Relative-Error CUR Matrix Decompositions

Arturo Fernandez

RandNLA Reading Group University of California, Berkeley

Tuesday, April 7, 2015.

Motivation

"study [low-rank] matrix approximations that are explicitly expressed in terms of a small numbers of columns and/or rows"

"Main algorithmic result are two randomized algorithms which take as input $\mathbf{A} \in \mathbb{R}^{m \times n}$ and rank parameter k"

Let $\mathbf{C} \in \mathbb{R}^{m \times c}$ be a subset of columns of \mathbf{A} .

1.
$$\mathbf{A}' = \mathbf{C}\mathbf{C}^+\mathbf{A}$$

2. $\mathbf{A}' = \mathbf{CUR}$, where $\mathbf{R} \in \mathbb{R}^{r \times n}$ is a subset of rows of \mathbf{A} For each, independently, with probability $1 - \delta$

$$\|\mathbf{A} - \mathbf{A}'\|_F \le (1 + \varepsilon) \|\mathbf{A} - \mathbf{A}_k\|_F$$

where \mathbf{A}_k is the thresholded SVD.

First Result/Theorem 1

 $\mathbf{A}' = \mathbf{C}\mathbf{X}$ is a column based matrix approximation to \mathbf{A} , or a $\mathbf{C}\mathbf{X}$ matrix decomposition, for any $\mathbf{X} \in \mathbb{R}^{c \times n}$.

Among such a class

$$\mathbf{C}^{+}\mathbf{A} = \arg\min_{\mathbf{X}} \|\mathbf{A} - \mathbf{C}\mathbf{X}\|_{F}$$

For a given \mathbf{C} , the optimal $\mathbf{C}\mathbf{X} = \mathbf{C}\mathbf{C}^+\mathbf{A} = \mathbf{P}_{\mathbf{C}}\mathbf{A}$. i.e. $\mathbf{P}_{\mathbf{C}}$ is the projection matrix onto the colspace of \mathbf{C}

Theorem

Given **A** and $k \ll \min\{m, n\}$, a randomized algorithm exists s.t. either exactly $c = O(k^2 \varepsilon^{-2} \log(1/\delta))$ columns of **A** are chosen to construct **C**, or $c = O(k \log k \varepsilon^{-2} \log(1/\delta))$ in expectation, s.t. w.h.p. $(1 - \delta)$

$$\|\mathbf{A} - \mathbf{C}\mathbf{C}^{+}\mathbf{A}\|_{F} \le (1+\varepsilon)\|\mathbf{A} - \mathbf{A}_{k}\|_{F}$$

Second Result/ Theorem 2

 $\mathbf{A}' = \mathbf{CUR}$ is a column-row-based matrix approximation to \mathbf{A} , or a \mathbf{CUR} matrix decomposition, for any $\mathbf{U} \in \mathbb{R}^{c \times r}$.

U will be a generalized inverse of the intersection between **C** and **R**. For **C** (**R**), let $\mathbf{S}_{\mathbf{C}}$ ($\mathbf{S}_{\mathbf{R}}$) denote its sampling operator and $\mathbf{D}_{\mathbf{C}}$ ($\mathbf{D}_{\mathbf{R}}$) a diagonal scaling matrix. Then

- $\blacktriangleright \mathbf{C} = \mathbf{AS_C}\mathbf{D_C}$
- $\mathbf{P} \mathbf{R} = \mathbf{D}_{\mathbf{R}} \mathbf{S}_{\mathbf{R}}^T \mathbf{A}$
- $\bullet \mathbf{U} = (\mathbf{D}_{\mathbf{R}} \tilde{\mathbf{S}}_{\mathbf{R}}^T \mathbf{A} \mathbf{S}_{\mathbf{C}} \mathbf{D}_{\mathbf{C}})^+$

Theorem

Given **A** and $k \ll \min\{m, n\}$, randomized algorithm exists s.t. either exactly $c = O(k^2 \varepsilon^{-2} \log(1/\delta))$ columns are chosen and then $r = O(c^2 \varepsilon^{-2} \log(1/\delta))$ rows are chosen to construct **R**, OR $c = O(k \log k \varepsilon^{-2} \log(1/\delta))$ in expectation and then $r = O(c \log c \varepsilon^{-2} \log(1/\delta))$ in expectation, s.t. w.h.p. $(1 - \delta)$

$$\|\mathbf{A} - \mathbf{CUR}\|_F \le (1+\varepsilon) \|\mathbf{A} - \mathbf{A}_k\|_F$$

Main Idea: Subspace Sampling

Let $\mathbf{V}_{\mathbf{A},k} \in \mathbb{R}^{n \times k}$ be the top k singular vectors. For column subset selection, the subspace sampling probabilities $p_i, i \in [n]$ will satisfy

$$p_i \ge \beta \frac{\|[\mathbf{V}_{\mathbf{A},k}]_{(i)}\|_2^2}{k}, \quad i \in [n]$$

Exactly(c) algorithm: For $t=1,\ldots,c$, 1. Pick $i_t\in[n]$ w.
p $p_i.$ 2. Set $S_{i_t,t}=1$ 3. Set $D_{tt}=1/\sqrt{cp_{i_t}}$

Expected(c) algorithm: Probabilites are now $\tilde{p}_i = \min\{1, cp_j\}$. Go through each element $j \in [n]$ and flip a coin with \tilde{p}_i success probability. If picked, set $S_{j,t} = 1$ and $D_{tt} = 1/\sqrt{\tilde{p}_j}$

Relation to ℓ_2 regression

Given input **A** and target $\mathbf{B} \in \mathbb{R}^{m \times p}$, compute

$$Z = \min_{\mathbf{X}} \|\mathbf{B} - \mathbf{A}\mathbf{X}\|_F \implies \mathbf{X}_{opt} = \mathbf{A}^+ \mathbf{B}$$

Using sampling to get a subspace embedding, consider

$$\tilde{Z} = \min_{\mathbf{X}} \|\mathbf{D}\mathbf{S}^T\mathbf{B} - \mathbf{D}\mathbf{S}^T\mathbf{A}\mathbf{X}\|_F \implies \tilde{\mathbf{X}}_{opt} = (\mathbf{D}\mathbf{S}^T\mathbf{A})^+\mathbf{D}\mathbf{S}^T\mathbf{B}$$

Theorem 3

Constant probability version of Result 1 (with remark to boost it up to $1 - \delta$).

Proof.

Let $\mathbf{P}_{\mathbf{A},k} = \mathbf{U}_{\mathbf{A},k}\mathbf{U}_{\mathbf{A},k}^T$ projection on to top k left singular vectors of \mathbf{A}

$$\begin{aligned} \|\mathbf{A} - \mathbf{C}\mathbf{C}^{+}\mathbf{A}\|_{F} &= \|\mathbf{A} - (\mathbf{A}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})(\mathbf{A}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})^{+}\mathbf{A}\|_{F} \\ &\leq \|\mathbf{A} - (\mathbf{A}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})(\mathbf{P}_{\mathbf{A},k}\mathbf{A}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})^{+}\mathbf{P}_{\mathbf{A},k}\mathbf{A}\|_{F} \\ &= \|\mathbf{A} - (\mathbf{C})(\mathbf{P}_{\mathbf{A},k}\mathbf{C})^{+}\mathbf{P}_{\mathbf{A},k}\mathbf{A}\|_{F} \\ &= \|\mathbf{A} - (\mathbf{A}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})(\mathbf{A}_{k}\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}})^{+}\mathbf{A}_{k}\|_{F} \\ &\leq (1+\varepsilon)\|\mathbf{A} - \mathbf{A}\mathbf{A}_{k}^{+}\mathbf{A}_{k}\|_{F} \\ &= (1+\varepsilon)\|\mathbf{A} - \mathbf{A}_{k}\|_{F} \end{aligned}$$

Sampling

Challenge: How sample s.t. the column-sampled version of the top k right singular vectors of **A** is full rank, i.e.

$$\operatorname{rank}(\mathbf{V}_{\mathbf{A},k}^T\mathbf{S}_{\mathbf{C}}\mathbf{D}_{\mathbf{C}}) = \operatorname{rank}(\mathbf{V}_{\mathbf{A},k}^T) = k$$

Answer: Use subspace sampling. Note that

$$\mathbf{A}^{(i)} = \mathbf{U}_k \mathbf{\Sigma}_k [\mathbf{V}_k^T]^{(i)} + \mathbf{U}_{\rho-k} \mathbf{\Sigma}_{\rho-k} [\mathbf{V}_{\rho-k}^T]^{(i)}$$

so $\|[\mathbf{V}_k^T]^{(i)}\|_2^2$ measures "how much" of $\mathbf{A}^{(i)}$ lies in the span of $\mathbf{U}_{\mathbf{A},k}$

CUR: Algorithm 2/Theorem 4

Picking rows? $q_i = \frac{1}{c} \|[\mathbf{U}_{\mathbf{C}}^T]^{(i)}\|_2^2$ (β -dependent accuracy fine) Input: $\mathbf{A} \in \mathbb{R}^{m \times n}$, \mathbf{C} columns subset of \mathbf{A} , $r \in \mathbb{Z}_{++}$ and ε Output: $\mathbf{R} \in \mathbb{R}^{r \times n}$. $\mathbf{W} \in \mathbb{R}^{c \times r}$ (corresponding rows of \mathbf{C} , which gives $\mathbf{U} \in \mathbb{R}^{r \times c}$

- 1. Compute q_i
- 2. (Implicitly) construct S_R and D_R using Exactly(r) or Expected(r) algorithm
- 3. Construct $\mathbf{R} = \mathbf{D}_{\mathbf{R}} \mathbf{S}_{\mathbf{R}}^T \mathbf{A}$
- 4. Construct $\mathbf{W} = \mathbf{D}_{\mathbf{R}} \mathbf{S}_{\mathbf{R}}^T \mathbf{C}$
- 5. Let $\mathbf{U} = \mathbf{W}^+$

Full SVD of **C** is $O(c^2m)$ and **U** requires $O(c^2r)$ + lower order terms. So the dominating factor is O(mn) in reading **A**

ℓ_2 -regression: Algorithm 3

Data : $A \in \mathbb{R}^{m \times n}$ that has rank no greater than $k, B \in \mathbb{R}^{m \times p}$, sampling probabilities $\{p_i\}_{i=1}^m$, and $r \leq m$. **Result** : $\tilde{X}_{out} \in \mathbb{R}^{n \times p}, \tilde{Z} \in \mathbb{R}$.

- (Implicitly) construct a sampling matrix S and a diagonal rescaling matrix D with the EXACTLY(c) algorithm or with the EXPECTED(c) algorithm;
- Construct the matrix $DS^T A$ consisting of a small number of rescaled rows of A;
- Construct the matrix DS^TB consisting of a small number of rescaled rows of B;
- $\tilde{X}_{opt} = (DS^T A)^+ DS^T B;$
- $\tilde{\mathcal{Z}} = \min_{X \in \mathbb{R}^{n \times p}} \left\| DS^T B DS^T A \tilde{X}_{opt} \right\|_F;$

Theorem 5

Theorem

Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ has rank no greater than $k, \mathbf{B} \in \mathbb{R}^{m \times p}$, $\varepsilon \in (0, 1]$, and $Z = \min_{\mathbf{X}} \|\mathbf{B} - \mathbf{A}\mathbf{X}\|_F$ where $\mathbf{X}_{opt} = \mathbf{A}^+ \mathbf{B} = \mathbf{A}_k^+ \mathbf{B}$. Running Algorithm 3 with $p_i \geq \frac{\beta}{k} \|[\mathbf{U}_{\mathbf{A},k}]_{(i)}\|_2^2$ for some $\beta \in (0, 1]$ giving output $\tilde{\mathbf{X}}_{opt}$. Then if $r = O(k^2/(\beta \varepsilon^2))$ with Exactly(r) or $r = O(k \log k/(\beta \varepsilon^2))$ with Expected(r), we have with constant probability

$$\|\mathbf{B} - \mathbf{A}\tilde{\mathbf{X}}_{opt}\|_F \le (1+\varepsilon)Z$$

Prior art

Sub-optimal and randomized algorithms.

	С	r	rank(U)	$\ A - CUR\ _{\mathrm{F}}^2 \leq$	Time
1	k/ε^2	k/ε	k	$\ \mathbf{A} - \mathbf{A}_k\ _{\mathrm{F}}^2 + \varepsilon \ \mathbf{A}\ _{\mathrm{F}}^2$	nnz(A)
2	k/ε^4	k/ε^2	k	$\ \mathbf{A} - \mathbf{A}_k\ _{\mathrm{F}}^2 + \varepsilon \ \mathbf{A}\ _{\mathrm{F}}^2$	nnz(A)
3	$(k \log k)/\varepsilon^2$	$(k \log k)/\varepsilon^4$	$(k \log k)/\varepsilon^2$	$(1+\varepsilon)\ \mathbf{A}-\mathbf{A}_k\ _{\mathrm{F}}^2$	n ³
4	$(k \log k)/\varepsilon^2$	$(k \log k)/\varepsilon^2$	$(k \log k)/\varepsilon^2$	$(2+\varepsilon)\ A-A_k\ _{\mathrm{F}}^2$	n ³
5	k/ε	k/ε^2	k/ε	$(1+\varepsilon) \ A-A_k\ _{\mathrm{F}}^2$	n²k/ε

References:

- 1 Drineas and Kannan. Symposium on Foundations of Computer Science, 2003.
- 2 Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 2006.
- 3 Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.
- 4 Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.
- 5 Wang and Zhang. Journal of Machine Learning Research, 2013.

Lower bound

Theorem

Fix appropriate matrix $A \in \mathbb{R}^{n \times n}$. Consider a factorization CUR,

$$\|\mathsf{A} - \mathsf{CUR}\|_{\mathrm{F}}^2 \leq (1 + \varepsilon) \|\mathsf{A} - \mathsf{A}_k\|_{\mathrm{F}}^2$$

Then, for any $k \ge 1$ and for any $\varepsilon < 1/3$:

$$m{c} = \Omega(m{k}/arepsilon),$$

and

 $r = \Omega(k/\varepsilon),$

and

 $\operatorname{rank}(U) \geq k/2.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]

Input-sparsity-time CUR

Theorem

There exists a randomized algorithm to construct a CUR with

 $c = O(k/\varepsilon)$

and

 $r = O(k/\varepsilon)$

and

 $\operatorname{rank}(\mathsf{U}) = k$

such that, with constant probability of success,

$$\|\mathsf{A} - \mathsf{CUR}\|_{\mathrm{F}}^2 \leq (\mathsf{1} + arepsilon) \|\mathsf{A} - \mathsf{A}_k\|_{\mathrm{F}}^2$$

Running time: $O(nnz(A) \log n + (m+n) \cdot poly(\log n, k, 1/\varepsilon))$.

Adaptive Sampling

Adaptive Sampling method [Wang '13] works by

- 1. Approximating SVD (compute or random projection)
- 2. Dual Set Sparsification (DSS) Sampling
- 3. Adaptive Sampling (i.e. based on $\mathbf{E} = \mathbf{A} \mathbf{C}\mathbf{C}^{\dagger}\mathbf{A}$)

Algorithm 2 Adaptive Sampling for CUR.

- 1: Input: a real matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, target rank $k, \epsilon \in (0, 1]$, target column number $c = \frac{2k}{\epsilon} (1 + o(1))$, target row number $r = \frac{c}{\epsilon} (1 + \epsilon)$;
- 2: Select $c = \frac{2k}{\epsilon} (1 + o(1))$ columns of **A** to construct $\mathbf{C} \in \mathbb{R}^{m \times c}$ using Algorithm 1;
- 3: Select $r_1 = c$ rows of \mathbf{A} to construct $\mathbf{R}_1 \in \mathbb{R}^{r_1 \times n}$ using Algorithm 1;
- 4: Adaptively sample $r_2 = c/\epsilon$ rows from **A** according to the residual $\mathbf{A} \mathbf{A}\mathbf{R}_1^{\dagger}\mathbf{R}_1$;
- 5: return \mathbf{C} , $\mathbf{R} = [\mathbf{R}_1^T, \mathbf{R}_2^T]^T$, and $\mathbf{U} = \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}$.

Algorithm 1 here refers to the Near-Optimal Column Selection Algorithm of Boutsidis et al. (2011)

Towards More Efficient Nyström Approximation and CUR Matrix Decomposition [on Arxiv, March 29 2015]

References

Main Paper:

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions. *SIAM Journal on Matrix Analysis and Applications*, 30(2):844881, September 2008.

Woodruff MMDS Slides: http://researcher.watson.ibm. com/researcher/files/us-dpwoodru/mmds.pdf

CUR with Adaptive Sampling Code: https://sites.google.com/site/zjuwss/

CUR in R: http://cran.r-project.org/web/packages/rCUR/rCUR.pdf