n log P/b) vs O(n log P)

Communication optimal, modulo polylogarithmic factors, by choosing

b =
1

2log 2P

n√
P
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Numerical results

� Stability close to QRCP for many tested matrices.

� Absolute value of diagonals of R, L referred to as R-values, L-values.

� Methods compared

� RRQR: QR with column pivoting

� CA-RRQR-B with tournament pivoting based on binary tree

� CA-RRQR-F with tournament pivoting based on flat tree

� SVD
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Numerical results - devil’s stairs

Devil’s stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code:
Length = 20; s = zeros(n,1); Nst = floor(n/Length);
for i = 1 : Nst do

s(1+Length*(i-1):Length*i) = -0.6*(i-1);
end for
s(Length ∗ Nst : end) = −0.6 ∗ (Nst − 1);
s = 10. ∧ s;
A = orth(rand(n)) * diag(s) * orth(randn(n));

QLP decomposition (Stewart)

APc1 = Q1R1 using ca rrqr

RT
1 = Q2R2
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Numerical results (contd)
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� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: shaw - 1D image restoration model [Hansen, 2007]

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (8)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (9)

where Πj (j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B, and

CARRQR-F, and ε is the machine precision.
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Numerical results - a set of 18 matrices

� Ratios |R(i , i)|/σi (R), for QRCP (top plot), CARRQR-B (second plot), and
CARRQR-F (third plot).

� The number along x-axis represents the index of test matrices.
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LU versus QR - filled graph G+(A)

� Consider A is SPD and A = LLT

� Given G (A) = (V ,E ), G +(A) = (V ,E +) is defined as:
there is an edge (i , j) ∈ G +(A) iff there is a path from i to j in G (A)
going through lower numbered vertices.

� G (L + LT ) = G +(A), ignoring cancellations.
� Definition holds also for directed graphs (LU factorization).

1 2 3 4 5 6 7 8 9

A =

1
2
3
4
5
6
7
8
9



x x x
x x x x

x x x
x x x x

x x x x x
x x x x

x x x
x x x x

x x x



1 2 3 4 5 6 7 8 9

L + LT =

1
2
3
4
5
6
7
8
9



x x x
x x x x x

x x x x x
x x x x x x

x x x x x x x
x x x x x x

x x x x x
x x x x x

x x x



1 2 3

4 5 6

7 8 9

G(A)

1 2 3

4 5 6

7 8 9

G +(A)
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LU versus QR

Filled column intersection graph G+
∩ (A)

� Graph of the Cholesky factor of ATA

� G (R) ⊆ G +
∩ (A)

� ATA can have many more nonzeros than A
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LU versus QR

Numerical stability

� Let L̂ and Û be the computed factors of the block LU factorization. Then

L̂Û = A + E , ‖E‖max ≤ c3(n)ε
(
‖A‖max + ‖L̂‖max‖Û‖max

)
. (10)

� For partial pivoting, ‖L‖max ≤ 1, ‖U‖max ≤ 2n‖A‖max

In practice, ‖U‖max ≤
√

n‖A‖max
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Low rank approximation based on LU factorization

� Given desired rank k, the factorization has the form

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
, (11)

where A ∈ Rm×n, Ā11 ∈ Rk,k , S(Ā11) = Ā22 − Ā21Ā−1
11 Ā12.

� The rank-k approximation matrix Ãk is

Ãk =

(
I

Ā21Ā−1
11

)(
Ā11 Ā12

)
=

(
Ā11

Ā21

)
Ā−1

11

(
Ā11 Ā12

)
. (12)

� Ā−1
11 is never formed, its factorization is used when Ãk is applied to a

vector.

� In randomized algorithms, U = C +AR+, where C +,R+ are
Moore-Penrose generalized inverses.
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Design space

Non-exhaustive list for selecting k columns and rows:

1. Select k linearly independent columns of A (call result B), by using

1.1 (strong) QRCP/tournament pivoting using QR,
1.2 LU / tournament pivoting based on LU, with some form of pivoting

(column, complete, rook),
1.3 randomization: premultiply X = ZA where random matrix Z is short and

fat, then pick k rows from XT , by some method from 2) below,
1.4 tournament pivoting based on randomized algorithms to select columns at

each step.

2. Select k linearly independent rows of B, by using

2.1 (strong) QRCP / tournament pivoting based on QR on BT , or on QT , the
rows of the thin Q factor of B,

2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook)
on B,

2.3 tournament pivoting based on randomized algorithms to select rows.
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Select k cols using tournament pivoting

� Partition A = (A1,A2,A3,A4).

� Select k cols from each column
block, by using QR with column
pivoting

� At each level i of the tree
� At each node j do in parallel

� Let Av,i−1,Aw,i−1 be the cols
selected by the children of node j

� Select k cols from
(Av,i−1,Aw,i−1), by using QR
with column pivoting

� Return columns in Aji
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� Return columns in Aji
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Our LU CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting
on matrix A of size m × n:

1. Select k columns by using tournament pivoting, permute them in front,
bounds for s.v. governed by q1(k , n,FTP)

APc = Q

(
R11 R12

R22

)
=

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
2. Select k rows from (Q11; Q21)T of size m × k by using tournament

pivoting,

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
such that ||Q̄21Q̄−1

11 ||max ≤ FTP and bounds for s.v. governed by
q2(m, k,FTP).
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Orthogonal matrices

Given orthogonal matrix Q ∈ Rm×m and its partitioning

Q =

(
Q11 Q12

Q21 Q22

)
, (13)

the selection of k cols by tournament pivoting from (Q11; Q21)T leads to
the factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(14)

where S(Q̄11) = Q̄22 − Q̄21Q̄−1
11 Q̄12 = Q̄−T22 .
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Orthogonal matrices (contd)

The factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(15)

satisfies:

ρj(Q̄21Q̄−1
11 ) ≤ FTP , (16)

1

q2(k ,m)
≤ σi (Q̄11) ≤ 1, (17)

σmin(Q̄11) = σmin(Q̄22) (18)

for all 1 ≤ i ≤ k, 1 ≤ j ≤ m − k , where ρj(A) is the 2-norm of the j-th row

of A, q2(k,m) =
√

1 + F 2
TP(m − k).
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Sketch of the proof

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
=

(
I

Q̄21Q̄−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)(
R11 R12

R22

)
(19)

where

Q̄21Q̄−1
11 = Ā21Ā−1

11 ,

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22.
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Sketch of the proof (contd)

Ā11 = Q̄11R11, (20)

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22. (21)

We obtain

σi (A) ≥ σi (Ā11) ≥ σmin(Q̄11)σi (R11) ≥ 1

q1(n, k)q2(m, k)
σi (A),

We also have that

σk+j(A) ≤ σj(S(Ā11)) = σj(S(Q̄11)R22) ≤ ||S(Q̄11)||2σj(R22)

≤ q1(n, k)q2(m, k)σk+j(A),

where q1(n, k) =
√

1 + F 2
TP(n − k), q2(m, k) =

√
1 + F 2

TP(m − k).
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LU CRTP factorization - bounds if rank = k

Given A of size m × n, one step of LU CRTP computes the decomposition

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Q̄21Q̄−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(22)

where Ā11 is of size k × k and

S(Ā11) = Ā22 − Ā21Ā−1
11 Ā12 = Ā22 − Q̄21Q̄−1

11 Ā12. (23)

It satisfies the following properties:

ρl(Ā21Ā−1
11 ) = ρl(Q̄21Q̄−1

11 ) ≤ FTP , (24)

||S(Ā11)||max ≤ min((1 + FTP

√
k)||A||max ,FTP

√
1 + F 2

TP(m − k)σk(A))

1 ≤ σi (A)

σi (Ā11)
,
σj(S(Ā11))

σk+j(A)
≤ q(m, n, k), (25)

for any 1 ≤ l ≤ m − k , 1 ≤ i ≤ k , and 1 ≤ j ≤ min(m, n)− k,
q(m, n, k) =

√
(1 + F 2

TP(n − k)) (1 + F 2
TP(m − k)).
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LU CRTP factorization - bounds if rank = K = Tk

Consider T block steps of LU CRTP factorization

PrAPc =


I

L21 I
...

...
. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT ,T+1

UT+1,T+1

 (26)

where Utt is k × k for 1 ≤ t ≤ T , and UT+1,T+1 is (m − Tk)× (n − Tk). Then:

ρl(Li+1,j) ≤ FTP ,

||UK ||max ≤ min
(

(1 + FTP

√
k)K/k ||A||max , q2(m, k)q(m, n, k)K/k−1σK (A)

)
,

for any 1 ≤ l ≤ k. q2(m, k) =
√

1 + F 2
TP(m − k), and

q(m, n, k) =
√

(1 + F 2
TP(n − k)) (1 + F 2

TP(m − k)).
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LU CRTP factorization - bounds if rank = K = Tk

Consider T = K/k block steps of our LU CRTP factorization

PrAPc =


I

L21 I
...

...
. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT ,T+1

UT+1,T+1

 (27)

where Utt is k × k for 1 ≤ t ≤ T , and UT+1,T+1 is (m − Tk)× (n − Tk). Then:

1∏t−2
v=0 q(m − vk, n − vk, k)

≤
σ(t−1)k+i (A)

σi (Utt)
≤ q(m − (t − 1)k, n − (t − 1)k, k),

1 ≤ σj(UT+1,T+1)

σK+j(A)
≤

K/k−1∏
v=0

q(m − vk, n − vk, k),

for any 1 ≤ i ≤ k, 1 ≤ t ≤ T , and 1 ≤ j ≤ min(m, n)− K . Here

q2(m, k) =
√

1 + F 2
TP(m − k), and

q(m, n, k) =
√

(1 + F 2
TP(n − k)) (1 + F 2

TP(m − k)).
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Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure

flops(TPFT ) ≤ 2nnz(A)k2

flops(TPBT ) ≤ 8
nnz(A)

P
k2 log

n

k

G (ATA) is an n1/2- separable graph

flops(TPFT ) ≤ O(nnz(A)k3/2)

flops(TPBT ) ≤ O(
nnz(A)

P
k3/2 log

n

k
)

Randomized algorithm by Clarkson and Woodruff, STOC’13

� Given n × n matrix A, it computes LDW T , where D is k × k such that
||A− LDW T ||F ≤ (1 + ε)||A− Ak ||F , Ak is best rank-k approximation.

flops ≤ O(nnz(A)) + nε−4logO(1)(nε−4)

� Tournament pivoting is faster if ε ≤ 1
(nnz(A)/n)1/4

or if ε = 0.1 and nnz(A)/n ≤ 104.
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Numerical results

Index of singular values
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� Left: exponent - exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),
α = 10−1/11 [Bischof, 1991]

� Right: foxgood - Severely ill-posed test problem of the 1st kind Fredholm integral
equation used by Fox and Goodwin
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Numerical results

� Here k = 16 and the factorization is truncated at K = 128 (bars) or K = 240
(red lines).

� LU CTP: Column tournament pivoting + partial pivoting

� All singular values smaller than machine precision, ε, are replaced by ε.

� The number along x-axis represents the index of test matrices.
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Results for image of size 919× 707

Original image Rank-38 approx, SVD Singular value distribution

Rank-38 approx, LUPP Rank-38 approx, LU CRTP Rank-75 approx, LU CRTP
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Results for image of size 691× 505

Original image Rank-105 approx, SVD
Singular value distribution

Rank-105 approx, LUPP Rank-105 approx, LU CRTP Rank-209 approx, LU CRTP
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Comparing nnz in the factors L,U versus Q,R

Name/size Nnz Rank K Nnz QRCP/ Nnz LU CRTP/
A(:, 1 : K ) Nnz LU CRTP Nnz LUPP

gemat11 1232 128 2.1 2.2
4929 4895 512 3.3 2.6

9583 1024 11.5 3.2
wang3 896 128 3.0 2.1
26064 3536 512 2.9 2.1

7120 1024 2.9 1.2
Rfdevice 633 128 10.0 1.1

74104 2255 512 82.6 0.9
4681 1024 207.2 0.0

Parab fem 896 128 − 0.5
525825 3584 512 − 0.3

7168 1024 − 0.2
Mac econ 384 128 − 0.3

206500 1535 512 − 0.3
5970 1024 − 0.2
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Performance results

Selection of 256 columns by tournament pivoting

� Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)

� Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time
in secs

Matrices: dimension at leaves on 32 procs

� Parab fem: 528825× 528825 528825× 16432

� Mac econ: 206500× 206500 206500× 6453

Time Time leaves Number of MPI processes
2k cols 32procs 16 32 64 128 256 512 1024

SPQR + dGEQP3
Parab fem 0.26 0.26 + 1129 46.7 24.5 13.7 8.4 5.9 4.8 4.4
Mac econ 0.46 25.4 + 510 132.7 86.3 111.4 59.6 27.2 − −
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Results used in the proofs

� Interlacing property of singular values [Golub, Van Loan, 4th edition,
page 487]
Let A = [a1| . . . |an] be a column partitioning of an m × n matrix with
m ≥ n. If Ar = [a1| . . . |ar ], then for r = 1 : n − 1

σ1(Ar+1) ≥ σ1(Ar ) ≥ σ2(Ar+1) ≥ . . . ≥ σr (Ar+1) ≥ σr (Ar ) ≥ σr+1(Ar+1).

� Given n × n matrix B and n × k matrix C , then
([Eisenstat and Ipsen, 1995], p. 1977)

σmin(B)σj(C ) ≤ σj(BC ) ≤ σmax(B)σj(C ), j = 1, . . . , k .
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