Communication avoiding algorithms in linear algebra

Laura Grigori

Alpines

INRIA Paris - LJLL, UPMC

November 2017
Plan

• Motivation
• Selected past work on reducing communication
• Communication complexity of linear algebra operations
• Communication avoiding for dense linear algebra
 • LU, QR, Rank Revealing QR factorizations
 • Progressively implemented in ScaLAPACK, LAPACK
 • Algorithms for multicore processors
• Conclusions
Data driven science

Numerical simulations require increasingly computing power as data sets grow exponentially

Figures from astrophysics:
- Produce and analyze multi-frequency 2D images of the universe when it was 5% of its current age.
- COBE (1989) collected 10 gigabytes of data, required 1 Teraflop per image analysis.
- PLANCK (2010) produced 1 terabyte of data, requires 100 Petaflops per image analysis.
- Future experiment (2020) estimated to collect .5 petabytes, require 100 Exaflops per image analysis.

Source: J. Borrill, LBNL, R. Stompor, Paris 7

http://www.scidacreview.org/0704/html/cmb.html
Motivation - the communication wall

• Runtime of an algorithm is the sum of:
 • #flops x \texttt{time_per_flop}
 • #words_moved / \texttt{bandwidth}
 • #messages x \texttt{latency}

• Time to move data \gg time per flop
 • Gap steadily and exponentially growing over time
Motivation - the communication wall

- Runtime of an algorithm is the sum of:
 - \#flops x \texttt{time_per_flop}
 - \#words_moved / \texttt{bandwidth}
 - \#messages x \texttt{latency}

- Time to move data >> time per flop
 - Gap steadily and exponentially growing over time

<table>
<thead>
<tr>
<th>Annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Time/flop</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>DRAM</td>
</tr>
</tbody>
</table>

- Performance of an application is less than 10% of the peak performance

“We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]
Compelling numbers (1)

DRAM bandwidth:
- Mid 90’s ~ 0.2 bytes/flop – 1 byte/flop
- Past few years ~ 0.02 to 0.05 bytes/flop

DRAM latency:
- DDR2 (2007) ~ 120 ns
- DDR4 (2014) ~ 45 ns 2.6x in 7 years
- Stacked memory ~ similar to DDR4 13% / year

Time/flop
- 2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
- 2015 Intel Haswell ~ 2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

34% / year

Source: J. Shalf, LBNL
Compelling numbers (2)

Fetch from DRAM 1 byte of data
- 1988: compute 6 flops
- 2004: compute a few 100 flops
- 2015: compute 26460 flops/chip (see below)

Receive from another proc 1 byte of data:
- Compute 147000 - 1065000 flops

Example of one supercomputer today:
- Intel Haswell: 8 flops per cycle per core
- Interconnect: 0.25 µs to 3.7 µs MPI latency, 8GB/sec MPI bandwidth
The role of numerical linear algebra

• Challenging applications often rely on solving linear algebra problems
• Linear systems of equations

Solve $Ax = b$, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x \in \mathbb{R}^n$

• Direct methods
 $PA = LU$, then solve $P^T L U x = b$
 LU factorization is backward stable,

\[\|PA - \tilde{L} \cdot \tilde{U}\|_\infty \] is small, close to machine epsilon in practice

• Iterative methods

 • Find a solution x_k from $x_0 + K_k (A, r_0)$, where $K_k (A, r_0) = \text{span} \{r_0, Ar_0, \ldots, A^{k-1}r_0\}$
 such that the Petrov-Galerkin condition $b - Ax_k \perp L_k$ is satisfied,
 where L_k is a subspace of dimension k and $r_0 = Ax_0 - b$.

 • Convergence depends on $\kappa(A)$ and the eigenvalue distribution (for SPD matrices).
Least Square (LS) Problems

- Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, solve $\min_x \|Ax - b\|_2$.
- Any solution of the LS problem satisfies the normal equations: $A^T Ax = A^T b$

- Given the QR factorization of A

 \[
 A = \begin{bmatrix} R \\ 0 \end{bmatrix}
 \]

 where R is $n \times n$ upper triangular matrix

 Q is $m \times m$ orthogonal matrix

 if $\text{rank}(A) = \text{rank}(R) = n$, then the LS solution is given by $Rx = (Q^T b)(1 : n)$

- The QR factorization is column-wise backward stable

 $\|A - \hat{Q}\hat{R}\|_2$ is small, close to machine epsilon in practice
Rank revealing factorizations

- A rank revealing QR (RRQR) factorization is given as

\[A\Pi = QR = Q \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}, \quad R_{11} \text{ is } k \times k - k \]

with \(\sigma_{\min}(R_{11}) \geq \frac{\sigma_k(A)}{p(k,n)}, \quad \sigma_{\max}(R_{22}) \leq \sigma_{k+1}(A) \cdot p(k,n), \)

\(p(k,n) \) is a low degree polynomial in \(n \) and \(k \), \(R_{11} \) is well conditioned, \(\|R_{22}\|_2 \) is small

A strong RRQR if \(\|R_{11}^{-1}R_{12}\| \leq c \)

- Since \(\sigma_{k+1}(A) \leq \sigma_{\max}(R_{22}) = \|R_{22}\|_2 \), the numerical rank of \(A \) is \(k \)
- \(Q(:,1:k) \) forms an approximate orthogonal basis for the range of \(A \)
- \(A\Pi \begin{pmatrix} R_{11}^{-1}R_{12} \\ -I \end{pmatrix} = Q \begin{pmatrix} 0 \\ -R_{22} \end{pmatrix}, \quad \Pi \begin{pmatrix} R_{11}^{-1}R_{12} \\ -I \end{pmatrix} \) are approximate null vectors

- Applications: subset selection and linear dependency analysis, rank determination, low rank approximation - solve \(\min_{\text{rank}(X)=k} \|A-X\| \)
Approaches for reducing communication

• **Tuning**
 - Overlap communication and computation, at most a factor of 2 speedup

• **Same numerical algorithm, different schedule of the computation**
 - Block algorithms for NLA
 - Barron and Swinnerton-Dyer, 1960
 - ScaLAPACK, Blackford et al 97
 - Cache oblivious algorithms for NLA
 - Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00

• **Same algebraic framework, different numerical algorithm**
 - The approach used in CA algorithms
 - More opportunities for reducing communication, may affect stability
Communication in CMB data analysis

- Map-making problem
 - Find the best map x from observations d, scanning strategy A, and noise N^{-1}
 - Solve generalized least squares problem involving sparse matrices of size 10^{12}-by-10^7
- Spherical harmonic transform (SHT)
 - Synthesize a sky image from its harmonic representation
 - Computation over rows of a 2D object (summation of spherical harmonics)
 - Communication to transpose the 2D object
 - Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer
Motivation

• The communication problem needs to be taken into account higher in the computing stack

• A paradigm shift in the way the numerical algorithms are devised is required

• Communication avoiding algorithms - a novel perspective for numerical linear algebra
 • Minimize volume of communication
 • Minimize number of messages
 • Minimize over multiple levels of memory/parallelism
 • Allow redundant computations (preferably as a low order term)
Communication Complexity of Dense Linear Algebra

• Matrix multiply, using $2n^3$ flops (sequential or parallel)
 • Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
 • Lower bound on Bandwidth = $\Omega \left(\frac{\text{#flops}}{M^{1/2}} \right)$
 • Lower bound on Latency = $\Omega \left(\frac{\text{#flops}}{M^{3/2}} \right)$

• Same lower bounds apply to LU using reduction
 • Demmel, LG, Hoemmen, Langou 2008

$\begin{pmatrix} I & -B \\ A & I \\ I & I \end{pmatrix} = \begin{pmatrix} I & I \\ A & I \end{pmatrix} \begin{pmatrix} I & -B \\ I & AB \end{pmatrix}$

• And to almost all direct linear algebra [Ballard, Demmel, Holtz, Schwartz, 09]
Lower bounds for linear algebra

- Computation modelled as an n-by-n-by-n set of lattice points
 \((i,j,k)\) represents the operation \(c(i,j) += f_{ij}(g_{ijk}(a(i,k)*b(k,j)))\)
- The computation is divided in \(S\) phases
- Each phase contains exactly \(M\) (the fast memory size) load and store instructions
- Determine how many flops the algorithm can compute in each phase, by applying discrete Loomis-Whitney inequality:

\[w^2 \leq N_A N_B N_C \]

Algorithms in direct linear algebra:

\[
\begin{align*}
\text{for } i,j,k = 1:n \\
\text{\hspace{1cm}} c(i,j) = f_{ij}(g_{ijk}(a(i,k),b(k,j))) \\
\text{endfor}
\end{align*}
\]

- set of points in \(\mathbb{R}^3\), represent \(w\) arithmetics

- orthogonal projections of the points onto coordinate planes \(N_A, N_B, N_C\) represent values of A, B, C
Lower bounds for matrix multiplication (contd)

• Discrete Loomis-Whitney inequality:
 \[w^2 \leq N_A N_B N_C \]

• Since there are at most 2M elements of A, B, C in a phase, the bound is:
 \[w \leq 2\sqrt{2} M^{3/2} \]

• The number of phases S is \#flops/w, and hence the lower bound on communication is:
 \[\# \text{messages}(S) \geq \frac{\# \text{flops}}{w} = \Omega \left(\frac{\# \text{flops}}{M^{3/2}} \right) \]

 \[\# \text{loads}/\text{stores} \geq \Omega \left(\frac{\# \text{flops}}{M^{1/2}} \right) \]
Sequential algorithms and communication bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>LAPACK</td>
<td>[Gustavson, 97]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ahmed, Pingali, 00]</td>
</tr>
<tr>
<td>LU</td>
<td>LAPACK (few cases) [Toledo,97], [Gustavson, 97] both use partial pivoting</td>
<td>[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting</td>
</tr>
<tr>
<td>QR</td>
<td>LAPACK (few cases) [Elmroth,Gustavson,98]</td>
<td>[Frens, Wise, 03], 3x flops [Demmel, LG, Hoemmen, Langou, 08] [Ballard et al, 14]</td>
</tr>
<tr>
<td>RRQR</td>
<td></td>
<td>[Demmel, LG, Gu, Xiang 11] uses tournament pivoting, 3x flops</td>
</tr>
</tbody>
</table>

- Only several references shown for block algorithms (LAPACK), cache-oblivious algorithms and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation
2D Parallel algorithms and communication bounds

- If memory per processor = \(\frac{n^2}{P} \), the lower bounds become
 \[
 \#\text{words_moved} \geq \Omega \left(\frac{n^2}{P^{1/2}} \right), \quad \#\text{messages} \geq \Omega \left(P^{1/2} \right)
 \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>ScaLAPACK</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>LU</td>
<td>ScALAPACK</td>
<td>[LG, Demmel, Xiang, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Khabou, Demmel, LG, Gu, 12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting</td>
</tr>
<tr>
<td>QR</td>
<td>ScALAPACK</td>
<td>[Demmel, LG, Hoemmen, Langou, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ballard et al, 14]</td>
</tr>
<tr>
<td>RRQR</td>
<td>ScALAPACK</td>
<td>[Demmel, LG, Gu, Xiang 13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting, 3x flops</td>
</tr>
</tbody>
</table>

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation
The algebra of LU factorization

- Compute the factorization $PA = LU$

- Given the matrix

$$A = \begin{pmatrix} 3 & 1 & 3 \\ 6 & 7 & 3 \\ 9 & 12 & 3 \end{pmatrix}$$

Let

$$M_1A = \begin{pmatrix} 1 \\ -2 & 1 \\ -3 & 1 \end{pmatrix}, \quad M_1A = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 5 & -3 \\ 0 & 9 & -6 \end{pmatrix}$$
The need for pivoting

- For stability avoid division by small elements, otherwise $||A-LU||$ can be large
 - Because of roundoff error
- For example

$$A = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 1 & 3 \\ 6 & 2 & 3 \end{pmatrix}$$

has an LU factorization if we permute the rows of A

$$PA = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 1 & 3 \\ 6 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0.5 \\ 1 & 1 \\ 1.5 & 1 \end{pmatrix} \begin{pmatrix} 6 & 2 & 3 \\ 3 & 3 \\ 1.5 \end{pmatrix}$$

- Partial pivoting allows to bound all elements of L by 1.
LU with partial pivoting – BLAS 2 algorithm

for i = 1 to n-1
 Let A(j,i) be elt. of max magnitude in A(i+1:n,i)
 Permute rows i and j
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Algorithm using BLAS 1/2 operations

for i = 1 to n-1
 Let A(j,i) be elt. of max magnitude in A(i+1:n,i)
 Permute rows i and j
 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
 ... BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
 - A(i+1:n , i) * A(i , i+1:n)
 ... BLAS 2 (rank-1 update)

Source slide: J. Demmel
Block LU factorization – obtained by delaying updates

- Matrix A of size nxn is partitioned as

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ where } A_{11} \text{ is } b \times b \]

- The first step computes LU with partial pivoting of the first block:

\[P_1 \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} L_{11} \\ L_{21} \end{pmatrix} U_{11} \]

- The factorization obtained is:

\[P_1^* A = \begin{pmatrix} L_{11} \\ L_{21} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ I_{n-b} & A_{22}^1 \end{pmatrix}, \text{ where } U_{12} = L_{11}^{-1} A_{12}, A_{22}^1 = A_{22} - L_{21} U_{12} \]

- The algorithm continues recursively on the trailing matrix A_{22}^1
Block LU factorization – the algorithm

1. Compute LU with partial pivoting of the first panel

\[
P_1 \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} L_{11} \\ L_{21} \end{pmatrix} U_{11}
\]

2. Pivot by applying the permutation matrix \(P_1 \) on the entire matrix

\[
P_1 A = \overline{A}
\]

3. Solve the triangular system to compute a block row of \(U \)

\[
U_{12} = L_{12}^{-1} \overline{A}_{12}
\]

4. Update the trailing matrix

\[
\overline{A}_{22}^1 = \overline{A}_{22} - L_{21} U_{12}
\]

5. The algorithm continues recursively on the trailing matrix \(\overline{A}_{22}^1 \)
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P = P_r \times P_c$ grid of processors

For $ib = 1$ to $n-1$ step b

$A^{(ib)} = A(ib:n, ib:n)$

(1) Compute panel factorization $O(n \log_2 P_r)$
 - find pivot in each column, swap rows

(2) Apply all row permutations $O(n / b(\log_2 P_c + \log_2 P_r))$
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U $O(n / b \log_2 P_c)$
 - broadcast right diagonal block of L of current panel

(4) Update trailing matrix $O(n / b(\log_2 P_c + \log_2 P_r))$
 - broadcast right block column of L
 - broadcast down block row of U
General scheme for
QR factorization by Householder transformations

The Householder matrix

\[H_i = I - \tau_i h_i h_i^T \]

has the following properties:
• is symmetric and orthogonal,
 \[H_i^2 = I, \]
• is independent of the scaling of \(h_i \),
• it reflects \(x \) about the hyperplane \(\text{span}(h_i)^\perp \)

• For QR, we choose a Householder matrix that allows to annihilate
 the elements of a vector \(x \), except first element.
General scheme for QR factorization by Householder transformations

- Apply Householder transformations to annihilate subdiagonal entries

\[
A = \begin{pmatrix}
 x & x & x & x \\
 x & x & x & x \\
 x & x & x & x \\
 x & x & x & x \\
\end{pmatrix}
= H_1 \begin{pmatrix}
 x & x & x & x \\
 0 & x & x & x \\
 0 & x & x & x \\
 0 & x & x & x \\
\end{pmatrix}
= H_1 \begin{pmatrix}
 1 & & & \\
 & 1 & & \\
 & & \tilde{H}_2 & \\
 & & & 1 \\
\end{pmatrix}
\begin{pmatrix}
 x & x & x & x \\
 0 & x & x & x \\
 0 & 0 & x & x \\
 0 & 0 & 0 & x \\
\end{pmatrix}
= H_1 H_2 \tilde{H}_3 R = QR
\]

- For A of size mxn, the factorization can be written as:

\[
H_n H_{n-1} \cdots H_2 H_1 A = R \rightarrow A = (H_n H_{n-1} \cdots H_2 H_1)^T R
\]

\[
Q = H_1 H_2 \cdots H_n
\]
Compact representation for Q

- Orthogonal factor Q can be represented implicitly as

$$Q = H_1 H_2 \ldots H_b = (I - \tau_1 h_1 h_1^T) \ldots (I - \tau_b h_b h_b^T) = I - YTY^T,$$

where

$$Y = \begin{pmatrix} h_1 & h_2 & \ldots & h_b \end{pmatrix}$$

- Example for $b=2$:

$$Y = (h_1 | h_2), \quad T = \begin{pmatrix} \tau_1 & -\tau_1 h_1^T h_2 \tau_2 \\ \tau_2 \end{pmatrix}$$
Algebra of block QR factorization

Matrix A of size nxn is partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ where } A_{11} \text{ is } b \times b$$

Block QR algebra

The first step of the block QR factorization algorithm computes:

$$Q_1^T A = \begin{bmatrix} R_{11} & R_{12} \\ & A_{22}^1 \end{bmatrix}$$

The algorithm continues recursively on the trailing matrix A_{22}^1
Block QR factorization

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} & R_{12} \\ \end{pmatrix} \begin{pmatrix} A_{21} & A_{22} \end{pmatrix} \]

Block QR algebra:

1. Compute panel factorization:
 \[\begin{pmatrix} A_{11} \\ A_{12} \end{pmatrix} = Q_1 \begin{pmatrix} R_{11} \end{pmatrix}, \quad Q_1 = H_1 H_2 \ldots H_b \]

2. Compute the compact representation:
 \[Q_1 = I - Y_1 T_1 Y_1^T \]

3. Update the trailing matrix:
 \[\left(I - Y_1 T_1^T Y_1^T \right) \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} = \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} - Y_1 \begin{pmatrix} T_1^T Y_1^T \left(A_{12} \right) \end{pmatrix} = \begin{pmatrix} R_{12} \\ A_{22}^1 \end{pmatrix} \]

4. The algorithm continues recursively on the trailing matrix.
TSQR: QR factorization of a tall skinny matrix using Householder transformations

• QR decomposition of m x b matrix W, m >> b
 • P processors, block row layout

• Classic Parallel Algorithm
 • Compute Householder vector for each column
 • Number of messages $\propto b \log P$

• Communication Avoiding Algorithm
 • Reduction operation, with QR as operator
 • Number of messages $\propto \log P$

$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow R_{01} \rightarrow R_{02} \rightarrow R_{11}$$
Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02
Algebra of TSQR

Parallel:

$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow R_{02}$$

$$W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} \frac{Q_{00} R_{00}}{Q_{10} R_{10}} \\ \frac{Q_{10} R_{10}}{Q_{20} R_{20}} \\ \frac{Q_{20} R_{20}}{Q_{30} R_{30}} \end{pmatrix} = \begin{pmatrix} \frac{Q_{00}}{Q_{10}} \\ \frac{Q_{10}}{Q_{20}} \\ \frac{Q_{20}}{Q_{30}} \end{pmatrix} = \begin{pmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{pmatrix}$$

$$\begin{pmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{pmatrix} = \begin{pmatrix} \frac{Q_{01} R_{01}}{Q_{11} R_{11}} \end{pmatrix} = \begin{pmatrix} \frac{Q_{01}}{Q_{11}} \end{pmatrix} = \frac{R_{01}}{R_{11}} = Q_{02} R_{02}$$

Q is represented implicitly as a product

Output: \{Q_{00}, Q_{10}, Q_{00}, Q_{20}, Q_{30}, Q_{01}, Q_{11}, Q_{02}, R_{02}\}
Flexibility of TSQR and CAQR algorithms

Parallel:
\[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \end{bmatrix} \]

Sequential:
\[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \end{bmatrix} \rightarrow \begin{bmatrix} R_{03} \end{bmatrix} \]

Dual Core:
\[w = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \end{bmatrix} \rightarrow \begin{bmatrix} R_{03} \end{bmatrix} \]

Reduction tree will depend on the underlying architecture, could be chosen dynamically
Algebra of TSQR

Parallel:

\[W = \begin{bmatrix}
W_0 \\
W_1 \\
W_2 \\
W_3
\end{bmatrix} \rightarrow
\begin{bmatrix}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{bmatrix} \rightarrow
\begin{bmatrix}
R_{01} \\
R_{11} \\
R_{02}
\end{bmatrix} \]

CAQR

\begin{array}{c|c|c}
\hline
\text{Step 0} & \text{Step 1} & \text{Step 2} \\
\hline
\text{P}_i & \text{C}_{ij} & \\
\hline
\end{array}
QR for General Matrices

- Cost of \textbf{CAQR} vs ScaLAPACK’s PDGEQRF
 - \(n \times n \) matrix on \(P^{1/2} \times P^{1/2} \) processor grid, block size \(b \)
 - \textbf{Flops:} \(\frac{4}{3}n^3/P + \frac{3}{4}n^2b \log P/P^{1/2} \) vs \(\frac{4}{3}n^3/P \)
 - \textbf{Bandwidth:} \(\frac{3}{4}n^2 \log P/P^{1/2} \) vs same
 - \textbf{Latency:} \(2.5 \frac{n \log P}{b} \) vs \(1.5 \frac{n \log P}{P^{1/2}} \)

- Close to optimal (modulo \(\log P \) factors)
 - Assume: \(O(n^2/P) \) memory/processor, \(O(n^3) \) algorithm,
 - Choose \(b \) near \(n/P^{1/2} \) (its upper bound)
 - Bandwidth lower bound:
 \(\Omega(n^2 /P^{1/2}) \) – just \(\log(P) \) smaller
 - Latency lower bound:
 \(\Omega(P^{1/2}) \) – just polylog\((P) \) smaller
Performance of TSQR vs Sca/LAPACK

• Parallel
 • Intel Xeon (two socket, quad core machine), 2010
 • Up to 5.3x speedup (8 cores, $10^5 \times 200$)
 • Pentium III cluster, Dolphin Interconnect, MPICH, 2008
 • Up to 6.7x speedup (16 procs, 100K x 200)
 • BlueGene/L, 2008
 • Up to 4x speedup (32 procs, 1M x 50)
 • Tesla C 2050 / Fermi (Anderson et al)
 • Up to 13x (110,592 x 100)
 • Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
 • QR computed locally using recursive algorithm (Elmroth-Gustavson) – enabled by TSQR

• Results from many papers, for some see [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS 10].
Modeled Speedups of CAQR vs ScaLAPACK

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

\[
\gamma = 2 \cdot 10^{-12} \text{ s}, \alpha = 10^{-5} \text{ s}, \beta = 2 \cdot 10^{-9} \text{ s/word}.
\]
Algebra of TSQR

Parallel: \[W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow R_{00} \rightarrow R_{01} \rightarrow R_{02} \rightarrow R_{11} \rightarrow R_{12} \]

TSQR-HR

CAQR

Page 38
Reconstruct Householder vectors from TSQR

The QR factorization using Householder vectors

\[W = QR = (I - YTY_1^T)R \]

can be re-written as an LU factorization

\[W - R = Y(-TY_1^T)R \]
\[Q - I = Y(-TY_1^T) \]
Reconstruct Householder vectors TSQR-HR

1. Perform TSQR
2. Form Q explicitly (tall-skinny orthonormal factor)
3. Perform LU decomposition: $Q - I = LU$

4. Set $Y = L$
5. Set $T = -U Y_1^{-T}$

\[I - YTY^T = I - \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} T \begin{bmatrix} Y_1^T & Y_2^T \end{bmatrix} \]
Strong scaling

Strong Scaling, Hopper (MKL)
294912-by-32 problem

Strong Scaling, Edison (MKL)
294912-by-32 problem

- Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2mn^2 - 2n^3/3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015.
Weak scaling QR on Hopper

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

- Matrix of size 15K-by-15K to 131K-by-131K
- Hopper: Cray XE6 supercomputer (NERSC) – dual socket 12-core Magny-Cours Opteron (2.1 GHz)
The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

\[
W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} \Pi_{00} & \Pi_{10} \\ \Pi_{20} & \Pi_{30} \end{pmatrix} \begin{pmatrix} L_{00} & L_{10} \\ L_{20} & L_{30} \end{pmatrix} \begin{pmatrix} U_{00} \\ U_{10} \\ U_{20} \\ U_{30} \end{pmatrix}
\]

\[
\begin{pmatrix} U_{00} \\ U_{10} \\ U_{20} \\ U_{30} \end{pmatrix} = \left(\begin{pmatrix} \Pi_{01} & \Pi_{11} \end{pmatrix} \right) \begin{pmatrix} L_{01} \end{pmatrix} \begin{pmatrix} U_{01} \\ U_{11} \end{pmatrix} = \prod_{02} L_{02} U_{02}
\]

Page 43
Obvious generalization of TSQR to LU

• Block parallel pivoting:
 • uses a binary tree and is optimal in the parallel case

\[
W = \begin{bmatrix}
 W_0 \\
 W_1 \\
 W_2 \\
 W_3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 U_{00} \\
 U_{10} \\
 U_{20} \\
 U_{30} \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 U_{01} \\
 U_{11} \\
\end{bmatrix} \rightarrow U_{02}
\]

• Block pairwise pivoting:
 • uses a flat tree and is optimal in the sequential case
 • introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
 • used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

\[
W = \begin{bmatrix}
 W_0 \\
 W_1 \\
 W_2 \\
 W_3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 U_{00} \\
 U_{01} \\
 U_{02} \\
\end{bmatrix} \rightarrow \begin{bmatrix}
 U_{03} \\
\end{bmatrix}
\]
Stability of the LU factorization

- The backward stability of the LU factorization of a matrix A of size n-by-n

\[
\| \hat{L} \cdot \hat{U} \|_\infty \leq (1 + 2(n^2 - n)g_w)\|A\|_\infty
\]

depends on the growth factor

\[
g_w = \frac{\max_{i,j,k} |a_{ij}^k|}{\max_{i,j} |a_{ij}|}
\]

where a_{ij}^k are the values at the k-th step.

- $g_w \leq 2^{n-1}$, attained for Wilkinson matrix

but in practice it is on the order of $n^{2/3} - n^{1/2}$

- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90]:

 - the multipliers in L are small,
 - the correction introduced at each elimination step is of rank 1.
Block parallel pivoting

- Unstable for large number of processors \(P \)
- When \(P=\text{number rows} \), it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)
Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices

\[W = \begin{bmatrix} W_0 & U_{00} \\ W_1 & U_{01} \\ W_2 & U_{02} \\ W_3 & U_{03} \end{bmatrix} \]
Tournament pivoting - the overall idea

• At each iteration of a block algorithm

\[
A = \begin{pmatrix}
\tilde{A}_{11} & \tilde{A}_{21} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix} b \\ n-b \end{pmatrix}

, where \[W = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \]

• Preprocess \(W \) to find at low communication cost good pivots for the LU factorization of \(W \), return a permutation matrix \(P \).
• Permute the pivots to top, ie compute \(PA \).
• Compute LU with no pivoting of \(W \), update trailing matrix.

\[
PA = \begin{pmatrix} L_{11} & \quad & U_{12} \\ L_{21} & I_{n-b} & A_{22} - L_{21}U_{12} \end{pmatrix}
\]
Tournament pivoting for a tall skinny matrix

1) Compute GEPP factorization of each W_i, find permutation Π_0

$$W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} \Pi_{00}L_{00}U_{00} \\ \Pi_{10}L_{10}U_{10} \\ \Pi_{20}L_{20}U_{20} \\ \Pi_{30}L_{30}U_{30} \end{pmatrix},$$

Pick b pivot rows, form A_{00}

Same for A_{10}

Same for A_{20}

Same for A_{30}

2) Perform $\log_2(P)$ times GEPP factorizations of 2b-by-b rows, find permutations Π_1, Π_2

$$\begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \\ A_{30} \end{pmatrix} = \begin{pmatrix} \Pi_{01}L_{01}U_{01} \\ \Pi_{11}L_{11}U_{11} \end{pmatrix}$$

Pick b pivot rows, form A_{01}

Same for A_{11}

$$\begin{pmatrix} A_{01} \\ A_{11} \end{pmatrix} = \frac{\Pi_{02}L_{02}U_{02}}{\Pi_2}$$

3) Compute LU factorization with no pivoting of the permuted matrix:

$$\Pi_2^T \Pi_1^T \Pi_0^T W = LU$$
Tournament pivoting

<table>
<thead>
<tr>
<th>Tournament Pivoting</th>
<th>(\text{Time})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>(\begin{pmatrix} 2 & 4 \ 0 & 1 \ 2 & 0 \ 1 & 2 \end{pmatrix} = \Pi_0 L_0 U_0)</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(\begin{pmatrix} W_1 \ 0 \ 0 \ 4 \ 1 \ 1 \end{pmatrix} = \Pi_1 L_1 U_1)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(\begin{pmatrix} W_2 \ 1 \ 4 \ 0 \ 0 \ 0 \end{pmatrix} = \Pi_2 L_2 U_2)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>(\begin{pmatrix} W_3 \ 0 \ 2 \ 1 \ 0 \ 4 \ 2 \end{pmatrix} = \Pi_3 L_3 U_3)</td>
</tr>
</tbody>
</table>

Good pivots for factorizing \(W \)
Growth factor for binary tree based CALU

- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and $|L| \leq 4.2$
Stability of CALU (experimental results)

• Results show $\|PA-LU\|/\|A\|$, normwise and componentwise backward errors, for random matrices and special ones
 • See [LG, Demmel, Xiang, SIMAX 2011] for details
 • BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
Our “proof of stability” for CALU

- CALU as stable as GEPP in following sense:
 In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.

- Example of one step of tournament pivoting:

 $A = \begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22} \\
 A_{31} & A_{32}
 \end{pmatrix}$

 $G = \begin{pmatrix}
 \bar{A}_{11} & \bar{A}_{12} \\
 \bar{A}_{21} & \bar{A}_{22} \\
 \bar{A}_{31} & \bar{A}_{32}
 \end{pmatrix}$

 Tournament pivoting:

 $\begin{pmatrix}
 A_{11} \\
 A_{21} \\
 A_{31}
 \end{pmatrix}$

 \rightarrow

 $\begin{pmatrix}
 \bar{A}_{11} \\
 \bar{A}_{21} \\
 \bar{A}_{31}
 \end{pmatrix}$

- Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).
LU factorization and low rank matrices

- For low rank matrices, the factorization of A_1 computed as following might not be stable

 Compute $PA = LU$ by using GEPP

 $L(k+1:end,k) = A(k+1:end,k)/A(k,k)$

 Permute the matrix $A_1 = PA$

 Compute LU with no pivoting $A_1 = L_1U_1$

 $L(k+1:end,k) = L(k+1:end,k)\times (1/A(k,k))$

- Example $A = \text{randn}(6,3)\times\text{randn}(3,5)$, $\max(\text{abs}(L)) = 1$, $\max(\text{abs}(L_1)) = 10^{15}$

 After 4 steps of factorization of PA we obtain:

 $PA^4 = \begin{pmatrix}
 1.0000 & 0.1729 & 0.6061 & 0.5776 & 0.4789 & -0.3264 \\
 0.0000 & 1.0000 & 0.8608 & 0.3264 & -0.7514 & -0.5497 \\
 0.0000 & 0.0000 & 0.3264 & 1.0000 & -0.4597 & 1.7778 \\
 0.0000 & 0.0000 & 0.0000 & 1.0000 & -0.7514 & 1.7778 \\
 \end{pmatrix}

 \begin{pmatrix}
 4.4766 & 3.0163 & -4.7390 & 4.2180 & -0.8164 \\
 -1.5439 & -0.4703 & 1.9267 & 1.0925 \\
 1.6149 & 2.3623 & 0.3167 \\
 9.9e-16 & 1.6e-16 & 1.0000 \\
 \end{pmatrix}$

 Schur complement after 4 elimination steps

 $A_1^4 = \begin{pmatrix}
 1.0000 & 0.1729 & 0.6061 & 0.5776 & 0.4789 & -0.3264 \\
 0.0000 & 1.0000 & 0.8608 & 0.3264 & -0.7514 & -0.5497 \\
 0.0000 & 0.0000 & 0.3264 & 1.0000 & -0.4597 & 1.7778 \\
 0.0000 & 0.0000 & 0.0000 & 1.0000 & -0.7514 & 1.7778 \\
 \end{pmatrix}

 \begin{pmatrix}
 4.4766 & 3.0163 & -4.7390 & 4.2180 & -0.8164 \\
 -1.5439 & -0.4703 & 1.9267 & 1.0925 \\
 1.6149 & 2.3623 & 0.3167 \\
 9.9e-16 & 1.6e-16 & 1.0000 \\
 \end{pmatrix}$
CALU – a communication avoiding LU factorization

- Consider a 2D grid of P processors P_r-by-P_c, using a 2D block cyclic layout with square blocks of size b.

For $ib = 1$ to $n-1$ step b

$A^{(ib)} = A(ib:n, ib:n)$

1. Find permutation for current panel using TSLU $O(n/b \log_2 P_r)$

2. Apply all row permutations ($pdlasswp$) $O(n/b(\log_2 P_c + \log_2 P_r))$
 - broadcast pivot information along the rows of the grid

3. Compute panel factorization ($dtrsm$)

4. Compute block row of U ($pdtrsm$)
 - broadcast right diagonal part of L of current panel

5. Update trailing matrix ($pdemm$)
 - broadcast right block column of L
 - broadcast down block row of U
LU for General Matrices

- **Cost of CALU vs ScaLAPACK’s PDGETRF**
 - $n \times n$ matrix on $P^{1/2} \times P^{1/2}$ processor grid, block size b
 - Flops: $(2/3)n^3/P + (3/2)n^2b/P^{1/2}$ vs $(2/3)n^3/P + n^2b/P^{1/2}$
 - Bandwidth: $n^2 \log P/P^{1/2}$ vs same
 - Latency: $3n \log P / b$ vs $1.5n \log P + 3.5n \log P / b$

- **Close to optimal (modulo log P factors)**
 - Assume: $O(n^2/P)$ memory/processor, $O(n^3)$ algorithm,
 - Choose b near $n / P^{1/2}$ (its upper bound)
 - Bandwidth lower bound:
 - $\Omega(n^2 / P^{1/2})$ – just log(P) smaller
 - Latency lower bound:
 - $\Omega(P^{1/2})$ – just polylog(P) smaller
Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)
 - IBM Power 5
 - Up to 4.37x faster (16 procs, 1M x 150)
 - Cray XT4
 - Up to 5.52x faster (8 procs, 1M x 150)

- Parallel CALU (LU on general matrices)
 - Intel Xeon (two socket, quad core)
 - Up to 2.3x faster (8 cores, 10^6 x 500)
 - IBM Power 5
 - Up to 2.29x faster (64 procs, 1000 x 1000)
 - Cray XT4
 - Up to 1.81x faster (64 procs, 1000 x 1000)

- Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).
CALU and its task dependency graph

- The matrix is partitioned into blocks of size $T \times b$.
- The computation of each block is associated with a task.
Scheduling CALU’s Task Dependency Graph

- **Static scheduling**
 + Good locality of data
 - Ignores noise

- **Dynamic scheduling**
 + Keeps cores busy
 - Poor usage of data locality
 - Can have large dequeue overhead
Lightweight scheduling

• Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
 • One example is work stealing

• Goal:
 • Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and dequeue overhead.
 • Provide performance consistency

• Approach: combine static and dynamic scheduling
 • Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

<table>
<thead>
<tr>
<th>Design space</th>
<th>Static</th>
<th>Dynamic</th>
<th>Static/(%dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data layout/scheduling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Major Layout (CM)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Block Cyclic Layout (BCL)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-level Block Layout (2l-BL)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

S. Donfack, LG, B. Gropp, V. Kale, IPDPS 2012
Lightweight scheduling

- A self-adaptive strategy to provide
 - A good trade-off between load balance, data locality, and dequeue overhead.
 - Performance consistency
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Combined static/dynamic scheduling:
- A thread executes in priority its statically assigned tasks
- When no task ready, it picks a ready task from the dynamic part
- The size of the dynamic part is guided by a performance model
Data layout and other optimizations

• Three data distributions investigated
 • CM : Column major order for the entire matrix
 • BCL : Each thread stores contiguously (CM) the data on which it operates
 • 2l-BL : Each thread stores in blocks the data on which it operates

Block cyclic layout (BCL)

Two level block layout (2l-BL)

And other optimizations

• Updates (dgemm) performed on several blocks of columns (for BCL and CM layouts)
Impact of data layout

Impact of data layout and scheduling on AMD 48 cores

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).
BCL : Each thread stores contiguously (CM) its data
2I-BL : Each thread stores in blocks its data
Best performance of CALU on multicore architectures

- Reported performance for PLASMA uses LU with block pairwise pivoting.
- GPU data courtesy of S. Donfack
Parallel write avoiding algorithms

Need to avoid writing suggested by emerging memory technologies, as NVMs:

- Writes more expensive (in time and energy) than reads
- Writes are less reliable than reads

Some examples:

- **Phase Change Memory**: Reads 25 us latency
 Writes: 15x slower than reads (latency and bandwidth)
 consume 10x more energy
- **Conductive Bridging RAM - CBRAM**
 Writes: use more energy (1pJ) than reads (50 fJ)
- **Gap improving by new technologies such as XPoint and other FLASH alternatives, but not eliminated**
Parallel write-avoiding algorithms

• Matrix A does not fit in DRAM (of size M), need to use NVM (of size \(n^2 / P\))

• Two lower bounds on volume of communication
 - Interprocessor communication: \(\Omega \left(\frac{n^2}{P^{1/2}}\right)\)
 - Writes to NVM: \(\frac{n^2}{P}\)

• Result: any three-nested loop algorithm (matrix multiplication, LU,..), must asymptotically exceed at least one of these lower bounds
 - If \(\Omega \left(\frac{n^2}{P^{1/2}}\right)\) words are transferred over the network, then \(\Omega \left(\frac{n^2}{P^{2/3}}\right)\) words must be written to NVM!

• Parallel LU: choice of best algorithm depends on hardware parameters

<table>
<thead>
<tr>
<th></th>
<th>#words interprocessor comm.</th>
<th>#writes NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-looking</td>
<td>(O((n^3 \log^2 P) / (P M^{1/2})))</td>
<td>(O(n^2 / P))</td>
</tr>
<tr>
<td>Right-looking</td>
<td>(O((n^2 \log P) / P^{1/2}))</td>
<td>(O((n^2 \log^2 P) / P^{1/2}))</td>
</tr>
</tbody>
</table>
Collaborators:

- J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen, UC Berkeley, J. Langou, CU Denver, V. Kale, UIUC

Funding: ANR Midas, COALA INRIA funding, NLAFET H2020

Further information:

http://www-rocq.inria.fr/who/Laura.Grigori/