Communication Avoiding: The Past Decade and the New Challenges

L. Grigori and collaborators

Alpines
Inria Paris and LJLL, Sorbonne University

February 27, 2019

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

The communication wall: compelling numbers

Time/flop 59% annual improvement up to 2004¹

2008 Intel Nehalem $3.2 \text{GHz} \times 4 \text{ cores } (51.2 \text{ GFlops/socket})$

1x

2017 Intel Skylake XP 2.1GHz \times 28 cores (1.8 TFlops/socket) 35x in 9 years

DRAM latency: 5.5% annual improvement up to 2004¹

DDR2 (2007) 120 ns

 $1 \times$

DDR4 (2014) 45 ns

2.6x in 7 years

Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 2004¹

Interconnect (example one machine today): 0.25 μs to 3.7 μs MPI latency

Sources:

- 1. Getting up to speed, The future of supercomputing 2004, data from 1995-2004
- 2. G. Bosilca (UTK), S. Knepper (Intel), J. Shalf (LBL)

Can we have both scalable and robust methods?

Difficult ... but crucial ...

since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Can we have both scalable and robust methods?

Difficult ... but crucial ...

since complex and large scale applications very often challenge existing methods

Focus on increasing scalability by reducing/minimizing coummunication while preserving robustness in linear algebra

- Dense linear algebra: ensuring backward stability
- Iterative solvers and preconditioners: bounding the condition number of preconditioned matrix
- Matrix approximation: attaining a prescribed accuracy

Communication Complexity of Dense Linear Algebra

Matrix multiply, using $2n^3$ flops (sequential or parallel)

- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth $= \Omega(\#flops/M^{1/2})$
- Lower bound on Latency = $\Omega(\#flops/M^{3/2})$

Same lower bounds apply to LU using reduction

Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012

$$\begin{pmatrix} I & -B \\ A & I \\ & I \end{pmatrix} = \begin{pmatrix} I \\ A & I \\ & I \end{pmatrix} \begin{pmatrix} I & -B \\ I & AB \\ & I \end{pmatrix}$$

And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

2D Parallel algorithms and communication bounds

If memory per processor = n^2/P , the lower bounds on communication are

$$\# words_moved \ge \Omega(n^2/\sqrt{P}), \ \# messages \ge \Omega(\sqrt{P})$$

Most classical algorithms (ScaLAPACK) attain lower bounds on #words_moved but do not attain lower bounds on #messages

	ScaLAPACK	CA algorithms		
LU				
		[LG, Demmel, Xiang, 08]		
		[Khabou, Demmel, LG, Gu, 12]		
QR				
		[Demmel, LG, Hoemmen, Langou, 08]		
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]		
RRQR				
		[Demmel, LG, Gu, Xiang 13]		
		C LADACIC L L L L L L L L L L L L L L L L L L		

2D Parallel algorithms and communication bounds

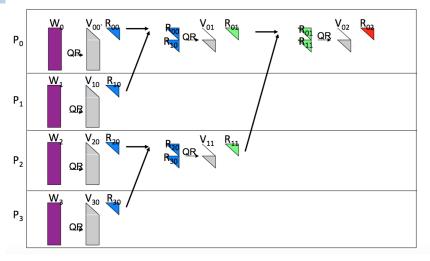
If memory per processor = n^2/P , the lower bounds on communication are

$$\# words_moved \ge \Omega(n^2/\sqrt{P}), \ \# messages \ge \Omega(\sqrt{P})$$

Most classical algorithms (ScaLAPACK) attain lower bounds on #words_moved but do not attain lower bounds on #messages

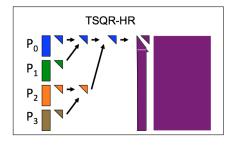
	ScaLAPACK	CA algorithms			
LU	partial pivoting	tournament pivoting			
		[LG, Demmel, Xiang, 08]			
		[Khabou, Demmel, LG, Gu, 12]			
QR	column based	reduction based			
	Householder	Householder			
		[Demmel, LG, Hoemmen, Langou, 08]			
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]			
RRQR	column pivoting	tournament pivoting			
		[Demmel, LG, Gu, Xiang 13]			
Only sever	Only several references shown, ScaLAPACK and communication avoiding algorithms				

TSQR: CA QR factorization of a tall skinny matrix



J. Demmel, LG, M. Hoemmen, J. Langou, 08 References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02

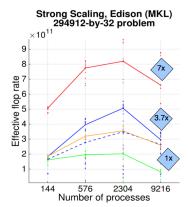
TSQR: CA QR factorization of a tall skinny matrix



J. Demmel, LG, M. Hoemmen, J. Langou, 08 Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14

Strong scaling of TSQR





- Hopper: Cray XE6 (NERSC) 2×12 -core AMD Magny-Cours (2.1 GHz)
- Edison: Cray CX30 (NERSC) 2×12 -core Intel Ivy Bridge (2.4 GHz)
- Effective flop rate, computed by dividing $2mn^2 2n^3/3$ by measured runtime

Ballard, Demmel, LG, Jacquelin, Knight, Nguyen, and Solomonik, 2015

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Challenge in getting scalable and robust solvers

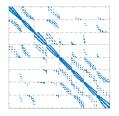
On large scale computers, Krylov solvers reach less than 2% of the peak performance.

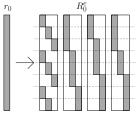
- Typically, each iteration of a Krylov solver requires
 - □ Sparse matrix vector product
 - \rightarrow point-to-point communication
 - Dot products for orthogonalization
 - \rightarrow global communication
- When solving complex linear systems most of the highly parallel preconditioners lack robustness
 - wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one level DDM methods (Additive Schwarz, RAS)
 - □ A few small eigenvalues hinder the convergence of iterative methods

Focus on increasing scalability by reducing coummunication/increasing arithmetic intensity while dealing with small eigenvalues

Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

- Partition the matrix into N domains
- Split the residual r_0 into t vectors corresponding to the N domains,





Generate t new basis vectors, obtain an enlarged Krylov subspace

$$\mathcal{K}_{t,k}(A, r_0) = \text{span}\{R_0^e, AR_0^e, A^2R_0^e, ..., A^{k-1}R_0^e\}$$

$$\mathcal{K}_k(A, r_0) \subset \mathcal{K}_{t,k}(A, r_0)$$

■ Search for the solution of the system Ax = b in $\mathcal{K}_{t,k}(A, r_0)$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t,k}$ and the following two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathcal{K}_{t,k}$
- 2. Orthogonality condition: $r_k \perp \mathcal{K}_{t,k}$
 - At each iteration, the new approximate solution x_k is found by minimizing $\phi(x) = \frac{1}{2}(x^t A x) b^t x$ over $x_0 + \mathcal{K}_{t,k}$:

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathcal{K}_{t,k}(A, r_0)\}\$$

- Can be seen as a particular case of a block Krylov method
 - \Box AX = S(b), such that S(b) ones(t, 1) = b; $R_0^e = AX_0 S(b)$
 - \square Orthogonality condition involves the block residual $R_k \perp \mathcal{K}_{t,k}$

Enlarged Krylov subspace methods based on CG

Defined by the subspace $\mathcal{K}_{t,k}$ and the following two conditions:

- 1. Subspace condition: $x_k \in x_0 + \mathcal{K}_{t,k}$
- 2. Orthogonality condition: $r_k \perp \mathcal{K}_{t,k}$
 - At each iteration, the new approximate solution x_k is found by minimizing $\phi(x) = \frac{1}{2}(x^t A x) b^t x$ over $x_0 + \mathcal{K}_{t,k}$:

$$\phi(x_k) = \min\{\phi(x), \forall x \in x_0 + \mathcal{K}_{t,k}(A, r_0)\}\$$

- Can be seen as a particular case of a block Krylov method
 - \square AX = S(b), such that S(b) ones(t, 1) = b; $R_0^e = AX_0 S(b)$
 - extstyle ext

Convergence analysis

Given

- A is an SPD matrix, x^* is the solution of Ax = b
- $||x^* \overline{x}_k||_A$ is the k^{th} error of CG, $e_0 = x^* x_0$
- $||x^* x_k||_A$ is the k^{th} error of ECG

Result

CG

$$||x^* - \overline{x}_k||_A \le 2||\mathsf{e}_0||_A \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

where
$$\kappa = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$$

ECG

$$||x^* - x_k||_A \le 2||\hat{e}_0||_A \left(\frac{\sqrt{\kappa_t} - 1}{\sqrt{\kappa_t} + 1}\right)^k$$

where $\kappa_t = \frac{\lambda_{max}(A)}{\lambda_t(A)}$, $\hat{e}_0 \equiv E_0(\Phi_1^\top E_0)^{-1}\begin{pmatrix} \vdots \\ \vdots \\ 1 \end{pmatrix}$, Φ_1 denotes the t eigenvectors associated to the smallest eigenvalues, and E_0 is the initial enlarged error.

From here on, results on enlarged CG obtained with O. Tissot

Classical CG vs. Enlarged CG derived from Block CG

Algorithm 1 Classical CG

```
1: p_1 = r_0(r_0^\top A r_0)^{-1/2}

2: while ||r_{k-1}||_2 > \varepsilon||b||_2 do

3: \alpha_k = p_k^\top r_{k-1}

4: x_k = x_{k-1} + p_k \alpha_k

5: r_k = r_{k-1} - Ap_k \alpha_k

6: z_{k+1} = r_k - p_k(p_k^\top A r_k)

7: p_{k+1} = z_{k+1}(z_{k+1}^\top A z_{k+1})^{-1/2}

8: end while
```

Cost per iteration

```
# flops = O(\frac{n}{P}) \leftarrow \text{BLAS 1 \& 2}
# words = O(1)
# messages = O(1) from SpMV + O(logP) from dot prod + norm
```

Algorithm 2 ECG

1:
$$P_1 = R_0^e(R_0^{e^\top}AR_0^e)^{-1/2}$$

2: while $||\sum_{i=1}^T R_k^{(i)}||_2 < \varepsilon ||b||_2$ do
3: $\alpha_k = P_k^\top R_{k-1} > t \times t$ matrix
4: $X_k = X_{k-1} + P_k \alpha_k$
5: $R_k = R_{k-1} - AP_k \alpha_k$
6: $Z_{k+1} = AP_k - P_k(P_k^\top AAP_k) - P_{k-1}(P_{k-1}^\top AAP_k)$
7: $P_{k+1} = Z_{k+1}(Z_{k+1}^\top AZ_{k+1})^{-1/2}$
8: end while

Cost per iteration

9: $x = \sum_{i=1}^{T} X_{i}^{(i)}$

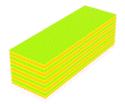
flops = $O(\frac{nt^2}{P}) \leftarrow \text{BLAS 3}$ # words = $O(t^2) \leftarrow \text{Fit in the buffer}$ # messages = O(1) from SpMV + O(logP) from A-ortho

Test cases

- 3 of 5 largest SPD matrices of Tim Davis' collection
- \blacksquare Heterogeneous linear elasticity problem discretized with FreeFem++ using \mathbb{P}_1 FE

$$\operatorname{div}(\sigma(u)) + f = 0$$
 on Ω ,
 $u = u_D$ on $\partial \Omega_D$,
 $\sigma(u) \cdot n = g$ on $\partial \Omega_N$,

- $u \in \mathbb{R}^d$ is the unknown displacement field, f is some body force.
- Young's modulus E and Poisson's ratio ν , $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.25)$, and $(E_2, \nu_2) = (10^7, 0.45)$.



Name	Size	Nonzeros	Problem
Hook_1498 Flan_1565 Queen_4147	1,498,023 1,564,794 4,147,110	59,374,451 117,406,044 316,548,962	Structural problem Structural problem Structural problem
Ela_4	4,615,683	165,388,197	Linear elasticity

Enlarged CG: dynamic reduction of search directions

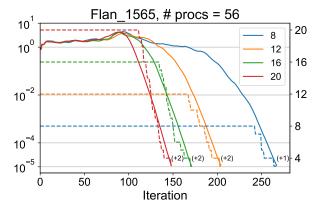


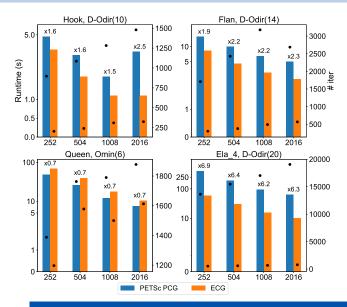
Figure: solid line: normalized residual (scale on the left), dashed line: number of search directions (scale on the right)

 \rightarrow Reduction occurs when the convergence has started

Strong scalability

- Run on Kebnekaise, Umeå University (Sweden) cluster, 432 nodes with Broadwell processors (28 cores per node)
- Compiled with Intel Suite 18
- PETSc 3.7.6 (linked with the MKL)
- Pure MPI (no threading)
- Stopping criterion tolerance is set to 10^{-5} (PETSc default value)
- Block diagonal preconditioner, number blocks equals number of MPI processes
 - Cholesky factorization on the block with MKL-PARDISO solver

Strong scalability



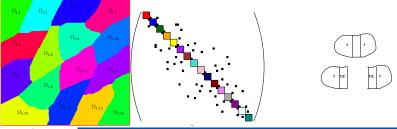
Additive Schwarz methods

Solve $M^{-1}Ax = M^{-1}b$, where $A \in \mathbb{R}^{n \times n}$ is SPD Original idea from Schwarz algorithm at the continuous level (Schwarz 1870)

 Symmetric formulation, Additive Schwarz (1989)

$$M_{AS,1}^{-1} := \sum_{j=1}^{N_1} R_{1j}^T A_{1j}^{-1} R_{1j}$$

- DOFs partitioned into N_1 domains of dimensions $n_{11}, n_{12}, \dots n_{1,N_1}$
- $R_{1j} \in \mathbb{R}^{n_{1j} \times n}$: restriction operator
- $A_{1j} \in \mathbb{R}^{n_{1j} \times n_{1j}}$: matrix associated to domain j, $A_{1j} = R_{1j}AR_{1j}^T$
- (D_{1j})_{j=1:N1}: algebraic partition of unity



Upper bound for the eigenvalues of $M_{AS,1}^{-1}A$

Let k_c be number of distinct colours to colour the subdomains of A. The following holds (e.g. Chan and Mathew 1994)

$$\lambda_{max}(M_{AS,1}^{-1}A) \leq k_c$$

- → Two level preconditioners are required
- Early references: [Nicolaides 87], [Morgan 92], [Chapman, Saad 92], [Kharchenko, Yeremin 92], [Burrage, Ehrel, and Pohl, 93]
- Our work uses the theoretical framework of the Fictitious space lemma (Nepomnyaschikh 1991).

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

Find
$$(u_{1jk}, \lambda_{1jk}) \in \mathbb{R}^{n_{i,1}} \times \mathbb{R}, \lambda_{1jk} \leq 1/\tau$$

such that $R_{1j}\tilde{A}_{1j}R_{1j}^Tu_{1jk} = \lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}$

where \tilde{A}_{1j} is a local SPSD splitting of A suitably permuted, V_1 basis of S_1 ,

Theorem (H. Al Daas, LG, 2018)

$$\kappa\left(M_{AS,2_{ALSP}}^{-1}A\right)\leq\left(k_{c}+1\right)\left(2+\left(2k_{c}+1\right)k_{m}\tau\right)$$

where k_c is the number of distinct colors required to color the graph of A, $k_m \leq N_1$, where N_1 is the number of subdomains

Construction of the coarse space for 2nd level

Consider the generalized eigenvalue problem for each domain j, for given τ :

Find
$$(u_{1jk}, \lambda_{1jk}) \in \mathbb{R}^{n_{i,1}} \times \mathbb{R}, \lambda_{1jk} \leq 1/\tau$$

such that $R_{1j}\tilde{A}_{1j}R_{1j}^Tu_{1jk} = \lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}$

where \tilde{A}_{1j} is a local SPSD splitting of A suitably permuted, V_1 basis of S_1 ,

- Generalization of Geneo theory fulfilled by standard FE and bilinear forms
 [Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl'13]
- $k_m = \max$ number of domains that share a common vertex
- $ilde{A}_{1j}$ is the Neumann matrix of domain j, D_{1j} is nonsingular.

Local SPSD splitting of A wrt a subdomain

- For each domain j, a local SPSD splitting is a decomposition $A = \tilde{A}_{1j} + C$, where \tilde{A}_{1j} and C are SPSD
- Ideally \tilde{A}_{1j} is local
- Consider domain 1, where A₁₁ corresponds to interior DOFs, A₂₂ the DOFs at the interface of 1 with all other domains, and A₃₃ the rest of DOFs:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} & A_{23} \\ & A_{32} & A_{33} \end{pmatrix}$$

• We note $S(A_{22})$ the Schur complement with respect to A_{22} ,

$$S(A_{22}) = A_{22} - A_{21}A_{11}^{-1}A_{12} - A_{23}A_{33}^{-1}A_{32}.$$

Algebraic local SPSD splitting lemma

Let $A \in \mathbb{R}^{n \times n}$, an SPD matrix, and $\tilde{A}_{11} \in \mathbb{R}^{n \times n}$ be partitioned as follows

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} & A_{23} \\ & A_{32} & A_{33} \end{pmatrix}, \quad \tilde{A}_{11} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & \bar{A}_{22} \\ & & 0 \end{pmatrix}$$

where $A_{ii} \in \mathbb{R}^{m_i \times m_i}$ is non trivial matrix for $i \in \{1, 2, 3\}$. If $\bar{A}_{22} \in \mathbb{R}^{m_2 \times m_2}$ is a symmetric matrix verifying the following inequalities

$$u^{T}A_{21}A_{11}^{-1}A_{12}u \leq u^{T}\bar{A}_{22}u \leq u^{T}(A_{22}-A_{23}A_{33}^{-1}A_{32})u, \quad \forall u \in \mathbb{R}^{m_2},$$

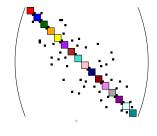
then $A - \hat{A}_{11}$ is SPSD, that is the following inequality holds

$$0 \le u^T \tilde{A}_{11} u \le u^T A u, \quad \forall u \in \mathbb{R}^n.$$

- Remember: $S(A_{22}) = A_{22} A_{23}A_{33}^{-1}A_{32} A_{21}A_{11}^{-1}A_{12}$.
- The left and right inequalities are optimal

Multilevel Additive Schwarz M_{MAS}

with H. Al Daas, P. Jolivet, P. H. Tournier

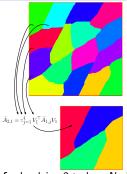


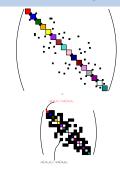

```
for level i=1 and each domain j=1:N_1 in parallel (A=A_1) do A_{1j}=R_{1j}A_1R_{1j}^T (local matrix associated to domain j) \tilde{A}_{1j} is Neumann matrix of domain j (local SPSD splitting) Solve Gen EVP, set Z_{1j}=\operatorname{span}\left\{u_{1jk}\mid\lambda_{1jk}<\frac{1}{\tau}\right\} Find (u_{1jk},\lambda_{1jk})\in\mathbb{R}^{n_{1j}}\times\mathbb{R} R_{1j}\tilde{A}_{1j}R_{1j}^{T}u_{1jk}=\lambda_{1jk}D_{1j}A_{1j}D_{1j}u_{1jk}. Let S_1=\bigoplus_{j=1}^{N_1}D_{1j}R_{1j}^TZ_{1j},\ V_1 basis of S_1,\ A_2=V_1^TA_1V_1,\ A_2\in\mathbb{R}^{n_2\times n_2} end for
```

Preconditioner defined as: $M_{A_1,MAS}^{-1} = V_1 A_2^{-1} V_1^T + \sum_{j=1}^{N_1} R_{1j}^\top A_{1j}^{-1} R_{1j}$

 $M_{A:MAS}^{-1} = V_i A_{i+1}^{-1} V_i^T + \sum_{i=1}^{N_i} R_{ii}^T A_{ii}^{-1} R_{ii}$

Multilevel Additive Schwarz M_{MAS}





for level i = 2 to $\log_d N_i$ **do**

for each domain $j = 1 : N_i$ in parallel do

$$\tilde{A}_{ij} = \sum_{k=(j-1)d+1}^{jd} V_{i-1}^T \tilde{A}_{i-1,k} V_{i-1}$$
 (local SPSD splitting)

 $A_{ij} = R_{ij}A_iR_{ii}^T$ (local matrix associated to domain j)

Solve Gen EVP, $Z_{ij} = \operatorname{span} \left\{ u_{ijk} \mid \lambda_{ijk} < \frac{1}{\tau} \right\}$

Find $(u_{iik}, \lambda_{iik}) \in \mathbb{R}^{n_{ij}} \times \mathbb{R}$

$$R_{ij}\tilde{A}_{ij}R_{ij}^{\top}u_{ijk}=\lambda_{ijk}D_{ij}A_{ij}D_{ij}u_{ijk}$$

$$A_{ij}A_{ij}A_{ij} u_{ijk} = \lambda_{ijk}D_{ij}A_{ij}D_{ij}u_{ijk}$$

Let
$$S_i = \bigoplus_{j=1}^{N_i} D_{ij} R_{ij}^\top Z_{ij}$$
, V_i basis of S_i , $A_{i+1} = V_i^T A_i V_i$, $A_{i+1} \in \mathbb{R}^{n_{i+1} \times n_{i+1}}$ end for end for

24 of 43

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level $i=1:\log_d N_1$ as

$$M_{A_{i},MAS}^{-1} = V_{i}A_{i+1}^{-1}V_{i}^{T} + \sum_{j=1}^{N_{i}} R_{ij}^{\top}A_{ij}^{-1}R_{ij}$$

then
$$M_{MAS}^{-1} = M_{A_1,MAS}^{-1}$$
 and,

$$\kappa(M_{A_i,MAS}^{-1}A_i) \leq (k_{ic}+1)(2+(2k_{ic}+1)k_i\tau),$$

where k_{ic} = number of distinct colours to colour the graph of A_i , k_i = max number of domains that share a common vertex at level i.

Communication efficiency

- Construction of M_{MAS}^{-1} preconditioner requires $O(\log_d N_1)$ messages.
- Application of M_{MAS}^{-1} preconditioner requires $O((\log_2 N_1)^{\log_d N_1})$ messages per iteration.

Robustness and efficiency of multilevel AS

Theorem (Al Daas, LG, Jolivet, Tournier)

Given the multilevel preconditioner defined at each level $i=1:\log_d N_1$ as

$$M_{A_i,MAS}^{-1} = V_i A_{i+1}^{-1} V_i^T + \sum_{j=1}^{N_i} R_{ij}^T A_{ij}^{-1} R_{ij}$$

then
$$M_{MAS}^{-1} = M_{A_1,MAS}^{-1}$$
 and,

$$\kappa(M_{A_i,MAS}^{-1}A_i) \leq (k_{ic}+1)(2+(2k_{ic}+1)k_i\tau),$$

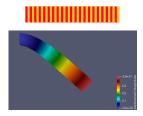
where k_{ic} = number of distinct colours to colour the graph of A_i , k_i = max number of domains that share a common vertex at level i.

Communication efficiency

- Construction of M_{MAS}^{-1} preconditioner requires $O(\log_d N_1)$ messages.
- Application of M_{MAS}^{-1} preconditioner requires $O((\log_2 N_1)^{\log_d N_1})$ messages per iteration.

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, 2,7 GHz, 24 cores each
- Stopping criterion: 10^{-5} (10^{-2} for 3rd level)
- Young's modulus E and Poisson's ratio ν take two values, $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.35)$, and $(E_2, \nu_2) = (10^7, 0.45)$



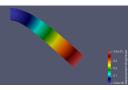
Linear elasticity, 121×10^6 unknowns, PETSc versus GenEO HPDDM

PETSc GAMG				HPDDM					
# P	PCSetUp	KSPSolve	Total	Deflation	Domain	Coarse	Solve	Total	
				subspace	factor	matrix			
1,024	39.9	85.7	125.7	185.8	26.8	3.0	62.0	277.7	
2,048	42.1	21.2	63.3	76.1	8.5	4.2	28.5	117.3	
4,096	95.1	182.8	277.9	32.0	3.6	8.5	18.1	62.4	

More details in P. Jolivet's talk, MS 199, this morning

Parallel performance for linear elasticity

- Machine: IRENE (Genci), Intel Skylake 8168, 2,7 GHz, 24 cores each
- Stopping criterion: 10^{-5} (10^{-2} for 3rd level)
- Voung's modulus E and Poisson's ratio ν take two values, $(E_1, \nu_1) = (2 \cdot 10^{11}, 0.35)$, and $(E_2, \nu_2) = (10^7, 0.45)$



Linear elasticity, $616 \cdot 10^6$ unknowns, GenEO versus GenEO multilevel

# P	Deflation subspace	Domain factor	Coarse matrix	Solve	Total	# iter	
	GenEO						
8192	113.3	11.9	27.5	52.0	152.8	53	
		GenEO multilevel					
8192	113.3	11.9	13.2	52.0	138.5	53	

 A_2 of dimension $328 \cdot 10^3 \times 328 \cdot 10^3$, A_3 of dimension 5120×5120 . More details in P. Jolivet's talk, MS 199, this morning

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

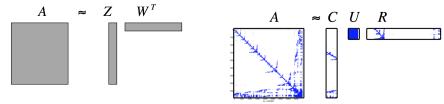
Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Low rank matrix approximation

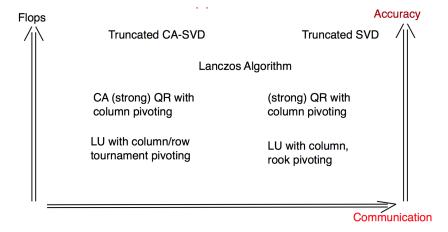
■ Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.



Best rank-k approximation $A_k = U_k \Sigma_k V_k$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$\begin{split} & \min_{\operatorname{rank}(\tilde{A}_k) \leq k} ||A - \tilde{A}_k||_2 &= ||A - A_k||_2 = \sigma_{k+1}(A) \\ & \min_{\operatorname{rank}(\tilde{A}_k) \leq k} ||A - \tilde{A}_k||_F &= ||A - A_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)} \end{split}$$

Low rank matrix approximation: trade-offs



Communication optimal if computing a rank-k approximation on P processors requires $\# \operatorname{messages} = \Omega(\log P)$.

Deterministic rank-k matrix approximation

Given $A \in \mathbb{R}^{m \times n}$, $U = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} \in \mathbb{R}^{m,m}$, $V = \begin{pmatrix} V_1 & V_2 \end{pmatrix} \in \mathbb{R}^{n,n}$, U, V invertible, $U_1 \in \mathbb{R}^{l' \times m}$, $V_1 \in \mathbb{R}^{n \times l}$, $k \leq l \leq l'$.

$$\begin{array}{rcl} \textit{UAV} & = & \bar{A} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} \\ & = & \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{+} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix} = \textit{U}\left(Q_{1} \quad Q_{2}\right) \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}, \end{array}$$

where $\bar{A}_{11} \in \mathbb{R}^{I',I}$, $\bar{A}_{11}^+ \bar{A}_{11} = I$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^+ \bar{A}_{12}$.

Generalized LU computes the approximation

$$\tilde{A}_k = U^{-1} \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^+ \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} V^{-1}$$

QR computes the approximation

$$ilde{A}_k = Q_1 \begin{pmatrix} R_{11} & R_{12} \end{pmatrix} V^{-1} = Q_1 Q_1^T A$$
, where Q_1 is orth basis for (AV_1)

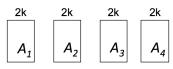
Unified perspective: generalized LU factorization

Given U_1 , A, V_1 , Q_1 orth. basis of (AV_1) , k = l = l', rank-k approximation,

$$\tilde{A}_k = AV_1(U_1AV_1)^{-1}U_1A$$

Deterministic algorithms	Randomized algorithms*
V_1 column permutation and \dots	$V_{ m 1}$ random matrix and
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1 = Q_1^{\mathcal{T}}$, $ ilde{A}_k = Q_1 Q_1^{\mathcal{T}} A$	$U_1 = Q_1^{ op}$, $ ilde{A}_k = Q_1 Q_1^{ op} A$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection
(a.k.a. rank revealing LU)	(a.k.a. randomized SVD via Row extraction)
U_1 row permutation s.t. $\mathit{U}_1\mathit{Q}_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$	U_1 row permutation s.t. $U_1Q_1=egin{pmatrix}ar{Q}_{11}\ar{Q}_{21}\end{pmatrix}$
$ ar{Q}_{21}ar{Q}_{11}^{-1} _{ extit{max}}$ is bounded $$	$ ar{Q}_{21}ar{Q}_{11}^{-1} _{ extit{max}}$ bounded
	Randomized LU approximation
	U_1 random matrix
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11	

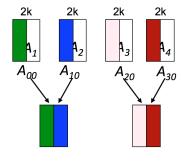
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



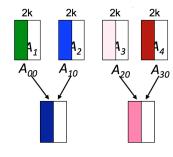
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



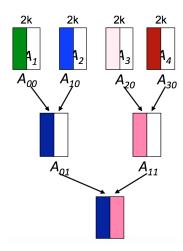
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



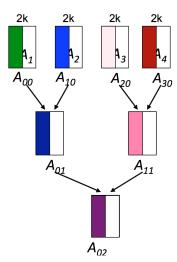
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



Deterministic guarantees for rank-k approximation

CA QR with column selection based on binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)}, \quad F_{TP} \leq \frac{1}{\sqrt{2k}} \left(n/k \right)^{\log_2\left(\sqrt{2}fk\right)}$$
 for any $1 < i < k$, and $1 < j < \min(m,n) - k$.

CA LU with column/row selection with binary tree tournament pivoting

$$1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}(\bar{A}_{11})}, \frac{\sigma_{j}(S(\bar{A}_{11}))}{\sigma_{k+j}(A)} \leq \sqrt{(1 + F_{TP}^{2}(n-k))}/\sigma_{min}(\bar{Q}_{11})$$
$$\leq \sqrt{(1 + F_{TP}^{2}(n-k))(1 + F_{TP}^{2}(m-k))},$$

for any
$$1 \leq i \leq k$$
, and $1 \leq j \leq \min(m,n) - k$, $U_1Q_1 = \begin{pmatrix} \bar{Q}_{11} \\ \bar{Q}_{21} \end{pmatrix}$.

Deterministic guarantees for rank-k approximation

CA QR with column selection based on binary tree tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \sqrt{1 + F_{TP}^2(n-k)}, \quad F_{TP} \leq \frac{1}{\sqrt{2k}} \left(n/k \right)^{\log_2\left(\sqrt{2}fk\right)}$$
 for any $1 < i < k$, and $1 < j < \min(m,n) - k$.

CA LU with column/row selection with binary tree tournament pivoting:

$$1 \leq rac{\sigma_i(A)}{\sigma_i(ar{A}_{11})}, rac{\sigma_j(S(ar{A}_{11}))}{\sigma_{k+j}(A)} \leq \sqrt{(1+F_{TP}^2(n-k))}/\sigma_{min}(ar{Q}_{11}) \\ \leq \sqrt{(1+F_{TP}^2(n-k))(1+F_{TP}^2(m-k))},$$

for any
$$1 \leq i \leq k$$
, and $1 \leq j \leq \min(m,n) - k$, $U_1Q_1 = \begin{pmatrix} \bar{Q}_{11} \\ \bar{Q}_{21} \end{pmatrix}$.

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties → better bounds
- Consider $U_1 \in \mathbb{R}^{l' \times m}$, $V_1 \in \mathbb{R}^{n \times l}$ are Subsampled Randomized Hadamard Transforms (SRHT), l' > l.
 - \square Compute A_k through generalized LU costs $O(mn\log_2 l')$ flops

Let $U_1 \in \mathbb{R}^{l' \times m}$ and $V_1 \in \mathbb{R}^{n \times l}$ be drawn from SRHT ensembles, $l = 10\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \geq \log^2(n/\delta), \ l' = 10\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \geq \log^2(m/\delta).$ With probability $1 - 5\delta$, the **generalized LU** approximation \tilde{A}_k satisfies

$$||A - \tilde{A}_k||_2^2 = O(1)\sigma_{k+1}^2(A) + O(\frac{\log(n/\delta)}{l} + \frac{\log(m/\delta)}{l'})(\sigma_{k+1}^2(A) + \dots + \sigma_n^2(A))$$

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying Johnson-Lindenstrauss properties → better bounds
- Consider $U_1 \in \mathbb{R}^{l' \times m}$, $V_1 \in \mathbb{R}^{n \times l}$ are Subsampled Randomized Hadamard Transforms (SRHT), l' > l.
 - □ Compute \tilde{A}_k through generalized LU costs $O(mn\log_2 l')$ flops

Let $U_1 \in \mathbb{R}^{l' \times m}$ and $V_1 \in \mathbb{R}^{n \times l}$ be drawn from SRHT ensembles, $l = 10\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \geq \log^2(n/\delta), \ l' = 10\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \geq \log^2(m/\delta).$ With probability $1 - 5\delta$, the **generalized LU** approximation \tilde{A}_k satisfies

$$||A - \tilde{A}_k||_2^2 = O(1)\sigma_{k+1}^2(A) + O(\frac{\log(n/\delta)}{l} + \frac{\log(m/\delta)}{l'})(\sigma_{k+1}^2(A) + \dots + \sigma_n^2(A))$$

Growth factor in Gaussian elimination

$$\rho(A) := \frac{\max_k ||S_k||_{max}}{||A||_{max}}, \text{ where } A \in \mathbb{R}^{m \times n},$$

$$S_k \text{ is Schur complement obtained at iteration } k$$

Deterministic algorithms

- LU with partial pivoting $\rho(A) \leq 2^n$
- CA LU with column/row selection with binary tree tournament pivoting:

$$||S_k(\bar{A}_{11})||_{max} \le \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^2(m-k)}\sigma_k(A))$$

Randomized algorithms

U, V Haar distributed matrices,

$$\mathbb{E}[\log(\rho(UAV))] = O(\log(n))$$

Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Prospects for the future: tensors

Many open questions - only a few recalled

Communication bounds few existing results

- Symmetric tensor contractions [Solomonik et al, 18]
- Bound for volume of communication for matricized tensor times
 Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

- Algorithms as ALS, DMRG, intrinsically sequential in the number of modes
- Dynamically adapt the rank to a given error
- Approximation of high rank tensors
 - but low rank in large parts, e.g. due to stationarity in the model the tensor describes

For an overview, see Kolda and Bader, SIAM Review 2009

Hierarchical low rank tensor approximation

- Decompose $A \in \mathbb{R}^{n_1 \times ... n_d}$ in subtensors $A_{1j} \in \mathbb{R}^{n_1/2 \times ... n_d/2}$, $j = 1 : 2^d$.
- lacksquare Decompose recursively each subtensor \mathcal{A}_{1j} until depth L

Input: A, 2^{Ld} subtensors A_{ij} , i = 1 : L, tree

T with 2^{Ld} leaves and height L

Output: $\tilde{\mathcal{A}}$ in hierarchical format

Ensure: $||\mathcal{A} - \tilde{\mathcal{A}}||_F < \varepsilon$

for each level i from L to 1 do

for each node j with merge allowed **do** Compute $\tilde{\mathcal{A}}_{ii}$ s.t. $||\mathcal{A}_{ii} - \tilde{\mathcal{A}}_{ii}||_F < \varepsilon/2^{di}$

Compute A_{ij} s.t. $||A_{ij} - A_{ij}||_F < \varepsilon/2^{\omega}$ if storage(\tilde{A}_{ii}) < storage (children approx.) in T

If $storage(A_{ij}) < storage$ (children approx.

then

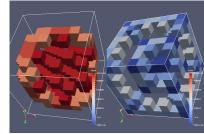
keep \mathcal{A}_{ij} approximation in $\tilde{\mathcal{A}}$ else keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif

endfor

endfor

with V. Ehrlacher and D. Lombardi

Coulomb potential, 512³, $V(x,y,z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing $\mathcal A$ for $\varepsilon = 10^{-5}$



Hierarchical low rank tensor approximation

- Decompose $A \in \mathbb{R}^{n_1 \times ... n_d}$ in subtensors $A_{1j} \in \mathbb{R}^{n_1/2 \times ... n_d/2}$, $j = 1 : 2^d$.
- lacksquare Decompose recursively each subtensor \mathcal{A}_{1j} until depth L

Input: A, 2^{Ld} subtensors A_{ij} , i = 1 : L, tree

T with 2^{Ld} leaves and height L

Output: $\tilde{\mathcal{A}}$ in hierarchical format

Ensure: $||\mathcal{A} - \tilde{\mathcal{A}}||_F < \varepsilon$

for each level i from L to 1 do

for each node j with merge allowed **do** Compute $\tilde{\mathcal{A}}_{ij}$ s.t. $||\mathcal{A}_{ij} - \tilde{\mathcal{A}}_{ij}||_F < \varepsilon/2^{di}$

 $extbf{if}$ storage $(ilde{\mathcal{A}}_{ij})<$ storage (children approx.) in T

then

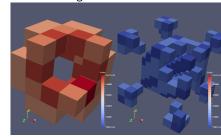
keep A_{ij} approximation in \tilde{A} else keep children approx. in \tilde{A} merge of ancestors not allowed endif

endfor

endfor

with V. Ehrlacher and D. Lombardi

Coulomb potential, 512^3 , $V(x,y,z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing $\mathcal A$ for $\varepsilon = 10^{-5}$

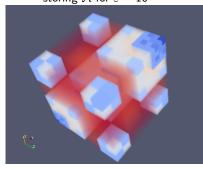


Hierarchical low rank tensor approximation

- Decompose $A \in \mathbb{R}^{n_1 \times ... n_d}$ in subtensors $A_{1j} \in \mathbb{R}^{n_1/2 \times ... n_d/2}$, $j = 1 : 2^d$.
- Decompose recursively each subtensor \mathcal{A}_{1j} until depth L

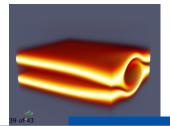
Input: A, 2^{Ld} subtensors A_{ii} , i = 1 : L, tree T with 2^{Ld} leaves and height L Output: $\tilde{\mathcal{A}}$ in hierarchical format **Ensure:** $||\mathcal{A} - \tilde{\mathcal{A}}||_F < \varepsilon$ for each level i from L to 1 do for each node *j* with merge allowed do Compute $\tilde{\mathcal{A}}_{ii}$ s.t. $||\mathcal{A}_{ii} - \tilde{\mathcal{A}}_{ii}||_F < \varepsilon/2^{di}$ **if** storage($\tilde{\mathcal{A}}_{ij}$) < storage (children approx.) in Tthen keep A_{ii} approximation in \tilde{A} **else** keep children approx. in $\tilde{\mathcal{A}}$ merge of ancestors not allowed endif endfor endfor

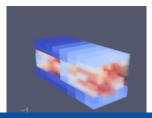
Coulomb potential, 512³, $V(x,y,z) = \frac{1}{|x-y|} + \frac{1}{|y-z|} + \frac{1}{|x-z|}$ hierarchical format requires 7% of storing $\mathcal A$ for $\varepsilon = 10^{-5}$



Compressing the solution of Vlasov-Poisson equation

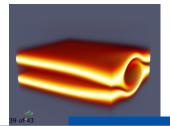
• Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512 \times 256 \times 160$, compression factor of 350 for $\varepsilon = 10^{-3}$.





Compressing the solution of Vlasov-Poisson equation

• Hierarchical tensors in the spirit of hierarchical matrices (Hackbusch et al), but no information on the represented function required. Speed, velocity, time $512 \times 256 \times 160$, compression factor of 350 for $\varepsilon = 10^{-3}$.



Plan

Motivation of our work

Short overview of results from CA dense linear algebra TSQR factorization

Preconditioned Krylov subspace methods
Enlarged Krylov methods
Robust multilevel additive Schwarz preconditioner

Unified perspective on low rank matrix approximation Generalized LU decomposition

Prospects for the future: tensors in high dimensions Hierarchical low rank tensor approximation

Conclusions

Conclusions

Most of the methods discussed available in libraries:

- Dense CA linear algebra
 - progressively in LAPACK/ScaLAPACK and some vendor libraries
- Iterative methods:
 - preAlps library https://github.com/NLAFET/preAlps:
 - □ Enlarged CG: Reverse Communication Interface
 - Enlarged GMRES will be available as well
- Multilevel Additive Schwarz
 - □ will be available in HPDDM as multilevel Geneo (P. Jolivet)

Acknowledgements

- NLAFET H2020 european project, ANR
- Total

Prospects for the future

- Multilevel Additive Schwarz
 - from theory to practice, find an efficient local algebraic splitting that allows to solve the Gen. EVP locally on each processor
- Tensors in high dimensions
 - ERC Synergy project Extreme-scale Mathematically-based Computational Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: G. Ballard, S. Cayrols, H. Al Daas, J. Demmel, V. Ehrlacher, M. Hoemmen, P. Jolivet, N. Knight, D. Lombardi, S. Moufawad, F. Nataf, D. Nguyen, J. Langou, E. Solomonik, A. Rusciano, P. H. Tournier, O. Tissot.

References (1)

Ashby, S. F., Manteuffel, T. A., and Saylor, P. E. (1990).

A taxonomy for conjugate gradient methods.

SIAM Journal on Numerical Analysis, 27(6):1542-1568.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank.

Psychometrika, 1:211-218.

Grigori, L., Moufawad, S., and Nataf, F. (2016).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication. SIAM Journal on Scientific Computing, 37(2):744–773.

Also as INRIA TR 8266.

Hestenes, M. R. and Stiefel, E. (1952).

Methods of conjugate gradients for solving linear systems.

Journal of research of the National Bureau of Standards., 49:409-436.

OLeary, D. P. (1980).

The block conjugate gradient algorithm and related methods.

Linear Algebra and Its Applications, 29:293-322.