L. Grigori and collaborators

Alpines
 Inria Paris and LJLL, Sorbonne University

Slides available at https://who.rocq.inria.fr/Laura.Grigori/Slides/ENLA20_Grigori.pdf

July 8, 2020

Plan

Motivation of our work
Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds
CA RRQR with 2D tournament pivoting
CA LU with column/row tournament pivoting
Randomized generalized LU and bounds
Approximation of tensors
Parallel HORRQR
Conclusions

The communication challenge

- Cost of data movement dominates the cost of arithmetics: time and energy consumption
\square Per socket flop performance continues to increase: increase of number of cores per socket and/or number of flops per cycle 2008 Intel Nehalem $3.2 \mathrm{GHz} \times 4$ cores (51.2 GFlops/socket DP) 2020 A64FX $2.2 \mathrm{GHz} \times 48$ cores (3.37 TFlops/socket DP) ${ }^{1} 66 \mathrm{x}$ in 12 years
\square Interconnect latency: few μs MPI latency
Our focus: increasing scalability by reducing/minimizing coummunication while controlling the loss of information in low rank matrix (and tensor) approximation.
${ }^{1}$ Fugaku supercomputer https://www.top500.org/system/179807/

Low rank matrix approximation

- Problem: given $A \in \mathbb{R}^{m \times n}$, compute rank-k approximation $Z W^{T}$, where $Z \in \mathbb{R}^{m \times k}$ and $W^{T} \in \mathbb{R}^{k \times n}$.

- Problem ubiquitous in scientific computing and data analysis
\square column subset selection, linear dependency analysis, fast solvers for integral equations, H -matrices,
\square principal component analysis, image processing, data in high dimensions, ...

Low rank matrix approximation

- Best rank-k approximation $A_{o p t, k}=\hat{U}_{k} \Sigma_{k} \hat{V}_{k}^{T}$ is rank-k truncated SVD of A [Eckart and Young, 1936], with

$$
\begin{aligned}
\sigma_{\max }(A)=\sigma_{1}(A) \geq \ldots \geq \sigma_{\min }(A) & =\sigma_{\min (m, n)}(A) \\
\min _{\operatorname{rank}\left(\tilde{A}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{2} & =\left\|A-A_{\text {opt }, k}\right\|_{2}=\sigma_{k+1}(A) \\
\min _{\operatorname{rank}\left(\tilde{A}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{F} & =\left\|A-A_{\text {opt }, k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)}
\end{aligned}
$$

Image, size 1190×1920

Rank-10 approximation, SVD

Rank-50 approximation, SVD

■ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires

$$
\# \text { messages }=\Omega\left(\log _{2} P\right) .
$$

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\#$ messages $=\Omega\left(\log _{2} P\right)$.

Idea underlying many algorithms

Compute $\tilde{A}_{k}=\mathcal{P} A$, where $\mathcal{P}=\mathcal{P}^{o}$ or $\mathcal{P}=\mathcal{P}^{\text {so }}$ is obtained as:

1. Construct a low dimensional subspace $X=\operatorname{range}\left(A V_{1}\right), V_{1} \in \mathbb{R}^{n \times I}$ that approximates well the range of A, e.g.

$$
\left\|A-\mathcal{P}^{o} A\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1
$$

where Q_{1} is orth. basis of $\left(A V_{1}\right)$

$$
\mathcal{P}^{0}=A V_{1}\left(A V_{1}\right)^{+}=Q_{1} Q_{1}^{T} \text {, or equiv } \mathcal{P}^{0} a_{j}:=\arg \min _{x \in X}\left\|x-a_{j}\right\|_{2}
$$

Select a semi-inner product $\left\langle U_{1} \cdot, U_{1} \cdot\right\rangle_{2}, U_{1} \in \mathbb{R}^{\prime \prime \times m} I^{\prime} \geq I$, define

Idea underlying many algorithms

Compute $\tilde{A}_{k}=\mathcal{P} A$, where $\mathcal{P}=\mathcal{P}^{\circ}$ or $\mathcal{P}=\mathcal{P}^{\text {so }}$ is obtained as:

1. Construct a low dimensional subspace $X=\operatorname{range}\left(A V_{1}\right), V_{1} \in \mathbb{R}^{n \times I}$ that approximates well the range of A, e.g.

$$
\left\|A-\mathcal{P}^{\circ} A\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1
$$

where Q_{1} is orth. basis of $\left(A V_{1}\right)$

$$
\mathcal{P}^{0}=A V_{1}\left(A V_{1}\right)^{+}=Q_{1} Q_{1}^{T} \text {, or equiv } \mathcal{P}^{0} a_{j}:=\arg \min _{x \in X}\left\|x-a_{j}\right\|_{2}
$$

2. Select a semi-inner product $\left\langle U_{1} \cdot, U_{1} \cdot\right\rangle_{2}, U_{1} \in \mathbb{R}^{\prime \prime \times m} I^{\prime} \geq I$, define

$$
\mathcal{P}^{\text {so }}=A V_{1}\left(U_{1} A V_{1}\right)^{+} U_{1}, \text { or equiv } \mathcal{P}^{50} a_{j}:=\arg \min _{x \in X}\left\|U_{1}\left(x-a_{j}\right)\right\|_{2}
$$

with O. Balabanov, 2020

Unified perspective: generalized LU factorization

Given $A \in \mathbb{R}^{m \times n}, U=\binom{U_{1}}{U_{2}} \in \mathbb{R}^{m, m}, V=\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right) \in \mathbb{R}^{n, n}, U, V$ invertible, $U_{1} \in \mathbb{R}^{I^{\prime} \times m}, V_{1} \in \mathbb{R}^{n \times I}, k \leq I \leq I^{\prime}$.

$$
\begin{aligned}
U A V & =\bar{A}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & \bar{A}_{21} \bar{A}_{11}^{+} \\
I
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right)
\end{aligned}
$$

where $\bar{A}_{11} \in \mathbb{R}^{\prime \prime}, l, \bar{A}_{11}^{+} \bar{A}_{11}=I, S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{+} \bar{A}_{12}$.

- Generalized LU computes the approximation

$$
\begin{aligned}
\tilde{A}_{g l u} & =U^{-1}\binom{I}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \left.\bar{A}_{12}\right) V^{-1} \\
& =\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right]
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

with J. Demmel and A. Rusciano, 2019

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{g / u}=\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right]
$$

Unification for many existing algorithms:

- If $k \leq I=I^{\prime}$ and $U_{1}=Q_{1}^{T}$, then $\tilde{A}_{g l u}=Q_{1} Q_{1}^{\top} A=\mathcal{P}^{\circ} A$
- If $k \leq I=I^{\prime}$ then $\tilde{A}_{\text {glu }}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A$

Approximation result: If $k \leq 1<1$

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{g / u}=\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right]
$$

Unification for many existing algorithms:

- If $k \leq I=I^{\prime}$ and $U_{1}=Q_{1}^{T}$, then $\tilde{A}_{g / u}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A$
- If $k \leq I=I^{\prime}$ then $\tilde{A}_{g / u}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{\text {so }} A$

Approximation result:

$$
\left\|A-\mathcal{P}^{s o} A\right\|_{F}^{2}=\left\|A-\tilde{A}_{g / u}\right\|_{F}^{2}+\left\|\tilde{A}_{g / u}-\mathcal{P}^{50} A\right\|_{F}^{2}
$$

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{g / u}=\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right]
$$

Unification for many existing algorithms:

- If $k \leq I=I^{\prime}$ and $U_{1}=Q_{1}^{T}$, then $\tilde{A}_{g / u}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A$
- If $k \leq I=I^{\prime}$ then $\tilde{A}_{g l u}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{\text {so }} A$

Approximation result: If $k \leq I<I^{\prime}$,

$$
\left\|A-\mathcal{P}^{s o} A\right\|_{F}^{2}=\left\|A-\tilde{A}_{g / u}\right\|_{F}^{2}+\left\|\tilde{A}_{g / u}-\mathcal{P}^{s o} A\right\|_{F}^{2}
$$

Desired properties of low rank matrix approximation

1. \tilde{A}_{k} is (k, γ) low-rank approximation of A if it satisfies

$$
\left\|A-\tilde{A}_{k}\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1
$$

\rightarrow Focus of both deterministic and randomized approaches
\tilde{A}_{k} is (k, γ) spectrum preserving of A if

\rightarrow Focus of deterministic approaches \tilde{A}_{k} is (k, γ) kernel approximation of A if
\square
Focus of deterministic approaches
\qquad

Desired properties of low rank matrix approximation

1. \tilde{A}_{k} is (k, γ) low-rank approximation of A if it satisfies

$$
\left\|A-\tilde{A}_{k}\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1
$$

\rightarrow Focus of both deterministic and randomized approaches
2. \tilde{A}_{k} is (k, γ) spectrum preserving of A if

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\tilde{A}_{k}\right)} \leq \gamma, \text { for all } i=1, \ldots, k \text { and some } \gamma \geq 1
$$

\rightarrow Focus of deterministic approaches
\tilde{A}_{k} is (k, γ) kernel approximation of A if

for all $i=1, \ldots, \min (m, n)-k$ and some $\gamma \geq 1$ \rightarrow Focus of deterministic approaches Goal γ is a low degree polynomial in k and the number of columns and/or rows of A for some of the most efficient algorithms.

Desired properties of low rank matrix approximation

1. \tilde{A}_{k} is (k, γ) low-rank approximation of A if it satisfies

$$
\left\|A-\tilde{A}_{k}\right\|_{2} \leq \gamma \sigma_{k+1}(A), \text { for some } \gamma \geq 1
$$

\rightarrow Focus of both deterministic and randomized approaches
2. \tilde{A}_{k} is (k, γ) spectrum preserving of A if

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\tilde{A}_{k}\right)} \leq \gamma, \text { for all } i=1, \ldots, k \text { and some } \gamma \geq 1
$$

\rightarrow Focus of deterministic approaches
3. \tilde{A}_{k} is (k, γ) kernel approximation of A if

$$
1 \leq \frac{\sigma_{j}\left(A-\tilde{A}_{k}\right)}{\sigma_{k+j}(A)} \leq \gamma, \text { for all } i=1, \ldots, \min (m, n)-k \text { and some } \gamma \geq 1
$$

\rightarrow Focus of deterministic approaches
Goal γ is a low degree polynomial in k and the number of columns and/or rows of A for some of the most efficient algorithms.

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors
Parallel HORRQR

Conclusions

Strong rank revealing QR (RRQR) factorization

Given $A \in \mathbb{R}^{m \times n}$, consider the QRCP decomposition with $R_{11} \in \mathbb{R}^{k \times k}$, [Golub, 1965, Businger and Golub, 1965],

$$
\begin{aligned}
& A V=Q R=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right), \\
& \tilde{A}_{q r}=Q_{1}\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) V^{-1}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
\end{aligned}
$$

- [Gu and Eisenstat, 1996] show that given k and f, there exists permutation $V \in \mathbb{R}^{n \times n}$ such that the factorization satisfies,

$$
\begin{aligned}
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} & \leq \gamma(n, k), \quad \gamma(n, k)=\sqrt{1+f^{2} k(n-k)} \\
\left\|R_{11}^{-1} R_{12}\right\|_{\max } & \leq f
\end{aligned}
$$

for $1 \leq i \leq k$ and $1 \leq j \leq \min (m, n)-k$, and $\sigma_{j}\left(R_{22}\right)=\sigma_{j}\left(A-\tilde{A}_{q r}\right)$

- Cost: 4mnk (QRCP) plus $O(m n k)$ flops and $O\left(k \log _{2} P\right)$ messages.
$\rightarrow \tilde{A}_{q r}$ with strong RRQR is $(k, \gamma(n, k))$ spectrum preserving and kernel approximation of A

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

- 1D column block partition of A, select k cols from each block with strong RRQR

$\left(A_{11}\right.$	A_{12}	A_{13}	$\left.A_{14}\right)$				
$\\|$	$\\|$	$\\|$	$\\|$				
$\left(Q_{00} R_{00} V_{00}^{T}\right.$	$Q_{10} R_{10} V_{10}^{T}$	$Q_{20} R_{20} V_{20}^{T}$	$\left.Q_{30} R_{30} V_{30}^{T}\right)$				
\downarrow	\downarrow	\downarrow	\downarrow				
I_{00}	I_{10}	I_{20}	I_{30}				

2k	2k	2k	2k
A_{1}	A_{12}	A_{1}	A_{14}

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

- 1D column block partition of A, select k cols from each block with strong RRQR

$\left(A_{11}\right.$	A_{12}	A_{13}	$\left.A_{14}\right)$				
$\\|$	$\\|$	$\\|$	$\\|$				
$\left(Q_{00} R_{00} V_{00}^{T}\right.$	$Q_{10} R_{10} V_{10}^{T}$	$Q_{20} R_{20} V_{20}^{T}$	$\left.Q_{30} R_{30} V_{30}^{T}\right)$				
\downarrow	\downarrow	\downarrow	\downarrow				
I_{00}	I_{10}	I_{20}	I_{30}				

- Reduction tree to select k cols from sets of $2 k$ cols,
$\left(A\left(:, 100 \cup I_{10}\right) \quad A\left(:, 1_{20} \cup I_{30}\right) ;\right)$
\square $\left.Q_{11} R_{11} V_{11}^{\top}\right)$ $A\left(:, I_{01} \cup I_{11}\right)=Q_{02} R_{02} V_{02}^{\top} \rightarrow I_{02}$
[Demmel, LG, Gu, Xiang'15]

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

- Reduction tree to select k cols from sets of $2 k$ cols,

$$
\begin{array}{cc}
\left(A\left(:, I_{00} \cup I_{10}\right)\right. & \left.A\left(:, I_{20} \cup I_{30}\right) ;\right) \\
\| & \| \\
\left(Q_{01} R_{01} V_{01}^{T}\right. & \left.Q_{11} R_{11} V_{11}^{T}\right) \\
\downarrow & \downarrow \\
I_{01} & I_{11}
\end{array}
$$

$$
A\left(:, I_{01} \cup I_{11}\right)=Q_{02} R_{02} V_{02}^{T} \rightarrow I_{02}
$$

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

- Reduction tree to select k cols from sets of $2 k$ cols,

$$
A\left(:, I_{01} \cup I_{11}\right)=Q_{02} R_{02} V_{02}^{T} \rightarrow I_{02}
$$

[Demmel, LG, Gu, Xiang'15]

Deterministic column selection: tournament pivoting

1 D tournament pivoting (1Dc-TP)

$$
A\left(:, I_{01} \cup I_{11}\right)=Q_{02} R_{02} V_{02}^{T} \rightarrow I_{02}
$$

Return selected columns $A\left(:, l_{02}\right)$
[Demmel, LG, Gu, Xiang'15]
13 of 42

Deterministic column selection: tournament pivoting

1D tournament pivoting (1Dc-TP)

- Return selected columns $A\left(:, I_{02}\right)$

[Demmel, LG, Gu, Xiang'15]
13 of 42

Tournament pivoting for 1D row partitioning - 1Dr TP

- Row block partition A as e.g.
$A=\left(\begin{array}{l}A_{11} \\ A_{21} \\ \hline A_{31} \\ A_{41}\end{array}\right)=\left(\begin{array}{ll}Q_{00} R_{00} V_{00}^{-1} \\ Q_{10} R_{10} V_{10}^{-1} \\ Q_{20} R_{20} V_{20}^{-1} \\ Q_{30} R_{30} V_{30}^{-1}\end{array}\right) \rightarrow$ select k solect k cols $I_{10}, \begin{aligned} & \text { select } \mathrm{k} \text { cols } I_{20} \\ & \rightarrow \text { select } \mathrm{k} \text { cols } I_{30}\end{aligned}$

$$
A\left(:, I_{01} \cup I_{11}\right)=\left(Q_{02} R_{02} V_{02}^{-1}\right) \rightarrow I_{02}
$$

Return columns $A\left(:, I_{02}\right)$
with M. Beaupère, Inria

Tournament pivoting for 1D row partitioning - 1Dr TP

- Row block partition A as e.g.

$$
A=\left(\begin{array}{l}
A_{11} \\
A_{21} \\
A_{31} \\
A_{41}
\end{array}\right)=\left(\begin{array}{ll}
Q_{00} R_{00} V_{00}^{-1} \\
Q_{10} R_{10} V_{10}^{-1} \\
Q_{20} R_{20} V_{20}-1 \\
Q_{30} R_{30} V_{30}^{-1}
\end{array}\right) \begin{aligned}
& \rightarrow \text { select } k \text { cols } l_{100} \\
& \rightarrow \text { select } k \text { solects } k \text { cols } I_{10} \\
& \rightarrow \text { select } k \text { cols } I_{20} \\
& l_{30}
\end{aligned}
$$

$$
\binom{\binom{A_{11}}{A_{21}}\left(:, I_{00} \cup I_{10}\right)}{\binom{A_{31}}{A_{41}}\left(:, I_{20} \cup I_{30}\right)}=\binom{Q_{01} R_{01} V_{01}^{-1}}{Q_{11} R_{11} V_{11}^{-1}} \rightarrow \begin{aligned}
& \rightarrow I_{11}
\end{aligned}
$$

$$
A\left(:, I_{01} \cup I_{11}\right)=\left(Q_{02} R_{02} V_{02}^{-1}\right) \rightarrow I_{02}
$$

- Return columns $A\left(:, I_{02}\right)$

[^0]
Tournament pivoting for 1D row partitioning - 1Dr TP

- Row block partition A as e.g.

$$
A=\left(\begin{array}{l}
A_{11} \\
\hline A_{21} \\
\hline A_{31} \\
A_{41}
\end{array}\right)=\left(\begin{array}{ll}
Q_{00} R_{00} V_{00}^{-1} \\
Q_{10} R_{10} V_{10}^{-1} \\
Q_{20} R_{20} V_{20}^{-1} \\
Q_{30} R_{30} V_{30}^{-1}
\end{array}\right) \begin{aligned}
& \rightarrow \text { select } \mathrm{k} \text { colect } \mathrm{k} \text { cols } I_{10} \\
& \rightarrow \text { select } \mathrm{k} \text { cols } I_{20} \\
& \rightarrow \text { select } \mathrm{k} \text { cols } I_{30}
\end{aligned}
$$

- Apply 1D-TP on sets of $2 k$ sub-columns

$$
\begin{gathered}
\binom{\binom{A_{11}}{A_{21}}\left(:, I_{00} \cup I_{10}\right)}{\binom{A_{31}}{A_{41}}\left(:, I_{20} \cup I_{30}\right)}=\binom{Q_{01} R_{01} V_{01}^{-1}}{Q_{11} R_{11} V_{11}^{-1}} \rightarrow \begin{array}{l}
\rightarrow I_{01} \\
\rightarrow I_{11}
\end{array} \\
A\left(:, I_{01} \cup I_{11}\right)=\left(Q_{02} R_{02} V_{02}^{-1}\right) \rightarrow I_{02}
\end{gathered}
$$

- Return columns $A\left(:, I_{02}\right)$
with M. Beaupère, Inria

Tournament pivoting for 1D row partitioning - 1Dr TP

- Row block partition A as e.g.

$$
A=\left(\begin{array}{l}
A_{11} \\
A_{21} \\
A_{31} \\
A_{41}
\end{array}\right)=\left(\begin{array}{ll}
Q_{00} R_{00} V_{00}^{-1} \\
Q_{10} R_{10} V_{10}^{-1} \\
Q_{20} R_{20} V_{20}-1 \\
Q_{30} R_{30} V_{30}^{-1}
\end{array}\right) \begin{aligned}
& \rightarrow \text { select } k \text { sols } l_{100} \\
& \rightarrow \text { select } k \text { select } k \text { cols } l_{10} \\
& \rightarrow \text { sols } I_{20} \\
& \rightarrow \text { cols } l_{30}
\end{aligned}
$$

- Apply 1D-TP on sets of $2 k$ sub-columns

$$
\begin{gathered}
\binom{\binom{A_{11}}{A_{21}}\left(:, I_{00} \cup I_{10}\right)}{\binom{A_{31}}{A_{41}}\left(:, I_{20} \cup I_{30}\right)}=\binom{Q_{01} R_{01} V_{01}^{-1}}{Q_{11} R_{11} V_{11}^{-1}} \rightarrow I_{01} \\
\rightarrow I_{11}
\end{gathered}, \begin{gathered}
A\left(:, I_{01} \cup I_{11}\right)=\left(Q_{02} R_{02} V_{02}^{-1}\right) \rightarrow I_{02}
\end{gathered}
$$

- Return columns $A\left(:, I_{02}\right)$

with M. Beaupère, Inria

Tournament pivoting for 1D row partitioning - 1Dr TP

- Row block partition A as e.g.

$$
A=\left(\begin{array}{l}
A_{11} \\
A_{21} \\
\hline A_{31} \\
\hline A_{41}
\end{array}\right)=\left(\begin{array}{ll}
Q_{00} R_{00} V_{00}^{-1} \\
Q_{10} R_{10} V_{10}^{-1} \\
Q_{20} R_{20} V_{20}^{-1} \\
Q_{30} R_{30} V_{30}^{-1}
\end{array}\right) \begin{aligned}
& \rightarrow \text { select } \mathrm{k} \text { colect } \mathrm{k} \text { cols } I_{10} \\
& \rightarrow \text { select } \mathrm{k} \text { cols } I_{20} \\
& \rightarrow \text { select } \mathrm{k} \text { cols } I_{30}
\end{aligned}
$$

- Return columns $A\left(:, I_{02}\right)$
- Apply 1D-TP on sets of $2 k$ sub-columns

$$
\begin{gathered}
\binom{\binom{A_{11}}{A_{21}}\left(:,, I_{00} \cup I_{10}\right)}{\hline\binom{A_{31}}{A_{41}}\left(:, I_{20} \cup I_{30}\right)}=\binom{Q_{01} R_{01} V_{01}^{-1}}{Q_{11} R_{11} V_{11}^{-1}} \xrightarrow{\rightarrow I_{01}} \rightarrow \begin{array}{l}
\rightarrow I_{11}
\end{array} \\
A\left(:, I_{01} \cup I_{11}\right)=\left(Q_{02} R_{02} V_{02}^{-1}\right) \rightarrow I_{02}
\end{gathered}
$$

with M. Beaupère, Inria

CA-RRQR : 2D tournament pivoting

- A distributed on $P_{r} \times P_{c}$ procs as e.g.

$$
A=\left(\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24}
\end{array}\right)
$$

- Select k cols from each column block by 1Dr-TP,

[^1]
CA-RRQR : 2D tournament pivoting

- A distributed on $P_{r} \times P_{c}$ procs as e.g.

$$
A=\left(\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24}
\end{array}\right)
$$

- Select k cols from each column block by 1Dr-TP,

$$
\begin{array}{cccc}
\binom{A_{11}}{A_{21}} & \binom{A_{12}}{A_{22}} & \binom{A_{13}}{A_{23}} & \binom{A_{14}}{A_{24}} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
I_{00} & I_{10} & I_{20} & I_{30}
\end{array}
$$

- Apply 1Dc-TP on sets of k selected cols, $A^{(}(, 100) \quad A^{\prime}\left(, I_{10}\right) \quad A^{\prime}\left(, I_{20}\right) \quad A^{\prime}(, 130)$
- Return columns selected by 1Dc-TP A(:, /02)

with M. Beaupère, Inria

CA-RRQR : 2D tournament pivoting

- A distributed on $P_{r} \times P_{c}$ procs as e.g.

$$
A=\left(\begin{array}{llll}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24}
\end{array}\right)
$$

- Select k cols from each column block by 1Dr-TP,

$$
\begin{array}{cccc}
\binom{A_{11}}{A_{21}} & \binom{A_{12}}{A_{22}} & \binom{A_{13}}{A_{23}} & \binom{A_{14}}{A_{24}} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
I_{00} & I_{10} & I_{20} & I_{30}
\end{array}
$$

- Apply 1Dc-TP on sets of k selected cols,

$$
A\left(:, I_{00}\right) \quad A\left(:, I_{10}\right) \quad A\left(:, I_{20}\right) \quad A\left(:, I_{30}\right)
$$

- Return columns selected by 1Dc-TP $A\left(:, I_{02}\right)$ with M. Beaupère, Inria

CA-RRQR - bounds for 2D tournament pivoting

Bounds when selecting k columns from $A \in \mathbb{R}^{m \times n}$ distributed on $P=P_{r} \times P_{c}$ processors by using 2D tournament pivoting:

$$
\begin{gathered}
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq \gamma_{1}(n, k), \gamma_{1}(n, k)=\sqrt{1+F_{2 D-T P}^{2}(n-k)}, \\
\left\|\left(R_{11}^{-1} R_{12}\right)(:, l)\right\|_{2} \leq F_{2 D-T P}
\end{gathered}
$$

$$
\text { for } 1 \leq i \leq k, 1 \leq j \leq \min (m, n)-k, 1 \leq I \leq n-k .
$$

- 1Dr-TP with binary tree of depth $\log _{2} P_{r}$ followed by 1Dc-TP with binary tree of depth $\log _{2} P_{c}$,

$$
F_{2 D-T P} \leq P k^{\log _{2} P+1 / 2} f^{\log _{2} P_{c}+1}
$$

- Cost: $O\left(\frac{m n k}{P}\right)$ flops, $\left(1+\log _{2} P_{r}\right) \log _{2} P$ messages, $O\left(\frac{m k}{P_{r}} \log _{2} P_{c}\right)$ words $\rightarrow \tilde{A}_{q r}$ with 2D TP is $\left(k, \gamma_{1}(n, k)\right)$ spectrum preserving and kernel approximation of A

CA-RRQR : 2D tournament pivoting

Numerical experiments

Original image, size 1190×1920

Rank-10 approx, 2D TP 8×8 procs

Singular values and ratios

Rank-50 approx, 2D TP 8×8 procs

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

LU_CRTP: LU with column/row tournament pivoting

Compute rank-k approx. $\tilde{A}_{l u}$ of $A \in \mathbb{R}^{m \times n}, k=I=I^{\prime}$,

$$
\tilde{A}_{l u}=\binom{\bar{A}_{11}}{\bar{A}_{21}} \bar{A}_{11}^{-1}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \tag{1}
\end{array}\right)=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A
$$

1. Select k columns by using TP, bounds for s.v. governed by $\gamma_{1}(n, k)$

$$
A V=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right)=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right)
$$

2. Select k rows from $Q_{1} \in \mathbb{R}^{m \times k}$ by using TP,

$$
U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}, \text { hence } \bar{A}_{11}=\bar{Q}_{11} R_{11},
$$

s.t. $\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ is bounded and bounds for s.v. governed by $\gamma_{2}(m, k)$,

$$
\frac{1}{\gamma_{2}(m, k)} \leq \sigma_{i}\left(\bar{Q}_{11}\right) \leq 1
$$

with S. Cayrols, J. Demmel, 2018

Deterministic guarantees for rank-k approximation

- CA LU_CRTP with column/row selection with binary tree tournament pivoting:

$$
\begin{aligned}
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\bar{A}_{11}\right)}, \frac{\sigma_{j}\left(S\left(\bar{A}_{11}\right)\right)}{\sigma_{k+j}(A)} & \leq \sqrt{\left(1+F_{T P}^{2}(n-k)\right)} / \sigma_{\min }\left(\bar{Q}_{11}\right) \\
& \leq \sqrt{\left(1+F_{T P}^{2}(n-k)\right)\left(1+F_{T P}^{2}(m-k)\right)} \\
& =\gamma_{1}(n, k) \gamma_{2}(m, k),
\end{aligned}
$$

for any $1 \leq i \leq k$, and $1 \leq j \leq \min (m, n)-k, U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$, and $\sigma_{j}\left(A-\tilde{A}_{l u}\right)=\sigma_{j}\left(S\left(\bar{A}_{11}\right)\right)$.
$\rightarrow \tilde{A}_{l u}$ is $\left(k, \gamma_{1}(n, k) \gamma_{2}(m, k)\right)$ spectrum preserving and kernel approximation of A

Performance results

Selection of 256 columns by tournament pivoting

- Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices:

- Parab_fem: 528825×528825
- Mac_econ: 206500×206500
dimension at leaves on 32 procs 528825×16432
206500×6453

	Time	Time leaves	Number of MPI processes						
	$2 k$ cols	32procs	16	32	64	128	256	512	1024
		$S P Q R+d G E Q P 3$							
Parab_fem	0.26	$0.26+1129$	46.7	24.5	13.7	8.4	5.9	4.8	4.4
Mac_econ	0.46	$25.4+510$	132.7	86.3	111.4	59.6	27.2	-	-

Plan

```
Motivation of our work
Unified perspective on low rank matrix approximation
    Generalized LU decomposition
Recent deterministic algorithms and bounds
    CA RRQR with 2D tournament pivoting
    CA LU with column/row tournament pivoting
```

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

Typical randomized SVD

1. Compute an approximate basis for the range of $A \in \mathbb{R}^{m \times n}$ Sample $V_{1} \in \mathbb{R}^{n \times I}, I=p+k$, with independent mean-zero, unit-variance Gaussian entries.
Compute $Y=A V_{1}, Y \in \mathbb{R}^{m \times I}$ expected to span column space of A.
\square Cost of multiplying $A V_{1}: 2 \mathrm{mml}$ flops
2. With Q_{1} being orthonormal basis of Y, approximate A as:

$$
\tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
$$

\square Cost of multiplying $Q_{1}^{T} A$: 2 mm flops

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Cost of randomized SVD for dense matrices

\rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying $A V_{1}$ and $Q_{1}^{T} A$ need to be reduced:

> Take V_{1} a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), $A V_{1}$ costs $2 m n \log _{2}(I+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06. Use a different projector than \mathcal{P}°, e.g. pick U_{1} and compute

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time.

Cost of randomized SVD for dense matrices

\rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying $A V_{1}$ and $Q_{1}^{T} A$ need to be reduced:

1. Take V_{1} a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), $A V_{1}$ costs $2 m n \log _{2}(I+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.

Use a different projector than \mathcal{P}°, e.g. pick U_{1} and compute $\tilde{A}_{k}=P^{50} A=A V_{1}\left(U_{1} A V_{1}\right)^{+} U_{1} A$

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time

Cost of randomized SVD for dense matrices

\rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying $A V_{1}$ and $Q_{1}^{T} A$ need to be reduced:

1. Take V_{1} a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), $A V_{1}$ costs $2 m n \log _{2}(I+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.
2. Use a different projector than \mathcal{P}^{0}, e.g. pick U_{1} and compute

$$
\tilde{A}_{k}=\mathcal{P}^{50} A=A V_{1}\left(U_{1} A V_{1}\right)^{+} U_{1} A
$$

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time.

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I=I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{k}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A
$$

Deterministic algorithms V_{1} column permutation and ...

Randomized algorithms*
V_{1} random matrix and ...

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I=I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{k}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A
$$

Deterministic algorithms V_{1} column permutation and ... QR with column selection (a.k.a. strong rank revealing $Q R$) $U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A$ $\left\|R_{11}^{-1} R_{12}\right\|_{\text {max }}$ is bounded

Randomized algorithms*
V_{1} random matrix and ... Randomized QR
(a.k.a. randomized SVD)

$$
U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
$$

Randomized LU with row selection (a.k.a. randomized SVD via Row extraction) U_{1} row permutation s.t. $U_{1} Q_{1}$ bounded
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I=I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{k}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A
$$

Deterministic algorithms V_{1} column permutation and ... QR with column selection (a.k.a. strong rank revealing QR) $U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A$ $\left\|R_{11}^{-1} R_{12}\right\|_{\text {max }}$ is bounded
LU with column/row selection (a.k.a. rank revealing LU) U_{1} row permutation s.t. $U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$
$\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ is bounded

Randomized algorithms*
V_{1} random matrix and ... Randomized QR
(a.k.a. randomized SVD)

$$
U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
$$

Randomized LU with row selection (a.k.a. randomized SVD via Row extraction) U_{1} row permutation s.t. $U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$ $\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ bounded
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I=I^{\prime}$, rank-k approximation,

$$
\tilde{A}_{k}=A V_{1}\left(U_{1} A V_{1}\right)^{-1} U_{1} A=\mathcal{P}^{s o} A
$$

Deterministic algorithms
V_{1} column permutation and ... QR with column selection (a.k.a. strong rank revealing $Q R$) $U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A$ $\left\|R_{11}^{-1} R_{12}\right\|_{\text {max }}$ is bounded
LU with column/row selection (a.k.a. rank revealing LU) U_{1} row permutation s.t. $U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$
$\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ is bounded

Randomized algorithms*
V_{1} random matrix and ... Randomized QR
(a.k.a. randomized SVD)

$$
U_{1}=Q_{1}^{T}, \tilde{A}_{k}=Q_{1} Q_{1}^{T} A=\mathcal{P}^{\circ} A
$$

Randomized LU with row selection (a.k.a. randomized SVD via Row extraction) U_{1} row permutation s.t. $U_{1} Q_{1}=\binom{\bar{Q}_{11}}{\bar{Q}_{21}}$
$\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\text {max }}$ bounded
Randomized LU approximation
U_{1} random matrix
with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\begin{aligned}
\tilde{A}_{g / u} & =U^{-1}\binom{I}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \left.\bar{A}_{12}\right) V^{-1} \\
& =\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right] \neq \mathcal{P}^{\text {so }} A
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

Approximation result: When $k \leq I<I^{\prime}$, the approximation $\tilde{A}_{g / u}$ is more accurate than $\mathcal{P}^{\text {so }} \mathrm{A}$,

$$
\left\|A-\mathcal{P}^{\text {so }} A\right\|_{F}^{T}=\left\|A-\tilde{A}_{g l u}\right\|_{F}^{2}+\left\|\tilde{A}_{g / u}-\mathcal{P}^{50} A\right\|_{F}^{2}
$$

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\begin{aligned}
\tilde{A}_{g l u} & =U^{-1}\binom{I}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right) V^{-1} \\
& =\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right] \neq \mathcal{P}^{\text {so }} A
\end{aligned}
$$

Approximation result: When $k \leq I<I^{\prime}$, the approximation $\tilde{A}_{g / u}$ is more accurate than $\mathcal{P}^{\text {so }} A$,

$$
\left\|A-\mathcal{P}^{s o} A\right\|_{F}^{T}=\left\|A-\tilde{A}_{g / u}\right\|_{F}^{2}+\left\|\tilde{A}_{g / u}-\mathcal{P}^{s o} A\right\|_{F}^{2}
$$

Deterministic guarantee: Let $A V=Q R=\left(Q_{1}\right.$

$$
\begin{aligned}
\sigma_{j}\left(A-\mathcal{P}^{\circ} A\right) & =\sigma_{j}\left(R_{22}\right) \\
\sigma_{j}^{2}\left(A-\tilde{A}_{g l u}\right) & \leq \sigma_{j}^{2}\left(R_{22}\right)+\left\|\left(U_{1} Q_{1}\right)^{+}\left(U_{1} Q_{2}\right)\left(R_{22}-\left(R_{22}\right)_{\text {opt }, j-1}\right)\right\|_{2}^{2}
\end{aligned}
$$

Unified perspective: generalized LU factorization

Given U_{1}, A, V_{1}, Q_{1} orth. basis of $\left(A V_{1}\right), k \leq I<I^{\prime}$, rank-k approximation,

$$
\begin{aligned}
\tilde{A}_{g / u} & =U^{-1}\binom{I}{\bar{A}_{21} \bar{A}_{11}^{+}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right) V^{-1} \\
& =\left[U_{1}^{+}\left(I-\left(U_{1} A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right)+\left(A V_{1}\right)\left(U_{1} A V_{1}\right)^{+}\right]\left[U_{1} A\right] \neq \mathcal{P}^{s o} A
\end{aligned}
$$

Approximation result: When $k \leq I<I^{\prime}$, the approximation $\tilde{A}_{g / u}$ is more accurate than $\mathcal{P}^{\text {so }} A$,

$$
\left\|A-\mathcal{P}^{s o} A\right\|_{F}^{T}=\left\|A-\tilde{A}_{g / u}\right\|_{F}^{2}+\left\|\tilde{A}_{g / u}-\mathcal{P}^{s o} A\right\|_{F}^{2}
$$

Deterministic guarantee: Let $A V=Q R=\left(\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right)\left(\begin{array}{ll}R_{11} & R_{12} \\ & R_{22}\end{array}\right)$, then

$$
\begin{aligned}
\sigma_{j}\left(A-\mathcal{P}^{\circ} A\right) & =\sigma_{j}\left(R_{22}\right) \\
\sigma_{j}^{2}\left(A-\tilde{A}_{g / u}\right) & \leq \sigma_{j}^{2}\left(R_{22}\right)+\left\|\left(U_{1} Q_{1}\right)^{+}\left(U_{1} Q_{2}\right)\left(R_{22}-\left(R_{22}\right)_{o p t, j-1}\right)\right\|_{2}^{2}
\end{aligned}
$$

Oblivious subspace embedding

- A (k, ϵ, δ) oblivious subspace embedding (OSE) from \mathbb{R}^{n} to \mathbb{R}^{\prime} is a distribution $U_{1} \sim \mathbb{D}$ over $I \times n$ matrices. It satisfies with probability $1-\delta$

$$
\begin{equation*}
1-\epsilon \leq \sigma_{\min }^{2}\left(U_{1} Q_{1}\right) \leq \sigma_{\max }^{2}\left(U_{1} Q_{1}\right) \leq 1+\epsilon \tag{2}
\end{equation*}
$$

for any given orthogonal $n \times k$ matrix Q_{1}. We assume $I \geq k$ and $\epsilon<1 / 6$.

- $U_{1} \in \mathbb{R}^{\prime \times n}$ is (ϵ, δ, n) multiplication approximating, if for any A, B having n rows, it satisfies with probability $1-\delta$,

$$
\begin{equation*}
\left\|A^{T} U_{1}^{T} U_{1} B-A^{T} B\right\|_{F}^{2} \leq \epsilon\|A\|_{F}^{2}\|B\|_{F}^{2} \tag{3}
\end{equation*}
$$

Let $U_{1} \in \mathbb{R}^{1 \times n}$ be subsampled random Hadamard transform (SRHT)
obtained by uniform sampling without replacement,
With appropriate choices of $\epsilon, \delta, I, U_{1}$ satisfies OSE property (2) (Lemma
4.1 from [Boutsidis and Gittens, 2013]) and the multiplication property (3).

Oblivious subspace embedding

- A (k, ϵ, δ) oblivious subspace embedding (OSE) from \mathbb{R}^{n} to \mathbb{R}^{\prime} is a distribution $U_{1} \sim \mathbb{D}$ over $I \times n$ matrices. It satisfies with probability $1-\delta$

$$
\begin{equation*}
1-\epsilon \leq \sigma_{\min }^{2}\left(U_{1} Q_{1}\right) \leq \sigma_{\max }^{2}\left(U_{1} Q_{1}\right) \leq 1+\epsilon \tag{2}
\end{equation*}
$$

for any given orthogonal $n \times k$ matrix Q_{1}. We assume $I \geq k$ and $\epsilon<1 / 6$.

- $U_{1} \in \mathbb{R}^{1 \times n}$ is (ϵ, δ, n) multiplication approximating, if for any A, B having n rows, it satisfies with probability $1-\delta$,

$$
\begin{equation*}
\left\|A^{T} U_{1}^{T} U_{1} B-A^{T} B\right\|_{F}^{2} \leq \epsilon\|A\|_{F}^{2}\|B\|_{F}^{2} \tag{3}
\end{equation*}
$$

- Let $U_{1} \in \mathbb{R}^{1 \times n}$ be subsampled random Hadamard transform (SRHT) obtained by uniform sampling without replacement,
\square With appropriate choices of $\epsilon, \delta, I, U_{1}$ satisfies OSE property (2) (Lemma 4.1 from [Boutsidis and Gittens, 2013]) and the multiplication property (3).

Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying oblivious subspace embedding properties \rightarrow better bounds

```
Consider }\mp@subsup{U}{1}{}\in\mp@subsup{\mathbb{R}}{}{\prime\prime}\timesm,\mp@subsup{V}{1}{}\in\mp@subsup{\mathbb{R}}{}{n\timesl}\mathrm{ are SRHT, I'}>
Compute }\mp@subsup{\mathcal{P}}{}{\circ}A\mathrm{ costs }O(mnl) flop
Compute }\mp@subsup{\tilde{A}}{glu}{}\mathrm{ through generalized LU costs O(mn log}\mp@subsup{|}{2}{\prime}/)\mathrm{ flops
```


Probabilistic guarantees

- Combine deterministic guarantees with sketching ensembles satisfying oblivious subspace embedding properties \rightarrow better bounds
- Consider $U_{1} \in \mathbb{R}^{\prime \prime \times m}, V_{1} \in \mathbb{R}^{n \times I}$ are SRHT, $I^{\prime}>I$
\square Compute $\mathcal{P}^{\circ} A$ costs $O(\mathrm{mnl})$ flops
\square Compute $\tilde{A}_{g l u}$ through generalized LU costs $O\left(m n \log _{2} l^{\prime}\right)$ flops

Let ρ be the rank of A,
$I=O(1) \epsilon^{-1}(\sqrt{k}+\sqrt{8 \log (n / \delta)})^{2} \log (k / \delta), I \geq \log (n / \delta) \log (\rho / \delta)$,
$I^{\prime}=O(1) \epsilon^{-1}(\sqrt{I}+\sqrt{8 \log (m / \delta)})^{2} \log (k / \delta), I^{\prime} \geq \log (m / \delta) \log (\rho / \delta)$.
With probability $1-5 \delta$,

$$
\begin{aligned}
& \sigma_{j}^{2}\left(A-\mathcal{P}^{\circ} A\right) \leq O(1) \sigma_{k+j}^{2}(A)+O\left(\frac{\log (\rho / \delta)}{l}\right)\left(\sigma_{k+j}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) \\
& \sigma_{j}^{2}\left(A-\tilde{A}_{g / u}\right) \leq O(1) \sigma_{k+j}^{2}(A)+O\left(\frac{\log (\rho / \delta)}{l}\right)\left(\sigma_{k+j}^{2}(A)+\ldots \sigma_{n}^{2}(A)\right) .
\end{aligned}
$$

\rightarrow Randomized $\mathcal{P}^{\circ} A$ and $\tilde{A}_{g / u}$ are kernel approximations (upper bound) of A

Growth factor in Gaussian elimination

$$
\rho(A):=\frac{\max _{k}\left\|S_{k}\right\|_{\max }}{\|A\|_{\max }}, \text { where } A \in \mathbb{R}^{m \times n},
$$

S_{k} is Schur complement obtained at iteration k
Deterministic algorithms, k steps of LU

- LU with partial pivoting: $\rho(A) \leq 2^{k}$
- CA LU with column/row selection with binary tree tournament pivoting:

$$
\left\|S_{k}\left(\bar{A}_{11}\right)\right\|_{\max } \leq \min \left(\left(1+F_{T P} \sqrt{k}\right)\|A\|_{\max }, F_{T P} \sqrt{1+F_{T P}^{2}(m-k)} \sigma_{k}(A)\right)
$$

Randomized algorithms

U, V Haar distributed matrices, complete LU factorization,

$$
\mathbb{E}[\log (\rho(U A V))]=O(\log (n))
$$

Plan

Motivation of our work
Unified perspective on low rank matrix approximationGeneralized LU decomposition
Recent deterministic algorithms and boundsCA RRQR with 2D tournament pivotingCA LU with column/row tournament pivoting
Randomized generalized LU and bounds
Approximation of tensorsParallel HORRQR
Conclusions

Approximation of tensors

Let \mathcal{A} be a d-order tensor, $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \ldots n_{d}}$.

- CANDECOMP/PARAFAC (CP) [Hitchcock'27] approximates \mathcal{A} as the sum of k rank- 1 tensors, where $q_{1, i} \circ q_{2, i}$ is outer product of $q_{1, i}$ and $q_{2, i}$,

$$
\tilde{\mathcal{A}}=\sum_{i=1}^{k} q_{1, i} \circ q_{2, i} \circ \ldots \circ q_{d, i}
$$

- Tucker decomposition [Tucker, 1963], computes a rank-($\left.k_{1}, \ldots k_{d}\right)$ approximation e.g. by using HOSVD and ALS,

$$
\begin{aligned}
\tilde{\mathcal{A}} & =\mathcal{C} \times_{1} Q_{1} \times_{2} Q_{2} \ldots \times_{d} Q_{d} \\
& =\sum_{s_{1}=1}^{k_{1}} \sum_{s_{2}=1}^{k_{2}} \ldots \sum_{s_{d}=1}^{k_{d}} \mathcal{C}\left(s_{1}, \ldots, s_{d}\right) Q_{1}\left(:, s_{1}\right) \circ \ldots \circ Q_{d}\left(:, s_{d}\right)
\end{aligned}
$$

$$
\text { where } \mathcal{C} \in \mathbb{R}^{k_{1} \times k_{2} \times \ldots \times k_{d}}, Q_{i} \in \mathbb{R}^{n_{i} \times k_{i}}, i=1, \ldots d
$$

- Tensor train or tensor networks for high dimensions

For an overview, see Kolda and Bader, SIAM Review 2009

HOSVD for computing a Tucker decomposition

HOSVD for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$, ranks $k_{1}, \ldots k_{d}$

For every unfolding A_{i} along mode $i=1 \ldots d$ compute the k_{i} (approximated) leading left singular vectors of $A_{i}, Q_{i} \in \mathbb{R}^{n_{i} \times k_{i}}$

Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1}$

HOSVD for computing a Tucker decomposition

HOSVD for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$, ranks $k_{1}, \ldots k_{d}$
2. For every unfolding A_{i} along mode $i=1 \ldots d$ compute the k_{i} (approximated) leading left singular vectors of $A_{i}, Q_{i} \in \mathbb{R}^{n_{i} \times k_{i}}$
$A_{1}=\left[\begin{array}{llllllllllllllll}1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 & 49 & 53 & 57 & 61 \\ 2 & 6 & 10 & 14 & 18 & 22 & 26 & 30 & 34 & 38 & 42 & 46 & 50 & 54 & 58 & 62 \\ 3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 & 55 & 59 & 63 \\ 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64\end{array}\right] \rightarrow R R Q R\left[\begin{array}{ll}61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4\end{array}\right]$

Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times{ }_{1} Q_{1} Q_{1}^{T} \ldots \times_{d} Q_{d} Q_{d}^{T}$

HOSVD for computing a Tucker decomposition

HOSVD for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$, ranks $k_{1}, \ldots k_{d}$
2. For every unfolding A_{i} along mode $i=1 \ldots d$ compute the k_{i} (approximated) leading left singular vectors of $A_{i}, Q_{i} \in \mathbb{R}^{n_{i} \times k_{i}}$
$A_{1}=\left[\begin{array}{llllllllllllllll}1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 & 49 & 53 & 57 & 61 \\ 2 & 6 & 10 & 14 & 18 & 22 & 26 & 30 & 34 & 38 & 42 & 46 & 50 & 54 & 58 & 62 \\ 3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 & 55 & 59 & 63 \\ 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64\end{array}\right] \rightarrow \operatorname{RRQR}\left[\begin{array}{lll}61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4\end{array}\right]$
3. $\mathcal{C}=\mathcal{A} \times_{1} Q_{1}^{T} \times_{2} Q_{2}^{T} \ldots \times_{d} Q_{d}^{T}$
4. Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times{ }_{1} Q_{1} Q_{1}^{T} \ldots \times_{d} Q_{d} Q_{d}^{T}$

HOSVD for computing a Tucker decomposition

HOSVD for computing a rank - $\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$, ranks $k_{1}, \ldots k_{d}$
2. For every unfolding A_{i} along mode $i=1 \ldots . d$ compute the k_{i} (approximated) leading left singular vectors of $A_{i}, Q_{i} \in \mathbb{R}^{n_{i} \times k_{i}}$
$A_{1}=\left[\begin{array}{llllllllllllllll}1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 & 49 & 53 & 57 & 61 \\ 2 & 6 & 10 & 14 & 18 & 22 & 26 & 30 & 34 & 38 & 42 & 46 & 50 & 54 & 58 & 62 \\ 3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 & 55 & 59 & 63 \\ 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64\end{array}\right] \rightarrow R R Q R\left[\begin{array}{ll}61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4\end{array}\right]$
3. $\mathcal{C}=\mathcal{A} \times{ }_{1} Q_{1}^{T} \times_{2} Q_{2}^{T} \ldots \times_{d} Q_{d}^{T}$
4. Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times{ }_{1} Q_{1} Q_{1}^{T} \ldots \times_{d} Q_{d} Q_{d}^{T}$

Error bound:
If Q_{i} are the leading left singular vectors of unfolding A_{i}, then:

$$
\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F},
$$

where $\mathcal{A}_{\text {best }}$ is the best rank- k_{1}, \ldots, k_{d} approximation of \mathcal{A}.

Partitioning for parallel HO-RRQR

- Consider a d-order tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ ($n=4, d=3$ in the example),

$\mathcal{A}=$	1	5	9	13	10	25	29	41	45	3	57	61	
2	6	10	14	2	26	30	8	42	46	4	58	62	
3	7	11	15	3	27	31	9	43	47	5	59	63	
4	8	12	16	4	28	32	0	44	48	6	60	64	

- Partition \mathcal{A} into $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ subtensors $\mathcal{A}_{i_{1} . . i_{d}} \in \mathbb{R}^{n / \sqrt[d]{P} \times \ldots \times n / \sqrt[d]{P}}$ distributed on $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor,

Partitioned unfolding

- Consider 1 -mode unfolding of the $2 \times 2 \times 2$ processor tensor,

The 1 -mode unfolding of \mathcal{A} is:
with M. Beaupère and D. Frenkiel

Partitioned unfolding

- Consider 1 -mode unfolding of the $2 \times 2 \times 2$ processor tensor,

- Followed on each processor by 1-mode unfolding of its subtensor,
$A_{12}=\left[\begin{array}{llll|llll|llll|llll}1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64\end{array}\right]$

- The 1 -mode unfolding of \mathcal{A} is:

For any i-mode unfolding, there is a permutation Π_{i} such that
with M. Beaupère and D. Frenkiel

Partitioned unfolding

- Consider 1 -mode unfolding of the $2 \times 2 \times 2$ processor tensor,

- Followed on each processor by 1-mode unfolding of its subtensor,
$A_{12}=\left[\begin{array}{llll|llll|llll|llll}1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64\end{array}\right]$
- The 1 -mode unfolding of \mathcal{A} is:

$$
A_{1}=\left[\begin{array}{llllllllllllllll}
1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 & 49 & 53 & 57 & 61 \\
2 & 6 & 10 & 14 & 18 & 22 & 26 & 30 & 34 & 38 & 42 & 46 & 50 & 54 & 58 & 62 \\
3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 & 55 & 59 & 63 \\
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64
\end{array}\right]
$$

- For any i-mode unfolding, there is a permutation Π_{i} such that

$$
A_{i^{2}}=A_{i} \Pi_{i}
$$

with M. Beaupère and D. Frenkiel

Partitioned unfolding

- Consider 1 -mode unfolding of the $2 \times 2 \times 2$ processor tensor,

- Followed on each processor by 1-mode unfolding of its subtensor,
$A_{12}=\left[\begin{array}{llll|llll|llll|llll}1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64\end{array}\right]$
- The 1 -mode unfolding of \mathcal{A} is:

$$
A_{1}=\left[\begin{array}{llllllllllllllll}
1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 & 49 & 53 & 57 & 61 \\
2 & 6 & 10 & 14 & 18 & 22 & 26 & 30 & 34 & 38 & 42 & 46 & 50 & 54 & 58 & 62 \\
3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 & 55 & 59 & 63 \\
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64
\end{array}\right]
$$

- For any i-mode unfolding, there is a permutation Π_{i} such that

$$
A_{i^{2}}=A_{i} \Pi_{i}
$$

with M. Beaupère and D. Frenkiel

Parallel HO-RRQR

HO-RRQR for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_{1}, \ldots k_{d}$
For every partitioned unfolding $A_{i 2}$ along mode $i=1 \ldots d$, compute factor matrices $Q_{i} \in \mathbb{R}^{n \times k_{i}}$ using 2D tournament pivoting (2D TP) on $A_{i 2}^{T}$
\square

Return: $\tilde{\mathcal{A}}=\mathcal{C} \times_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times_{1} Q_{1} Q_{1}{ }^{\prime}$

Parallel HO-RRQR

HO-RRQR for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_{1}, \ldots k_{d}$
2. For every partitioned unfolding $A_{i^{2}}$ along mode $i=1 \ldots d$, compute factor matrices $Q_{i} \in \mathbb{R}^{n \times k_{i}}$ using 2D tournament pivoting (2D TP) on $A_{i^{2}}^{T}$:
$A_{1} 2=\left[\begin{array}{llll|llll|llll|llll}1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64\end{array}\right] \rightarrow 2 D \rightarrow T P\left[\begin{array}{ll}61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4\end{array}\right]$

Parallel HO-RRQR

HO-RRQR for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_{1}, \ldots k_{d}$
2. For every partitioned unfolding $A_{i^{2}}$ along mode $i=1 \ldots d$, compute factor matrices $Q_{i} \in \mathbb{R}^{n \times k_{i}}$ using 2D tournament pivoting (2D TP) on $A_{i^{2}}^{T}$:
$A_{1} 2=\left[\begin{array}{llll|llll|llll|llll}1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64\end{array}\right] \rightarrow 2 D \quad T P\left[\begin{array}{ll}61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4\end{array}\right]$
3. $\mathcal{C}=\mathcal{A} \times_{1} Q_{1}^{T} \times_{2} Q_{2}^{T} \ldots \times_{d} Q_{d}^{T}$
4. Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times{ }_{1} Q_{1} Q_{1}^{T} \ldots \times_{d} Q_{d} Q_{d}^{T}$

Parallel HO-RRQR: cost and bounds

HO-RRQR for computing a rank $-\left(k_{1}, \ldots k_{d}\right)$ approximation

1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_{1}, \ldots k_{d}$
2. For every partitioned unfolding $A_{i^{2}} \in \mathbb{R}^{n \times n^{d-1}}, i=1 \ldots$. , compute factor matrices $Q_{i} \in \mathbb{R}^{n \times k_{i}}$ using 2D tournament pivoting (2D TP) on $A_{i 2}^{T}$: \# messages $\approx d \log _{2}^{2} P$
Conjecture: can be decreased to $\log _{2}^{2} P$ with a unique reduction tree used by 2D TP on the different unfoldings
3. $\mathcal{C}=\mathcal{A} \times{ }_{1} Q_{1}^{T} \times_{2} Q_{2}^{T} \ldots \times_{d} Q_{d}^{T}$
4. Return: $\tilde{\mathcal{A}}=\mathcal{C} \times{ }_{1} Q_{1} \ldots \times_{d} Q_{d}=\mathcal{A} \times{ }_{1} Q_{1} Q_{1}^{T} \ldots \times_{d} Q_{d} Q_{d}^{T}$

Error bound:
If factor matrices Q_{i} are obtained from 2D TP on $A_{i 2}^{T}$, then:

$$
\begin{gathered}
\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F} \leq \sqrt{1+\max _{i}\left(F_{i, 2 D-T P}^{2}\left(n-k_{i}\right)\right)} \sqrt{d}\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}, \text { where } \\
F_{i, 2 D-T P} \leq P k_{i}^{\log _{2} P+1 / 2} f^{(1-1 / d)} \log _{2} P+1
\end{gathered}
$$

$\underset{36 \text { or } 42}{\text { where }} \mathcal{A}_{\text {best }}$ is the best rank- $k_{1} \ldots . . k_{d}$ approximation of \mathcal{A}.

Parallel HO-RRQR: numerical experiments

Isosurface view of $256 \times 256 \times 256$ aneurism:

Original tensor

Core tensor $64 \times 64 \times 64$, 2D TP, 8 procs

Reconstructed image from core tensor $64 \times 64 \times 64$

- Image source: https://tc18.org/3D_images.html x-ray scan of the arteries of the right half of a human head with aneurism.

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

Open questions for tensors

Many open questions - only a few recalled
Communication bounds few existing results

- Symmetric tensor contractions [Solomonik et al, 18]
- Bound for volume of communication for matricized tensor times Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

- Algorithms as DMRG are intrinsically sequential in the number of modes
- Dynamically adapt the rank to a given error
- Approximation of high rank tensors
\square but low rank in large parts, e.g. due to stationarity in the model the tensor describes

Prospects for the future

- Tensors in high dimensions
\square ERC Synergy project Extreme-scale Mathematically-based Computational Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: O. Balabanov, M. Beaupère, S. Cayrols, J. Demmel, D. Frenkiel, A. Rusciano.

Funding:

- This project has received funding from the European Commission under the Horizon 2020 research and innovation programme Grant agreement No. 810367
- H2020 NLAFET project, ANR

References

Results from following papers:

1. Papers in preparation with O. Balabanov, M. Beaupère, D. Frenkiel on 2D tournament pivoting, parallel HOSVD.
2. J. Demmel, L. Grigori, A. Rusciano, An improved analysis and unified perspective on deterministic and randomized low rank matrix approximations, October 2019.
3. V. Ehrlacher, L. Grigori, D. Lombardi, H. Song, Adaptive hierarchical subtensor partitioning for tensor compression, SIAM J. Sci. Comput., 2020, in revision.
4. L. Grigori, S. Cayrols, and J. Demmel, Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, SIAM J. Sci. Comput., 40 (2):C181-C209, 2018.
5. J. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication-Avoiding Rank-Revealing $Q R$ Factorization with Column Pivoting, SIAM Journal on Matrix Analysis and Applications, Vol. 36, No. 1, pp. 55-89, 2015.

References (1)

Boutsidis, C. and Gittens, A. (2013).
Improved matrix algorithms via the subsampled randomized hadamard transform.
SIAM J. Matrix Analysis Applications, 34:1301-1340.
Businger, P. A. and Golub, G. H. (1965).
Linear least squares solutions by Householder transformations.
Numer. Math., 7:269-276.
Eckart, C. and Young, G. (1936).
The approximation of one matrix by another of lower rank.
Psychometrika, 1:211-218.
Golub, G. H. (1965).
Numerical methods for solving linear least squares problems.
Numer. Math., 7:206-216.
Gu, M. and Eisenstat, S. C. (1996).
Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM J. Sci. Comput., 17(4):848-869.
Hastad, J. (1990).
Tensor rank is NP-complete.
J. of Algorithms, 11:644-654.

Tucker, L. R. (1963).
Implications of factor analysis of three-way matrices for measurement of change.
In Harris, C. W., editor, Problems in Measuring Change, pages 122-137. University of Wisconsin Press.

[^0]: with M. Beaupère, Inria

[^1]: with M. Beaupère, Inria

