Communication avoiding low rank matrix approximation, a unified perspective on deterministic and randomized approaches

L. Grigori and collaborators

Alpines Inria Paris and LJLL, Sorbonne University

Slides available at https://who.rocq.inria.fr/Laura.Grigori/Slides/ENLA20_Grigori.pdf

July 8, 2020

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

The communication challenge

- Cost of data movement dominates the cost of arithmetics: time and energy consumption
 - Per socket flop performance continues to increase: increase of number of cores per socket and/or number of flops per cycle
 2008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket DP)
 2020 A64FX 2.2GHz×48 cores (3.37 TFlops/socket DP)¹ 66x in 12 years
 - □ Interconnect latency: few μs MPI latency

Our focus: increasing scalability by reducing/minimizing coummunication while controlling the loss of information in low rank matrix (and tensor) approximation.

¹ Fugaku supercomputer https://www.top500.org/system/179807/

Low rank matrix approximation

Problem: given $A \in \mathbb{R}^{m \times n}$, compute rank-k approximation ZW^T , where $Z \in \mathbb{R}^{m \times k}$ and $W^T \in \mathbb{R}^{k \times n}$.

- Problem ubiquitous in scientific computing and data analysis
 - column subset selection, linear dependency analysis, fast solvers for integral equations, H-matrices,
 - □ principal component analysis, image processing, data in high dimensions, ...

Low rank matrix approximation

Best rank-k approximation $A_{opt,k} = \hat{U}_k \Sigma_k \hat{V}_k^T$ is rank-k truncated SVD of A [Eckart and Young, 1936], with $\sigma_{max}(A) = \sigma_1(A) \ge \ldots \ge \sigma_{min}(A) = \sigma_{min(m,n)}(A)$ $\min_{rank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_2 = ||A - A_{opt,k}||_2 = \sigma_{k+1}(A)$

$$\min_{\operatorname{rank}(\tilde{A}_k) \leq k} ||A - \tilde{A}_k||_F = ||A - A_{opt,k}||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$

Image, size 1190×1920

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\# \text{ messages} = \Omega \left(\log_2 P \right).$

Low rank matrix approximation: trade-offs

Communication optimal if computing a rank-k approximation on P processors requires $\# \text{ messages} = \Omega \left(\log_2 P \right).$

Idea underlying many algorithms

Compute $\tilde{A}_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{so}$ is obtained as:

1. Construct a low dimensional subspace $X = range(AV_1)$, $V_1 \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$\|A - \mathcal{P}^{o}A\|_{2} \leq \gamma \sigma_{k+1}(A), \text{ for some } \gamma \geq 1,$$

where Q_1 is orth. basis of (AV_1)

$$\mathcal{P}^{o} = AV_{1}(AV_{1})^{+} = Q_{1}Q_{1}^{T}$$
, or equiv $\mathcal{P}^{o}a_{j} := \arg\min_{x \in X} \|x - a_{j}\|_{2}$

2. Select a semi-inner product $\langle U_1 \cdot, U_1 \cdot \rangle_2$, $U_1 \in \mathbb{R}^{l' \times m}$ $l' \ge l$, define

 $\mathcal{P}^{so} = AV_1(U_1AV_1)^+ U_1, \text{ or equiv } \mathcal{P}^{so}a_j := \arg\min_{x \in X} \|U_1(x - a_j)\|_2$

with O. Balabanov, 2020

Idea underlying many algorithms

Compute $\tilde{A}_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{so}$ is obtained as:

1. Construct a low dimensional subspace $X = range(AV_1)$, $V_1 \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$\|A - \mathcal{P}^{o}A\|_{2} \leq \gamma \sigma_{k+1}(A), \text{ for some } \gamma \geq 1,$$

where Q_1 is orth. basis of (AV_1)

$$\mathcal{P}^o = AV_1(AV_1)^+ = Q_1Q_1^T$$
, or equiv $\mathcal{P}^o a_j := \arg\min_{x \in X} \|x - a_j\|_2$

2. Select a semi-inner product $\langle U_1 \cdot, U_1 \cdot \rangle_2$, $U_1 \in \mathbb{R}^{l' \times m}$ $l' \ge l$, define

$$\mathcal{P}^{so} = AV_1(U_1AV_1)^+ U_1$$
, or equiv $\mathcal{P}^{so}a_j := \arg\min_{x \in X} \|U_1(x - a_j)\|_2$

with O. Balabanov, 2020

Given $A \in \mathbb{R}^{m \times n}$, $U = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} \in \mathbb{R}^{m,m}$, $V = \begin{pmatrix} V_1 & V_2 \end{pmatrix} \in \mathbb{R}^{n,n}$, U, Vinvertible, $U_1 \in \mathbb{R}^{l' \times m}$, $V_1 \in \mathbb{R}^{n \times l}$, $k \le l \le l'$.

$$UAV = \bar{A} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix}$$
$$= \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{+} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix}$$

where $\bar{A}_{11} \in \mathbb{R}^{I',I}$, $\bar{A}_{11}^+ \bar{A}_{11} = I$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21} \bar{A}_{11}^+ \bar{A}_{12}$.

Generalized LU computes the approximation

$$\begin{aligned} \tilde{A}_{glu} &= U^{-1} \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^+ \end{pmatrix} (\bar{A}_{11} \quad \bar{A}_{12}) V^{-1} \\ &= [U_1^+ (I - (U_1 A V_1) (U_1 A V_1)^+) + (A V_1) (U_1 A V_1)^+] [U_1 A] \end{aligned}$$

with J. Demmel and A. Rusciano, 2019

Given U_1, A, V_1, Q_1 orth. basis of $(AV_1), k \le l < l'$, rank-k approximation, $\tilde{A}_{glu} = [U_1^+(l - (U_1AV_1)(U_1AV_1)^+) + (AV_1)(U_1AV_1)^+][U_1A]$

Unification for many existing algorithms: If $k \leq l = l'$ and $U_1 = Q_1^T$, then $\tilde{A}_{glu} = Q_1 Q_1^T A = \mathcal{P}^{\circ} A$ If $k \leq l = l'$ then $\tilde{A}_{glu} = AV_1(U_1AV_1)^{-1}U_1A = \mathcal{P}^{so} A$ Approximation result: If $k \leq l < l'$,

$$\|A - \mathcal{P}^{so}A\|_F^2 = \|A - \tilde{A}_{glu}\|_F^2 + \|\tilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Given U_1, A, V_1, Q_1 orth. basis of $(AV_1), k \le l < l'$, rank-k approximation, $\tilde{A}_{glu} = [U_1^+(l - (U_1AV_1)(U_1AV_1)^+) + (AV_1)(U_1AV_1)^+][U_1A]$

Unification for many existing algorithms:

If $k \leq l = l'$ and $U_1 = Q_1^T$, then $\tilde{A}_{glu} = Q_1 Q_1^T A = \mathcal{P}^o A$ If $k \leq l = l'$ then $\tilde{A}_{glu} = AV_1(U_1AV_1)^{-1}U_1A = \mathcal{P}^{so}A$ Approximation result: If $k \leq l < l'$,

$$\|A - \mathcal{P}^{so}A\|_F^2 = \|A - \tilde{A}_{glu}\|_F^2 + \|\tilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Given U_1, A, V_1, Q_1 orth. basis of $(AV_1), k \le l < l'$, rank-k approximation, $\tilde{A}_{glu} = [U_1^+(l - (U_1AV_1)(U_1AV_1)^+) + (AV_1)(U_1AV_1)^+][U_1A]$

Unification for many existing algorithms:

If
$$k \leq l = l'$$
 and $U_1 = Q_1^T$, then $\tilde{A}_{glu} = Q_1 Q_1^T A = \mathcal{P}^{\circ} A$
If $k \leq l = l'$ then $\tilde{A}_{glu} = AV_1(U_1AV_1)^{-1}U_1A = \mathcal{P}^{so}A$
Approximation result: If $k \leq l < l'$,

$$\|A - \mathcal{P}^{so}A\|_F^2 = \|A - ilde{A}_{glu}\|_F^2 + \| ilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Desired properties of low rank matrix approximation

1. \tilde{A}_k is (k, γ) low-rank approximation of A if it satisfies

$$\|A - \widetilde{A}_k\|_2 \leq \gamma \sigma_{k+1}(A), ext{ for some } \gamma \geq 1.$$

→ Focus of both deterministic and randomized approaches 2. \tilde{A}_k is (k, γ) spectrum preserving of A if

$$1 \leq rac{\sigma_i(A)}{\sigma_i(ilde{A}_k)} \leq \gamma$$
, for all $i = 1, \dots, k$ and some $\gamma \geq 1$

 \rightarrow Focus of deterministic approaches 3. \tilde{A}_k is (k, γ) kernel approximation of A if

$$1 \leq rac{\sigma_j(A - ilde{A}_k)}{\sigma_{k+j}(A)} \leq \gamma, ext{ for all } i = 1, \dots, \min(m, n) - k ext{ and some } \gamma \geq 1$$

 \rightarrow Focus of deterministic approaches

Goal γ is a low degree polynomial in k and the number of columns and/or rows of A for some of the most efficient algorithms.

Desired properties of low rank matrix approximation

1. \tilde{A}_k is (k, γ) low-rank approximation of A if it satisfies

$$\|A - \tilde{A}_k\|_2 \leq \gamma \sigma_{k+1}(A), \text{ for some } \gamma \geq 1.$$

 \rightarrow Focus of both deterministic and randomized approaches 2. \tilde{A}_k is (k, γ) spectrum preserving of A if

$$1 \leq rac{\sigma_i(\mathcal{A})}{\sigma_i(ilde{\mathcal{A}}_k)} \leq \gamma, ext{ for all } i = 1, \dots, k ext{ and some } \gamma \geq 1$$

→ Focus of deterministic approaches 3. \tilde{A}_k is (k, γ) kernel approximation of A if

$$1 \leq rac{\sigma_j(A - ilde{A}_k)}{\sigma_{k+j}(A)} \leq \gamma, ext{ for all } i = 1, \dots, \min(m, n) - k ext{ and some } \gamma \geq 1$$

\rightarrow Focus of deterministic approaches

Goal γ is a low degree polynomial in k and the number of columns and/or rows of A for some of the most efficient algorithms.

Desired properties of low rank matrix approximation

1. \tilde{A}_k is (k, γ) low-rank approximation of A if it satisfies

$$\|A - \tilde{A}_k\|_2 \leq \gamma \sigma_{k+1}(A), \text{ for some } \gamma \geq 1.$$

 \rightarrow Focus of both deterministic and randomized approaches 2. \tilde{A}_k is (k, γ) spectrum preserving of A if

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\tilde{A}_k)} \leq \gamma$$
, for all $i = 1, \dots, k$ and some $\gamma \geq 1$

 \rightarrow Focus of deterministic approaches 3. \tilde{A}_k is (k, γ) kernel approximation of A if

$$1 \leq rac{\sigma_j(A- ilde{A}_k)}{\sigma_{k+j}(A)} \leq \gamma, ext{ for all } i=1,\ldots,\min(m,n)-k ext{ and some } \gamma \geq 1$$

\rightarrow Focus of deterministic approaches

Goal γ is a low degree polynomial in k and the number of columns and/or rows of A for some of the most efficient algorithms.

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

Strong rank revealing QR (RRQR) factorization

Given $A \in \mathbb{R}^{m \times n}$, consider the QRCP decomposition with $R_{11} \in \mathbb{R}^{k \times k}$, [Golub, 1965, Businger and Golub, 1965],

$$AV = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix},$$

$$\tilde{A}_{qr} = Q_1 \begin{pmatrix} R_{11} & R_{12} \end{pmatrix} V^{-1} = Q_1 Q_1^T A = \mathcal{P}^{\circ} A$$

• [Gu and Eisenstat, 1996] show that given k and f, there exists permutation $V \in \mathbb{R}^{n \times n}$ such that the factorization satisfies,

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \gamma(n,k), \quad \gamma(n,k) = \sqrt{1 + f^2 k(n-k)}$$
$$||R_{11}^{-1}R_{12}||_{max} \leq f$$

for $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$, and $\sigma_j(R_{22}) = \sigma_j(A - \tilde{A}_{qr})$

• Cost: 4mnk (QRCP) plus O(mnk) flops and $O(k \log_2 P)$ messages.

 $\rightarrow \tilde{A}_{qr}$ with strong RRQR is $(k, \gamma(n, k))$ spectrum preserving and kernel approximation of $A_{12 \text{ of } 42}$

1D tournament pivoting (1Dc-TP)

ID column block partition of A, select k cols from each block with strong RRQR

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ \parallel & \parallel & \parallel & \parallel \\ (Q_{00}R_{00}V_{00}^{T} & Q_{10}R_{10}V_{10}^{T} & Q_{20}R_{20}V_{20}^{T} & Q_{30}R_{30}V_{30}^{T}) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ I_{00} & I_{10} & I_{20} & I_{30} \end{pmatrix}$$

Reduction tree to select k cols from sets of 2k cols,

$$\begin{pmatrix} A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \| & \| \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{pmatrix}$$

 $A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}V_{02}^{T} \rightarrow I_{02}$

Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

ID column block partition of A, select k cols from each block with strong RRQR

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ \parallel & \parallel & \parallel & \parallel \\ (Q_{00} R_{00} V_{00}^{T} & Q_{10} R_{10} V_{10}^{T} & Q_{20} R_{20} V_{20}^{T} & Q_{30} R_{30} V_{30}^{T}) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ I_{00} & I_{10} & I_{20} & I_{30} \end{pmatrix}$$

Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \parallel & \parallel \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

 $A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}V_{02}^{T} \rightarrow I_{02}$

Return selected columns $A(:, I_{02})$

1D tournament pivoting (1Dc-TP)

Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \parallel & \parallel \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}V_{02}^{T} \to I_{02}$$

• Return selected columns $A(:, I_{02})$

[Demmel, LG, Gu, Xiang'15]

1D tournament pivoting (1Dc-TP)

Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \| & \| \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02} R_{02} V_{02}^{T} \to I_{02}$$

• Return selected columns $A(:, I_{02})$

[Demmel, LG, Gu, Xiang'15]

1D tournament pivoting (1Dc-TP)

- Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \parallel & \parallel \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

$$A(:, I_{01} \cup I_{11}) = Q_{02} R_{02} V_{02}^{T} \to I_{02}$$

Return selected columns $A(:, I_{02})$

[Demmel, LG, Gu, Xiang'15]

1D tournament pivoting (1Dc-TP)

- 1D column block partition of *A*, select *k* cols from each block with strong RRQR $\begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ \| & \| & \| & \| \\ (Q_{00}R_{00}V_{00}^{T} & Q_{10}R_{10}V_{10}^{T} & Q_{20}R_{20}V_{20}^{T} & Q_{30}R_{30}V_{30}^{T}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$
- Reduction tree to select k cols from sets of 2k cols,

$$\begin{array}{cccc} (A(:, I_{00} \cup I_{10}) & A(:, I_{20} \cup I_{30}); \\ \| & \| \\ (Q_{01}R_{01}V_{01}^{T} & Q_{11}R_{11}V_{11}^{T}) \\ \downarrow & \downarrow \\ I_{01} & I_{11} \end{array}$$

 $A(:, I_{01} \cup I_{11}) = Q_{02}R_{02}V_{02}^{T} \rightarrow I_{02}$

Return selected columns A(:, I₀₂) [Demmel, LG, Gu, Xiang'15]

Row block partition A as e.g.

$$A = \underbrace{\begin{pmatrix} A_{11} \\ A_{21} \\ A_{31} \\ A_{41} \end{pmatrix}}_{A_{1}} = \begin{pmatrix} Q_{00}R_{00}V_{00}^{-1} \\ Q_{10}R_{10}V_{10}^{-1} \\ Q_{20}R_{20}V_{20}^{-1} \\ Q_{30}R_{30}V_{30}^{-1} \end{pmatrix} \xrightarrow{\rightarrow \text{ select } k \text{ cols } I_{10} \\ \rightarrow \text{ select } k \text{ cols } I_{20} \\ \rightarrow \text{ select } k \text{ cols } I_{30} \\ \rightarrow \text{ select } k \text{ cols }$$

$$\frac{\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10})}{\begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}V_{01}^{-1} \\ Q_{11}R_{11}V_{11}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01}$$

$$A(:, I_{01} \cup I_{11}) = \left(Q_{02}R_{02}V_{02}^{-1}\right) \rightarrow I_{02}$$

A11 100

Row block partition A as e.g.

$$A = \begin{pmatrix} A_{11} \\ A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix} = \begin{pmatrix} Q_{00}R_{00}V_{00}^{-1} \\ Q_{10}R_{10}V_{10}^{-1} \\ Q_{20}R_{20}V_{20}^{-1} \\ Q_{30}R_{30}V_{30}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} \text{select } k \text{ cols } I_{00} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{10} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{20} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} K \text{ select } K \text{ select } K \text{ select$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}V_{01}^{-1} \\ Q_{11}R_{11}V_{11}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01} \\ \rightarrow I_{11} \end{pmatrix}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}V_{02}^{-1}) \rightarrow I_{02}$$

Return columns A(:, I₀₂)

with M. Beaupère, Inria

Row block partition A as e.g.

$$A = \begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix} = \begin{pmatrix} Q_{00} R_{00} V_{00}^{-1} \\ Q_{10} R_{10} V_{10}^{-1} \\ Q_{20} R_{20} V_{20}^{-1} \\ Q_{30} R_{30} V_{30}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} \text{select } k \text{ cols } I_{00} \\ \rightarrow \text{ select } k \text{ cols } I_{10} \\ \rightarrow \text{ select } k \text{ cols } I_{20} \\ \rightarrow \text{ select } k \text{ cols } I_{20} \\ \rightarrow \text{ select } k \text{ cols } I_{30} \end{pmatrix}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}V_{01}^{-1} \\ Q_{11}R_{11}V_{11}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{11}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}V_{02}^{-1}) \rightarrow I_{02}$$

Return columns A(:, I₀₂)

with M. Beaupère, Inria

Row block partition A as e.g.

$$A = \underbrace{\begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix}}_{Q_{10}R_{10}} = \begin{pmatrix} Q_{00}R_{00}V_{00}^{-1} \\ Q_{10}R_{10}V_{10}^{-1} \\ Q_{20}R_{20}V_{20}^{-1} \\ Q_{30}R_{30}V_{30}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} \text{select } k \text{ cols } I_{00} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{20} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{20} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ select } k \text{ cols } I_{30} \\ \xrightarrow{\rightarrow} \text{ s$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}V_{01}^{-1} \\ Q_{11}R_{11}V_{11}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01} \\ \xrightarrow{\rightarrow} I_{11}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}V_{02}^{-1}) \rightarrow I_{02}$$

Return columns A(:, I₀₂)

with M. Beaupère, Inria

Row block partition A as e.g.

$$A = \begin{pmatrix} A_{11} \\ \hline A_{21} \\ \hline A_{31} \\ \hline A_{41} \end{pmatrix} = \begin{pmatrix} Q_{00} R_{00} V_{00}^{-1} \\ Q_{10} R_{10} V_{10}^{-1} \\ Q_{20} R_{20} V_{20}^{-1} \\ Q_{30} R_{30} V_{30}^{-1} \end{pmatrix} \xrightarrow{\text{oselect k cols } I_{00}} A \text{ select k cols } I_{20} \\ \rightarrow \text{ select k cols } I_{20} \\ \rightarrow \text{ select k cols } I_{30} \end{cases}$$

Apply 1D-TP on sets of 2k sub-columns

$$\frac{\begin{pmatrix} \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} (:, I_{00} \cup I_{10}) \\ \hline \begin{pmatrix} A_{31} \\ A_{41} \end{pmatrix} (:, I_{20} \cup I_{30}) \end{pmatrix}}{(:, I_{20} \cup I_{30})} = \begin{pmatrix} Q_{01}R_{01}V_{01}^{-1} \\ Q_{11}R_{11}V_{11}^{-1} \end{pmatrix} \xrightarrow{\rightarrow} I_{01} \\ \xrightarrow{\rightarrow} I_{11}$$

$$A(:, I_{01} \cup I_{11}) = (Q_{02}R_{02}V_{02}^{-1}) \rightarrow I_{02}$$

Return columns A(:, I₀₂)

with M. Beaupère, Inria

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow & \downarrow & \downarrow \\ I_{00} & I_{10} & I_{20} & I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

 $A(:, I_{00})$ $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

• Return columns selected by 1Dc-TP $A(:, I_{02})$ with M. Beaupère, Inria 15 of 42

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \quad \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \quad \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \quad \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ I_{00} \qquad I_{10} \qquad I_{20} \qquad I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

 $A(:, I_{00})$ $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

Return columns selected by 1Dc-TP A(:, I₀₂) with M. Beaupère, Inria 15 of 42

• A distributed on $P_r \times P_c$ procs as e.g.

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \end{pmatrix}$$

Select k cols from each column block by 1Dr-TP,

$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \quad \begin{pmatrix} A_{12} \\ A_{22} \end{pmatrix} \quad \begin{pmatrix} A_{13} \\ A_{23} \end{pmatrix} \quad \begin{pmatrix} A_{14} \\ A_{24} \end{pmatrix} \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ I_{00} \qquad I_{10} \qquad I_{20} \qquad I_{30} \end{pmatrix}$$

Apply 1Dc-TP on sets of k selected cols,

$$A(:, I_{00})$$
 $A(:, I_{10})$ $A(:, I_{20})$ $A(:, I_{30})$

Return columns selected by 1Dc-TP A(:, I₀₂) with M. Beaupère, Inria ^{15 of 42}

CA-RRQR - bounds for 2D tournament pivoting

Bounds when selecting k columns from $A \in \mathbb{R}^{m \times n}$ distributed on $P = P_r \times P_c$ processors by using 2D tournament pivoting:

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq \gamma_1(n,k), \gamma_1(n,k) = \sqrt{1 + F_{2D-TP}^2(n-k)},$$
$$||(R_{11}^{-1}R_{12})(:,l)||_2 \leq F_{2D-TP}$$
for $1 \leq i \leq k, \ 1 \leq j \leq \min(m, n) - k, \ 1 \leq l \leq n-k.$

1Dr-TP with binary tree of depth log₂ P_r followed by 1Dc-TP with binary tree of depth log₂ P_c,

$$F_{2D-TP} \leq Pk^{\log_2 P + 1/2} f^{\log_2 P_c + 1}$$

• Cost: $O(\frac{mnk}{P})$ flops, $(1 + log_2P_r)log_2P$ messages , $O(\frac{mk}{P_r}\log_2P_c)$ words $\rightarrow \tilde{A}_{qr}$ with 2D TP is $(k, \gamma_1(n, k))$ spectrum preserving and kernel approximation of A

Numerical experiments

Original image, size 1190×1920

Rank-10 approx, 2D TP 8 \times 8 procs

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Singular values and ratios

Rank-50 approx, 2D TP 8×8 procs

LU_CRTP: LU with column/row tournament pivoting

Compute rank-k approx. \tilde{A}_{lu} of $A \in \mathbb{R}^{m \times n}$, k = l = l',

$$\tilde{A}_{lu} = \begin{pmatrix} \bar{A}_{11} \\ \bar{A}_{21} \end{pmatrix} \bar{A}_{11}^{-1} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} = AV_1 (U_1 A V_1)^{-1} U_1 A = \mathcal{P}^{so} A \qquad (1)$$

1. Select k columns by using TP, bounds for s.v. governed by $\gamma_1(n,k)$

$$AV = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$$

2. Select k rows from $Q_1 \in \mathbb{R}^{m \times k}$ by using TP,

$$U_1 Q_1 = \begin{pmatrix} ar{Q}_{11} \\ ar{Q}_{21} \end{pmatrix}, ext{ hence } ar{A}_{11} = ar{Q}_{11} R_{11},$$

s.t. $||\bar{Q}_{21}\bar{Q}_{11}^{-1}||_{max}$ is bounded and bounds for s.v. governed by $\gamma_2(m,k)$,

$$rac{1}{\gamma_2(m,k)} \quad \leq \quad \sigma_i(ar{Q}_{11}) \leq 1.$$

with S. Cayrols, J. Demmel, 2018
Deterministic guarantees for rank-k approximation

CA LU_CRTP with column/row selection with binary tree tournament pivoting:

$$\begin{split} 1 &\leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(\bar{A}_{11}))}{\sigma_{k+j}(A)} &\leq \sqrt{(1 + F_{TP}^2(n-k))} / \sigma_{min}(\bar{Q}_{11}) \\ &\leq \sqrt{(1 + F_{TP}^2(n-k))(1 + F_{TP}^2(m-k))} \\ &= \gamma_1(n,k) \gamma_2(m,k), \end{split}$$

for any $1 \leq i \leq k$, and $1 \leq j \leq \min(m, n) - k$, $U_1 Q_1 = \begin{pmatrix} Q_{11} \\ \bar{Q}_{21} \end{pmatrix}$, and $\sigma_j(A - \tilde{A}_{lu}) = \sigma_j(S(\bar{A}_{11})).$

 $\rightarrow \tilde{A}_{lu}$ is $(k, \gamma_1(n, k)\gamma_2(m, k))$ spectrum preserving and kernel approximation of A

Performance results

Selection of 256 columns by tournament pivoting

- Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices:

dimension at leaves on 32 procs

■ Parab_fem: 528825 × 528825

 528825×16432

■ Mac_econ: 206500 × 206500

 206500×6453

	Time	Time leaves		Nı	umber of	MPI p	processes	5	
	2k cols	32procs	16	32	64	128	256	512	1024
		SPQR + dGEQP3							
Parab_fem	0.26	0.26 + 1129	46.7	24.5	13.7	8.4	5.9	4.8	4.4
Mac_econ	0.46	25.4 + 510	132.7	86.3	111.4	59.6	27.2	-	-

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

Typical randomized SVD

- Compute an approximate basis for the range of A ∈ ℝ^{m×n} Sample V₁ ∈ ℝ^{n×l}, l = p + k, with independent mean-zero, unit-variance Gaussian entries. Compute Y = AV₁, Y ∈ ℝ^{m×l} expected to span column space of A.
 Cost of multiplying AV₁: 2mnl flops
- 2. With Q_1 being orthonormal basis of Y, approximate A as:

$$\tilde{A}_k = Q_1 Q_1^T A = \mathcal{P}^o A$$

• Cost of multiplying $Q_1^T A$: 2mnl flops

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Cost of randomized SVD for dense matrices

\rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying AV_1 and $Q_1^T A$ need to be reduced:

- 1. Take V_1 a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), AV_1 costs $2mn \log_2(l+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.
- 2. Use a different projector than \mathcal{P}^{o} , e.g. pick U_{1} and compute

$$\tilde{A}_k = \mathcal{P}^{so}A = AV_1(U_1AV_1)^+ U_1A$$

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time.

Cost of randomized SVD for dense matrices

 \rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying AV_1 and $Q_1^T A$ need to be reduced:

- 1. Take V_1 a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), AV_1 costs $2mn \log_2(l+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.
- 2. Use a different projector than \mathcal{P}^o , e.g. pick U_1 and compute

$$\tilde{A}_k = \mathcal{P}^{so}A = AV_1(U_1AV_1)^+ U_1A$$

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time.

Cost of randomized SVD for dense matrices

 \rightarrow To have lower arithmetic complexity than deterministic approaches, the costs of multiplying AV_1 and $Q_1^T A$ need to be reduced:

- 1. Take V_1 a fast Johnson-Lindenstrauss transform, e.g. a subsampled randomized Hadamard transform (SRHT), AV_1 costs $2mn \log_2(l+1)$ References: Ailon and Chazelle'06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.
- 2. Use a different projector than \mathcal{P}^o , e.g. pick U_1 and compute

$$\tilde{A}_k = \mathcal{P}^{so}A = AV_1(U_1AV_1)^+U_1A$$

Examples: randomized SVD via row extraction, Clarkson and Woodruff approximation in input sparsity time.

Given U_1, A, V_1, Q_1 orth. basis of (AV_1) , $k \leq l = l'$, rank-k approximation,

~			-	
Λ	A1 / /			(D) 50 A
$A_{i} =$	AV_{1}	$I_{1} A V_{1}$	1 - 1 + 4	$- \nu^{-2} \Delta$
$n_k - $	/ 1 / 1			- / /
	- 1	/		

Deterministic algorithms V_1 column permutation and	Randomized algorithms [*] V_1 random matrix and
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1 = Q_1^{ op}$, $ ilde{A}_k = Q_1 Q_1^{ op} A = \mathcal{P}^{o} A$	$U_1 = Q_1^{ op}$, $ ilde{A}_k = Q_1 Q_1^{ op} A = \mathcal{P}^{o} A$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection

with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Given U_1, A, V_1, Q_1 orth. basis of (AV_1) , $k \leq l = l'$, rank-k approximation,

Ã_	$\Delta M = 0$	II AVI	$-1 \mu \Lambda$	- DSO A
$A_k =$	AV_1	$U_1 A V_1$	$) U_1 A$	$= P^{*}A$

Deterministic algorithms	Randomized algorithms*
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1=Q_1^{\prime}$, $A_k=Q_1Q_1^{\prime}A=\mathcal{P}^oA$	$U_1=Q_1^{\prime}$, $A_k=Q_1Q_1^{\prime}A=\mathcal{P}^oA$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection
(a.k.a. rank revealing LU)	(a.k.a. randomized SVD via Row extraction)
U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$	U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{\mathcal{Q}}_{11} \ ar{\mathcal{Q}}_{21} \end{pmatrix}$
$ ar{Q}_{21}ar{Q}_{11}^{-1} _{\scriptscriptstyle max}$ is bounded	$ ar{Q}_{21}ar{Q}_{11}^{-1} _{max}$ bounded

with J. Demmel, A. Rusciano * For a review, see Halko et al., SIAM Review 11

Given U_1, A, V_1, Q_1 orth. basis of (AV_1) , $k \leq l = l'$, rank-k approximation,

|--|

Deterministic algorithms	Randomized algorithms*
V_1 column permutation and	V_1 random matrix and
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1 = Q_1^{T}$, $ ilde{A}_k = Q_1 Q_1^{T} A = \mathcal{P}^o A$	$U_1 = Q_1^{T}$, $ ilde{A}_k = Q_1 Q_1^{T} A = \mathcal{P}^{o} A$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection
(a.k.a. rank revealing LU)	(a.k.a. randomized SVD via Row extraction)
U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$	U_1 row permutation s.t. $U_1Q_1=egin{pmatrix}ar{Q}_{11}\ar{Q}_{21}\end{pmatrix}$
$ ar{Q}_{21}ar{Q}_{11}^{-1} _{max}$ is bounded	$ ar{Q}_{21}ar{Q}_{11}^{-1} _{\mathit{max}}$ bounded
	Randomized LU approximation
	U_1 random matrix
with I Demmel A Rusciano * For a revi	ew see Halko et al SIAM Review 11

Given U_1, A, V_1, Q_1 orth. basis of (AV_1) , $k \leq l = l'$, rank-k approximation,

|--|

Deterministic algorithms	Randomized algorithms*
V_1 column permutation and	V_1 random matrix and
QR with column selection	Randomized QR
(a.k.a. strong rank revealing QR)	(a.k.a. randomized SVD)
$U_1 = Q_1^{T}$, $ ilde{A}_k = Q_1 Q_1^{T} A = \mathcal{P}^o A$	$U_1 = Q_1^{T}$, $ ilde{A}_k = Q_1 Q_1^{T} A = \mathcal{P}^o A$
$ R_{11}^{-1}R_{12} _{max}$ is bounded	
LU with column/row selection	Randomized LU with row selection
(a.k.a. rank revealing LU)	(a.k.a. randomized SVD via Row extraction)
U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$	U_1 row permutation s.t. $U_1 Q_1 = egin{pmatrix} ar{Q}_{11} \ ar{Q}_{21} \end{pmatrix}$
$ ar{Q}_{21}ar{Q}_{11}^{-1} _{{\it max}}$ is bounded	$ ar{Q}_{21}ar{Q}_{11}^{-1} _{\mathit{max}}$ bounded
	Randomized LU approximation
	U_1 random matrix
with J. Demmel, A. Rusciano * For a revi	ew, see Halko et al., SIAM Review 11

Given U_1, A, V_1 , Q_1 orth. basis of (AV_1) , $k \leq l < l'$, rank-k approximation,

$$\begin{split} \tilde{A}_{glu} &= U^{-1} \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^+ \end{pmatrix} (\bar{A}_{11} \quad \bar{A}_{12}) V^{-1} \\ &= [U_1^+ (I - (U_1 A V_1) (U_1 A V_1)^+) + (A V_1) (U_1 A V_1)^+] [U_1 A] \neq \mathcal{P}^{so}. \end{split}$$

Approximation result: When $k \leq l < l'$, the approximation \tilde{A}_{glu} is more accurate than $\mathcal{P}^{so}A$,

$$\|A - \mathcal{P}^{so}A\|_F^T = \|A - \tilde{A}_{glu}\|_F^2 + \|\tilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Deterministic guarantee: Let $AV = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$, then

$$\begin{aligned} \sigma_j(A - \mathcal{P}^{\circ}A) &= \sigma_j(R_{22}) \\ \sigma_j^2(A - \tilde{A}_{glu}) &\leq \sigma_j^2(R_{22}) + \|(U_1Q_1)^+(U_1Q_2)(R_{22} - (R_{22})_{opt,j-1})\|_2^2 \end{aligned}$$

Given U_1, A, V_1 , Q_1 orth. basis of (AV_1) , $k \leq l < l'$, rank-k approximation,

$$\begin{split} \tilde{A}_{glu} &= U^{-1} \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^+ \end{pmatrix} (\bar{A}_{11} \quad \bar{A}_{12}) V^{-1} \\ &= [U_1^+ (I - (U_1 A V_1) (U_1 A V_1)^+) + (A V_1) (U_1 A V_1)^+] [U_1 A] \neq \mathcal{P}^{so} A \end{split}$$

Approximation result: When $k \leq l < l'$, the approximation \tilde{A}_{glu} is more accurate than $\mathcal{P}^{so}A$,

$$\|A - \mathcal{P}^{so}A\|_F^T = \|A - \tilde{A}_{glu}\|_F^2 + \|\tilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Deterministic guarantee: Let $AV = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$, then

$$\begin{aligned} \sigma_j(A - \mathcal{P}^{\circ}A) &= \sigma_j(R_{22}) \\ \sigma_j^2(A - \tilde{A}_{glu}) &\leq \sigma_j^2(R_{22}) + \|(U_1Q_1)^+(U_1Q_2)(R_{22} - (R_{22})_{opt,j-1})\|_2^2 \end{aligned}$$

Given U_1, A, V_1 , Q_1 orth. basis of (AV_1) , $k \leq l < l'$, rank-k approximation,

$$\begin{split} \tilde{A}_{glu} &= U^{-1} \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^+ \end{pmatrix} (\bar{A}_{11} \quad \bar{A}_{12}) V^{-1} \\ &= [U_1^+ (I - (U_1 A V_1) (U_1 A V_1)^+) + (A V_1) (U_1 A V_1)^+] [U_1 A] \neq \mathcal{P}^{so} A \end{split}$$

Approximation result: When $k \leq l < l'$, the approximation \tilde{A}_{glu} is more accurate than $\mathcal{P}^{so}A$,

$$\|A - \mathcal{P}^{so}A\|_F^T = \|A - \tilde{A}_{glu}\|_F^2 + \|\tilde{A}_{glu} - \mathcal{P}^{so}A\|_F^2$$

Deterministic guarantee: Let $AV = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$, then

$$\begin{aligned} \sigma_j(A - \mathcal{P}^o A) &= \sigma_j(R_{22}) \\ \sigma_j^2(A - \tilde{A}_{glu}) &\leq \sigma_j^2(R_{22}) + \|(U_1 Q_1)^+ (U_1 Q_2)(R_{22} - (R_{22})_{opt,j-1})\|_2^2 \end{aligned}$$

Oblivious subspace embedding

A (k, ε, δ) oblivious subspace embedding (OSE) from ℝⁿ to ℝ^l is a distribution U₁ ~ D over l × n matrices. It satisfies with probability 1 − δ

$$1 - \epsilon \le \sigma_{\min}^2(U_1Q_1) \le \sigma_{\max}^2(U_1Q_1) \le 1 + \epsilon$$
(2)

for any given orthogonal n×k matrix Q₁. We assume l≥ k and ε < 1/6.
U₁ ∈ ℝ^{l×n} is (ε, δ, n) multiplication approximating, if for any A, B having n rows, it satisfies with probability 1 − δ,

$$\|A^{\mathsf{T}} U_1^{\mathsf{T}} U_1 B - A^{\mathsf{T}} B\|_F^2 \le \epsilon \|A\|_F^2 \|B\|_F^2$$
(3)

- Let $U_1 \in \mathbb{R}^{l \times n}$ be subsampled random Hadamard transform (SRHT) obtained by uniform sampling without replacement,
 - □ With appropriate choices of ϵ , δ , l, U_1 satisfies OSE property (2) (Lemma 4.1 from [Boutsidis and Gittens, 2013]) and the multiplication property (3).

Oblivious subspace embedding

A (k, ε, δ) oblivious subspace embedding (OSE) from ℝⁿ to ℝ^l is a distribution U₁ ~ D over l × n matrices. It satisfies with probability 1 − δ

$$1 - \epsilon \le \sigma_{\min}^2(U_1Q_1) \le \sigma_{\max}^2(U_1Q_1) \le 1 + \epsilon$$
(2)

for any given orthogonal n×k matrix Q₁. We assume l≥ k and ε < 1/6.
U₁ ∈ ℝ^{l×n} is (ε, δ, n) multiplication approximating, if for any A, B having n rows, it satisfies with probability 1 − δ,

$$\|A^{T}U_{1}^{T}U_{1}B - A^{T}B\|_{F}^{2} \le \epsilon \|A\|_{F}^{2} \|B\|_{F}^{2}$$
(3)

- Let $U_1 \in \mathbb{R}^{l \times n}$ be subsampled random Hadamard transform (SRHT) obtained by uniform sampling without replacement,
 - □ With appropriate choices of ϵ , δ , l, U_1 satisfies OSE property (2) (Lemma 4.1 from [Boutsidis and Gittens, 2013]) and the multiplication property (3).

Probabilistic guarantees

■ Combine deterministic guarantees with sketching ensembles satisfying oblivious subspace embedding properties → **better bounds**

• Consider
$$U_1 \in \mathbb{R}^{l' \times m}, V_1 \in \mathbb{R}^{n \times l}$$
 are SRHT, $l' > l$

□ Compute $\mathcal{P}^{\circ}A$ costs O(mnl) flops

□ Compute \tilde{A}_{glu} through generalized LU costs $O(mn \log_2 l')$ flops

Let ρ be the rank of A, $l = O(1)\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \ge \log(n/\delta)\log(\rho/\delta),$ $l' = O(1)\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \ge \log(m/\delta)\log(\rho/\delta).$ With probability $1 - 5\delta$,

$$\begin{aligned} \sigma_j^2(A - \mathcal{P}^{\circ}A) &\leq O(1)\sigma_{k+j}^2(A) + O(\frac{\log(\rho/\delta)}{l})(\sigma_{k+j}^2(A) + \dots \sigma_n^2(A)) \\ \sigma_j^2(A - \tilde{A}_{glu}) &\leq O(1)\sigma_{k+j}^2(A) + O(\frac{\log(\rho/\delta)}{l})(\sigma_{k+j}^2(A) + \dots \sigma_n^2(A)). \end{aligned}$$

ightarrow Randomized $\mathcal{P}^{o}A$ and $ilde{A}_{glu}$ are kernel approximations (upper bound) of A

Probabilistic guarantees

■ Combine deterministic guarantees with sketching ensembles satisfying oblivious subspace embedding properties → **better bounds**

• Consider
$$U_1 \in \mathbb{R}^{l' \times m}, V_1 \in \mathbb{R}^{n \times l}$$
 are SRHT, $l' > l$

□ Compute $\mathcal{P}^{\circ}A$ costs O(mnl) flops

□ Compute \tilde{A}_{glu} through generalized LU costs $O(mn \log_2 l')$ flops

Let ρ be the rank of A, $l = O(1)\epsilon^{-1}(\sqrt{k} + \sqrt{8\log(n/\delta)})^2\log(k/\delta), \ l \ge \log(n/\delta)\log(\rho/\delta),$ $l' = O(1)\epsilon^{-1}(\sqrt{l} + \sqrt{8\log(m/\delta)})^2\log(k/\delta), \ l' \ge \log(m/\delta)\log(\rho/\delta).$ With probability $1 - 5\delta$,

$$\begin{aligned} \sigma_j^2(A - \mathcal{P}^o A) &\leq O(1)\sigma_{k+j}^2(A) + O(\frac{\log(\rho/\delta)}{l})(\sigma_{k+j}^2(A) + \dots \sigma_n^2(A)) \\ \sigma_j^2(A - \tilde{A}_{glu}) &\leq O(1)\sigma_{k+j}^2(A) + O(\frac{\log(\rho/\delta)}{l})(\sigma_{k+j}^2(A) + \dots \sigma_n^2(A)). \end{aligned}$$

ightarrow Randomized $\mathcal{P}^{o}A$ and \widetilde{A}_{glu} are kernel approximations (upper bound) of A

Growth factor in Gaussian elimination

$$\rho(A) := \frac{\max_k ||S_k||_{max}}{||A||_{max}}, \text{ where } A \in \mathbb{R}^{m \times n},$$
$$S_k \text{ is Schur complement obtained at iteration } k$$

Deterministic algorithms, k steps of LU

- LU with partial pivoting: $\rho(A) \leq 2^k$
- CA LU with column/row selection with binary tree tournament pivoting:

$$||S_k(\bar{A}_{11})||_{max} \leq \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^2(m-k)}\sigma_k(A))$$

Randomized algorithms

U, V Haar distributed matrices, complete LU factorization,

$$\mathbb{E}[\log(\rho(UAV))] = O(\log(n))$$

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions

Approximation of tensors

Let \mathcal{A} be a *d*-order tensor, $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times ... n_d}$.

■ CANDECOMP/PARAFAC (CP) [Hitchcock'27] approximates A as the sum of k rank-1 tensors, where q_{1,i} ∘ q_{2,i} is outer product of q_{1,i} and q_{2,i},

$$\tilde{\mathcal{A}} = \sum_{i=1}^{k} q_{1,i} \circ q_{2,i} \circ \ldots \circ q_{d,i}$$

Tucker decomposition [Tucker, 1963], computes a rank-(k₁,...k_d) approximation e.g. by using HOSVD and ALS,

$$\begin{aligned} \tilde{\mathcal{A}} &= \mathcal{C} \times_1 \mathcal{Q}_1 \times_2 \mathcal{Q}_2 \ldots \times_d \mathcal{Q}_d \\ &= \sum_{s_1=1}^{k_1} \sum_{s_2=1}^{k_2} \ldots \sum_{s_d=1}^{k_d} \mathcal{C}(s_1, \ldots, s_d) \mathcal{Q}_1(:, s_1) \circ \ldots \circ \mathcal{Q}_d(:, s_d) \end{aligned}$$

where $C \in \mathbb{R}^{k_1 \times k_2 \times \ldots \times k_d}$, $Q_i \in \mathbb{R}^{n_i \times k_i}$, $i = 1, \ldots d$.

Tensor train or tensor networks for high dimensions

For an overview, see Kolda and Bader, SIAM Review 2009

HOSVD for computing a $rank - (k_1, \ldots, k_d)$ approximation

- 1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, ranks k_1, \ldots, k_d
- For every unfolding A_i along mode i = 1...d compute the k_i (approximated) leading left singular vectors of A_i, Q_i ∈ ℝ^{n_i×k_i}

3. $C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$

4. Return: $\hat{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \dots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \dots \times_d Q_d Q_d^T$

HOSVD for computing a $rank - (k_1, \ldots, k_d)$ approximation

- 1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, ranks $k_1, \ldots k_d$
- 2. For every unfolding A_i along mode i = 1...d compute the k_i (approximated) leading left singular vectors of A_i , $Q_i \in \mathbb{R}^{n_i \times k_i}$

	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	1	61	1]
	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62		62	2
$A_1 =$	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	$\rightarrow \kappa \kappa Q \kappa$	63	3
	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64		64	4

3. $C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$

4. Return: $\tilde{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \dots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \dots \times_d Q_d Q_d^T$

HOSVD for computing a $rank - (k_1, \ldots, k_d)$ approximation

- 1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, ranks $k_1, \ldots k_d$
- 2. For every unfolding A_i along mode i = 1...d compute the k_i (approximated) leading left singular vectors of A_i , $Q_i \in \mathbb{R}^{n_i \times k_i}$

1	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	1	6 1	1]
	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62		62	2
A1 =	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	$\rightarrow \kappa \kappa Q \kappa$	63	3
	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64		64	4

3.
$$C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$$

4. **Return:** $\tilde{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \ldots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \ldots \times_d Q_d Q_d^T$

HOSVD for computing a $rank - (k_1, \dots, k_d)$ approximation

- 1. Input: Tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \ldots \times n_d}$, ranks $k_1, \ldots k_d$
- 2. For every unfolding A_i along mode i = 1...d compute the k_i (approximated) leading left singular vectors of A_i , $Q_i \in \mathbb{R}^{n_i \times k_i}$

	[1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61 .	1	61	1
A _	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	, PPOP	62	2
$A_1 =$	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	$\rightarrow \pi \pi Q \pi$	63	3
	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64		64	4

3.
$$C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$$

4. **Return:** $\tilde{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \ldots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \ldots \times_d Q_d Q_d^T$

Error bound:

If Q_i are the leading left singular vectors of unfolding A_i , then:

$$\|\mathcal{A} - \tilde{\mathcal{A}}\|_{F} \leq \sqrt{d} \|\mathcal{A} - \mathcal{A}_{best}\|_{F},$$

where A_{best} is the best rank- k_1, \ldots, k_d approximation of A.

Partitioning for parallel HO-RRQR

Consider a d-order tensor $\mathcal{A} \in \mathbb{R}^{n \times ... \times n}$ (n = 4, d = 3 in the example),

■ Partition \mathcal{A} into $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ subtensors $\mathcal{A}_{i_1..i_d} \in \mathbb{R}^{n/\sqrt[d]{P} \times \ldots \times n/\sqrt[d]{P}}$ distributed on $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor,

Consider 1-mode unfolding of the $2 \times 2 \times 2$ processor tensor,

$\mathbf{P1}$	$\mathbf{P3}$	P5	$\mathbf{P7}$
$\mathbf{P2}$	$\mathbf{P4}$	$\mathbf{P6}$	$\mathbf{P8}$

Followed on each processor by 1-mode unfolding of its subtensor,

3 4								

The 1-mode unfolding of A is:

For any *i*-mode unfolding, there is a permutation Π_i such that

 $A_{i^2} = A_i \Pi_i$

with M. Beaupère and D. Frenkiel

Consider 1-mode unfolding of the $2 \times 2 \times 2$ processor tensor,

$\mathbf{P1}$	$\mathbf{P3}$	P5	$\mathbf{P7}$
$\mathbf{P2}$	$\mathbf{P4}$	$\mathbf{P6}$	$\mathbf{P8}$

Followed on each processor by 1-mode unfolding of its subtensor,

4	1 2	5 6	17 18	21 22	9 10	13 14	25 26	29 30	33 34	37 38	49 50	53 54	41 42	45 46	57 58	61 62
A ₁₂ =	3	7 8	19 20	23 24	11 12	15 16	27 28	31 32	35 36	39 40	51 52	55 56	43 44	47 48	59 60	63 64

The 1-mode unfolding of A is:

4								

For any *i*-mode unfolding, there is a permutation Π_i such that

 $A_{i^2} = A_i \Pi_i$

with M. Beaupère and D. Frenkiel

Consider 1-mode unfolding of the $2 \times 2 \times 2$ processor tensor,

$\mathbf{P1}$	$\mathbf{P3}$	P5	$\mathbf{P7}$
$\mathbf{P2}$	$\mathbf{P4}$	P6	$\mathbf{P8}$

Followed on each processor by 1-mode unfolding of its subtensor,

4	1	5 6	17 18	21 22	9 10	13 14	25 26	29 30	33 34	37 38	49 50	53 54	41 42	45 46	57 58	61 62
A ₁ 2 =	3	7	19	23	11	15	27	31	35	39	51	55	43	47	59	63
	4	8	20	24	12	16	28	32	36	40	52	56	44	48	60	64

• The 1-mode unfolding of \mathcal{A} is:

	[1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61]
4	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62
$A_1 =$	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63
	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64

For any *i*-mode unfolding, there is a permutation Π_i such that

 $A_{i^2} = A_i \Pi_i$

with M. Beaupère and D. Frenkiel

Consider 1-mode unfolding of the $2 \times 2 \times 2$ processor tensor,

$\mathbf{P1}$	$\mathbf{P3}$	P5	$\mathbf{P7}$
$\mathbf{P2}$	$\mathbf{P4}$	$\mathbf{P6}$	$\mathbf{P8}$

Followed on each processor by 1-mode unfolding of its subtensor,

4	1 2	5 6	17 18	21 22	9 10	13 14	25 26	29 30	33 34	37 38	49 50	53 54	41 42	45 46	57 58	61 62
A ₁ 2 =	3	7 8	19 20	23 24	11 12	15 16	27 28	31 32	35 36	39 40	51 52	55 56	43 44	47 48	59 60	63 64

• The 1-mode unfolding of \mathcal{A} is:

	[1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61]
<i>A</i> ₁ =	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62
	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63
	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64

• For any *i*-mode unfolding, there is a permutation Π_i such that

$$A_{i^2} = A_i \Pi_i$$

with M. Beaupère and D. Frenkiel

Parallel HO-RRQR

HO-RRQR for computing a $rank - (k_1, \dots, k_d)$ approximation

- 1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \dots \times n}$ on a $\sqrt[d]{P} \times \dots \times \sqrt[d]{P}$ processor tensor, ranks $k_1, \dots k_d$
- 2. For every partitioned unfolding A_{i^2} along mode i = 1...d, compute factor matrices $Q_i \in \mathbb{R}^{n \times k_i}$ using 2D tournament pivoting (2D TP) on $A_{i^2}^T$:

3. $C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$

4. Return: $\hat{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \dots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \dots \times_d Q_d Q_d^T$

Parallel HO-RRQR

HO-RRQR for computing a $rank - (k_1, \dots, k_d)$ approximation

- 1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_1, \ldots k_d$
- For every partitioned unfolding A_{i²} along mode i = 1...d, compute factor matrices Q_i ∈ ℝ^{n×k_i} using 2D tournament pivoting (2D TP) on A^T_{i²}:

A ₁ 2 =	آ	5	17	21	9	13	25	29	33	37	49	53	41	45	57	61		61	1]
	2	6	18	22	10	14	26	30	34	38	50	54	42	46	58	62		62	2
	3	7	19	23	11	15	27	7 31 35 39 51 55 43	47	59	63	$\rightarrow 2D TF$	63	3					
	4	8	20	24	12	16	28	32	36	40	52	56	44	48	60	64		64	4

3. $C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$

4. Return: $\hat{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \dots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \dots \times_d Q_d Q_d^T$

Parallel HO-RRQR

HO-RRQR for computing a $rank - (k_1, \dots, k_d)$ approximation

- 1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \ldots \times n}$ on a $\sqrt[d]{P} \times \ldots \times \sqrt[d]{P}$ processor tensor, ranks $k_1, \ldots k_d$
- For every partitioned unfolding A_{i²} along mode i = 1...d, compute factor matrices Q_i ∈ ℝ^{n×k_i} using 2D tournament pivoting (2D TP) on A^T_{i²}:

$$A_{12} = \begin{bmatrix} 1 & 5 & 17 & 21 & 9 & 13 & 25 & 29 & 33 & 37 & 49 & 53 & 41 & 45 & 57 & 61 \\ 2 & 6 & 18 & 22 & 10 & 14 & 26 & 30 & 34 & 38 & 50 & 54 & 42 & 46 & 58 & 62 \\ \hline 3 & 7 & 19 & 23 & 11 & 15 & 27 & 31 & 35 & 39 & 51 & 55 & 43 & 47 & 59 & 63 \\ 4 & 8 & 20 & 24 & 12 & 16 & 28 & 32 & 36 & 40 & 52 & 56 & 44 & 48 & 60 & 64 \end{bmatrix} \rightarrow 2D \ TP \begin{bmatrix} 61 & 1 \\ 62 & 2 \\ 63 & 3 \\ 64 & 4 \end{bmatrix}$$

3.
$$C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$$

4. **Return:** $\tilde{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \dots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \dots \times_d Q_d Q_d^T$

Parallel HO-RRQR: cost and bounds

HO-RRQR for computing a $rank - (k_1, \dots, k_d)$ approximation

- 1. Input: Partitioned tensor $\mathcal{A} \in \mathbb{R}^{n \times \dots \times n}$ on a $\sqrt[d]{P} \times \dots \times \sqrt[d]{P}$ processor tensor, ranks $k_1, \dots k_d$
- For every partitioned unfolding A_{i²} ∈ ℝ^{n×n^{d-1}}, i = 1...d, compute factor matrices Q_i ∈ ℝ^{n×k_i} using 2D tournament pivoting (2D TP) on A_{i²}^T: # messages ≈ d log₂² P

Conjecture: can be decreased to $\log_2^2 P$ with a unique reduction tree used by 2D TP on the different unfoldings

3.
$$C = \mathcal{A} \times_1 Q_1^T \times_2 Q_2^T \ldots \times_d Q_d^T$$

4. **Return:** $\tilde{\mathcal{A}} = \mathcal{C} \times_1 Q_1 \ldots \times_d Q_d = \mathcal{A} \times_1 Q_1 Q_1^T \ldots \times_d Q_d Q_d^T$

Error bound:

If factor matrices Q_i are obtained from 2D TP on $A_{i^2}^T$, then:

$$\|\mathcal{A} - \tilde{\mathcal{A}}\|_F \leq \sqrt{1 + \max_i (F_{i,2D-TP}^2(n-k_i))} \sqrt{d} \|\mathcal{A} - \mathcal{A}_{best}\|_F, \text{ where }$$

$$F_{i,2D-TP} \leq Pk_i^{\log_2 P + 1/2} f^{(1-1/d)\log_2 P + 1}$$

where \mathcal{A}_{best} is the best rank- k_1, \ldots, k_d approximation of \mathcal{A} .

Parallel HO-RRQR: numerical experiments

Isosurface view of $256 \times 256 \times 256$ aneurism:

Image source: https://tc18.org/3D_images.html x-ray scan of the arteries of the right half of a human head with aneurism.

Plan

Motivation of our work

Unified perspective on low rank matrix approximation Generalized LU decomposition

Recent deterministic algorithms and bounds CA RRQR with 2D tournament pivoting CA LU with column/row tournament pivoting

Randomized generalized LU and bounds

Approximation of tensors Parallel HORRQR

Conclusions
Open questions for tensors

Many open questions - only a few recalled

Communication bounds few existing results

- Symmetric tensor contractions [Solomonik et al, 18]
- Bound for volume of communication for matricized tensor times Khatri-Rao product [Ballard et al, 17]

Approximation algorithms

- Algorithms as DMRG are intrinsically sequential in the number of modes
- Dynamically adapt the rank to a given error
- Approximation of high rank tensors
 - but low rank in large parts, e.g. due to stationarity in the model the tensor describes

Prospects for the future

Tensors in high dimensions

 ERC Synergy project Extreme-scale Mathematically-based Computational Chemistry project (EMC2), with E. Cances, Y. Maday, and J.-P. Piquemal.

Collaborators: O. Balabanov, M. Beaupère, S. Cayrols, J. Demmel, D. Frenkiel, A. Rusciano.

Funding:

- This project has received funding from the European Commission under the Horizon 2020 research and innovation programme Grant agreement No. 810367
- H2020 NLAFET project, ANR

References

Results from following papers:

- Papers in preparation with O. Balabanov, M. Beaupère, D. Frenkiel on 2D tournament pivoting, parallel HOSVD.
- J. Demmel, L. Grigori, A. Rusciano, An improved analysis and unified perspective on deterministic and randomized low rank matrix approximations, October 2019.
- 3. V. Ehrlacher, L. Grigori, D. Lombardi, H. Song, Adaptive hierarchical subtensor partitioning for tensor compression, SIAM J. Sci. Comput., 2020, in revision.
- L. Grigori, S. Cayrols, and J. Demmel, Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, SIAM J. Sci. Comput., 40 (2):C181-C209, 2018.
- J. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication-Avoiding Rank-Revealing QR Factorization with Column Pivoting, SIAM Journal on Matrix Analysis and Applications, Vol. 36, No. 1, pp. 55-89, 2015.

References (1

Boutsidis, C. and Gittens, A. (2013).

Improved matrix algorithms via the subsampled randomized hadamard transform. SIAM J. Matrix Analysis Applications, 34:1301–1340.

Businger, P. A. and Golub, G. H. (1965).

Linear least squares solutions by Householder transformations. Numer. Math., 7:269–276.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

Golub, G. H. (1965).

Numerical methods for solving linear least squares problems. Numer. Math., 7:206–216.

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869.

Hastad, J. (1990).

Tensor rank is NP-complete. J. of Algorithms, 11:644-654.

Tucker, L. R. (1963).

Implications of factor analysis of three-way matrices for measurement of change. In Harris, C. W., editor, *Problems in Measuring Change*, pages 122–137. University of Wisconsin Press.