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Motivation

“study [low-rank] matriz approzimations that are explicitly
expressed in terms of a small numbers of columns and/or rows”

“Main algorithmic result are two randomized algorithms which
take as input A € R™*"™ and rank parameter k”

Let C € R™*¢ be a subset of columns of A.

1. AA=CCTA

2. A’ = CUR, where R € R"™*" is a subset of rows of A
For each, independently, with probability 1 — ¢

A= A'lr < (L+e)|A = Allr

where Ay is the the thresholded SVD.
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First Result/Theorem 1

A’ = CX is a column based matrix approximation to A, or a
CX matriz decomposition, for any X € Re*™,

Among such a class
CTA = argminyk ||[A — CX||r

For a given C, the optimal CX = CCTA = PcA.
i.e. P¢ is the projection matrix onto the colspace of C

Theorem

Given A and k << min{m,n}, a randomized algorithm exists
s.t. either exactly c = O(k*c~2log(1/8)) columns of A are
chosen to construct C, or ¢ = O(klogke=21og(1/9)) in
expectation, s.t. w.h.p. (1 —9)

IA—CCTA|lp < (1+2)|A - Ayllr
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Second Result/ Theorem 2

A’ = CUR is a column-row-based matrix approximation to A,
or a CUR matriz decomposition, for any U € R°*",

U will be a generalized inverse of the intersection between C
and R. For C (R), let S¢ (Sr) denote its sampling operator
and D¢ (DRr) a diagonal scaling matrix. Then

» C= ASCDC

» R =DgrSLA

» U= (DRSII;ASCDc)J'_
Theorem
Given A and k << min{m, n}, randomized algorithm exists s.t.
either exactly ¢ = O(k*c=?1og(1/68)) columns are chosen and
then r = O(c*e~2log(1/8)) rows are chosen to construct R, OR
c = O(klog ke 2log(1/8)) in expectation and then
r = O(clogce™2log(1/6)) in expectation, s.t. w.h.p. (1 —3)

|A - CUR|[F < (1+2)[|A - Agllr
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Main Idea: Subspace Sampling

Let VA € R™** be the top k singular vectors. For column
subset selection, the subspace sampling probabilities p;,i € [n]
will satisfy

1[Varlols

’ , 1€ [n]

pi >

Exactly(c) algorithm: For t =1,... ¢, 1. Pick i; € [n] w.p p;.
2. Set S;,+ =1 3. Set Dy = 1/,/cpi,

Expected(c) algorithm: Probabilites are now p; = min{1, cp;}.
Go through each element j € [n] and flip a coin with p; success
probability. If picked, set S;; =1 and Dy = 1/,/p;
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Relation to /5 regression

Given input A and target B € R™*P compute
Z = min |IB-AX|r = X,x=A"B
Using sampling to get a subspace embedding, consider

7 = min IDSTB -~ DSTAX|r = X, = (DSTA)"DS"B
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Theorem 3

Constant probability version of Result 1 (with remark to boost
it up to 1 —9).

Proof.
Let Pa = UA,kUg ; Projection on to top k left singular
vectors of A

|A - CC*Allr = ||A - (AScDc)(AScDc) Al r
< ||A — (AScDc)(Pa rAScDc) " Pa Al r
=[|A - (C)(Pa1C)"PaAllF
= |A — (AScDc)(ArScDc)  Axl r
(T 5)

(L+e)l|A—AA ALp
(1 +e)|A - Axllr
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Sampling

Challenge: How sample s.t. the column-sampled version of the
top k right singular vectors of A is full rank, i.e.

rank(Vy ,ScDc) = rank(Vy ;) =k

Answer: Use subspace sampling. Note that

A = U VIO + U,y 2 i [V]]

so [[[VF]@|12 measures “how much” of A lies in the span of
Ua i
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CUR: Algorithm 2/Theorem 4

Picking rows? ¢; = %H[UE](Z)H% (8-dependent accuracy fine)
Input: A € R™*"™ C columns subset of A, r € Z,, and ¢
Output: R € R™"™". W € R®*" (corresponding rows of C, which
gives U € R"*¢

1. Compute g;

2. (Implicitly) construct Sg and Dy using Exactly(r) or
Expected(r) algorithm

3. Construct R = DRSf{A
4. Construct W = DRS£C
5. Let U=WT

Full SVD of C is O(c?>m) and U requires O(c?*r) + lower order
terms. So the dominating factor is O(mn) in reading A
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lo-regression: Algorithm 3

Data : A € R"™* " that has rank no greater than k, B € R"*P, sampling probabilities
{pi}iL. and 7 < m.
Result : X, € R"P, Z € R.
e (Implicitly) construct a sampling matrix S and a diagonal rescaling matrix D with

the EXACTLY(¢) algorithm or with the EXPECTED(¢) algorithm;

Construct the matrix DST A consisting of a small number of rescaled rows of A;

e Construct the matrix DST B consisting of a small number of rescaled rows of B;

Xop = (DSTA)" DSTB;

Z = minyecgnxp

DSTR — DSTAXUPLH :
F




Theorem 5

Theorem

Suppose A € R™*™ has rank no greater than k, B € R™*P,

e € (0,1], and Z = minx |B — AX||r where

Xopt = ATB = A;B.

Running Algorithm 3 with p; > éH[UA,k](z‘)H% for some

B € (0,1] giving output Xopt.

Then if r = O(k?/(Be?)) with Ezactly(r) or r = O(klogk/(Be?))
with Expected(r), we have with constant probability

IB— AXopllr < (1+€)Z
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Prior art

Sub-optimal and randomized algorithms.

c r rank(U) A= CURH§ < Time
I kje K A Ak||F+s||A||F nnz(A)
2 | k& K/ K A Ak||F+s||A||F nnz(A)
3 | (klogk)/e? | (klogk)/e* | (klogk)/e? | (1 +¢)[|A — A3 n
4 | (klogk)/e? | (klogk)/e® | (klogk)/e® | (2+¢)]IA — AxllZ e
5 | kje KJe2 ke T+ )lA—AdZ | Pkj=
References:

Drineas and Kannan. Symposium on Foundations of Computer Science, 2003.
Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 2006.

Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.
Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.
Wang and Zhang. Journal of Machine Learning Research, 2013.



Lower bound

Theorem

Fix appropriate matrix A € R"*". Consider a factorization CUR,
IA = CURJE < (1 +¢)||A — AglE.
Then, forany k > 1 and for any e < 1/3:
c=Q(k/e),

and
r =Q(k/e),

and
rank(U) > k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]



Input-sparsity-time CUR

Theorem
There exists a randomized algorithm to construct a CUR with

c = O(k/e)
and

r=0(k/e)
and

rank (U) = k

such that, with constant probability of success,
IA = CURJE < (1 +¢)||A — AglE.

Running time: O (nnz (A)logn+ (m+ n) - poly (log n, k,1/¢)) .



Adaptive Sampling

Adaptive Sampling method [Wang ’13] works by
1. Approximating SVD (compute or random projection)
2. Dual Set Sparsification (DSS) Sampling
3. Adaptive Sampling (i.e. based on E = A — CCTA)

Algorithm 2 Adaptive Sampling for CUR.

1: Input: areal matrix A € R™*", target rank k, ¢ € (0, 1], target column number ¢ = % (1+o(1)),

target row number r = £(1 + ¢€);
: Select ¢ = 2£ (14 0(1)) columns of A to construct C € R™*¢ using Algorithm 1;

€
: Select r; = ¢ rows of A to construct Ry € R™*" using Algorithm 1;

: Adaptively sample 75 = ¢/e rows from A according to the residual A — ARIRL;
: return C, R = [RY,R}]7, and U = CtAR".

TUs W N

Algorithm 1 here refers to the Near-Optimal Column Selection
Algorithm of Boutsidis et al. (2011)

Towards More Efficient Nystrom Approximation and CUR
Matriz Decomposition [on Arxiv, March 29 2015]
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Woodruff MMDS Slides: http://researcher.watson.ibm.
com/researcher/files/us-dpwoodru/mmds . pdf

CUR with Adaptive Sampling Code:
https://sites.google.com/site/zjuwss/

CUR in R:
http://cran.r-project.org/web/packages/rCUR/rCUR.pdf
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