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Motivation

“study [low-rank] matrix approximations that are explicitly
expressed in terms of a small numbers of columns and/or rows”

“Main algorithmic result are two randomized algorithms which
take as input A ∈ Rm×n and rank parameter k”

Let C ∈ Rm×c be a subset of columns of A.

1. A′ = CC+A

2. A′ = CUR, where R ∈ Rr×n is a subset of rows of A

For each, independently, with probability 1− δ

‖A−A′‖F ≤ (1 + ε)‖A−Ak‖F

where Ak is the the thresholded SVD.
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First Result/Theorem 1

A′ = CX is a column based matrix approximation to A, or a
CX matrix decomposition, for any X ∈ Rc×n.

Among such a class

C+A = arg minX ‖A−CX‖F

For a given C, the optimal CX = CC+A = PCA.
i.e. PC is the projection matrix onto the colspace of C

Theorem
Given A and k << min{m,n}, a randomized algorithm exists
s.t. either exactly c = O(k2ε−2 log(1/δ)) columns of A are
chosen to construct C, or c = O(k log k ε−2 log(1/δ)) in
expectation, s.t. w.h.p. (1− δ)

‖A−CC+A‖F ≤ (1 + ε)‖A−Ak‖F
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Second Result/ Theorem 2
A′ = CUR is a column-row-based matrix approximation to A,
or a CUR matrix decomposition, for any U ∈ Rc×r.

U will be a generalized inverse of the intersection between C
and R. For C (R), let SC (SR) denote its sampling operator
and DC (DR) a diagonal scaling matrix. Then

I C = ASCDC

I R = DRSTRA
I U = (DRSTRASCDC)+

Theorem
Given A and k << min{m,n}, randomized algorithm exists s.t.
either exactly c = O(k2ε−2 log(1/δ)) columns are chosen and
then r = O(c2ε−2 log(1/δ)) rows are chosen to construct R, OR
c = O(k log k ε−2 log(1/δ)) in expectation and then
r = O(c log c ε−2 log(1/δ)) in expectation, s.t. w.h.p. (1− δ)

‖A−CUR‖F ≤ (1 + ε)‖A−Ak‖F
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Main Idea: Subspace Sampling

Let VA,k ∈ Rn×k be the top k singular vectors. For column
subset selection, the subspace sampling probabilities pi, i ∈ [n]
will satisfy

pi ≥ β
‖[VA,k](i)‖22

k
, i ∈ [n]

Exactly(c) algorithm: For t = 1, . . . , c , 1. Pick it ∈ [n] w.p pi.
2. Set Sit,t = 1 3. Set Dtt = 1/

√
cpit

Expected(c) algorithm: Probabilites are now p̃i = min{1, cpj}.
Go through each element j ∈ [n] and flip a coin with p̃i success
probability. If picked, set Sj,t = 1 and Dtt = 1/

√
p̃j
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Relation to `2 regression

Given input A and target B ∈ Rm×p, compute

Z = min
X
‖B−AX‖F =⇒ Xopt = A+B

Using sampling to get a subspace embedding, consider

Z̃ = min
X
‖DSTB−DSTAX‖F =⇒ X̃opt = (DSTA)+DSTB
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Theorem 3

Constant probability version of Result 1 (with remark to boost
it up to 1− δ).

Proof.
Let PA,k = UA,kU

T
A,k projection on to top k left singular

vectors of A

‖A−CC+A‖F = ‖A− (ASCDC)(ASCDC)+A‖F
≤ ‖A− (ASCDC)(PA,kASCDC)+PA,kA‖F
= ‖A− (C)(PA,kC)+PA,kA‖F
= ‖A− (ASCDC)(AkSCDC)+Ak‖F

(Thm 5)

≤ (1 + ε)‖A−AA+
k Ak‖F

= (1 + ε)‖A−Ak‖F
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Sampling

Challenge: How sample s.t. the column-sampled version of the
top k right singular vectors of A is full rank, i.e.

rank(VT
A,kSCDC) = rank(VT

A,k) = k

Answer: Use subspace sampling. Note that

A(i) = UkΣk[V
T
k ](i) + Uρ−kΣρ−k[V

T
ρ−k]

(i)

so ‖[VT
k ](i)‖22 measures “how much” of A(i) lies in the span of

UA,k
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CUR: Algorithm 2/Theorem 4

Picking rows? qi = 1
c‖[UT

C](i)‖22 (β-dependent accuracy fine)

Input: A ∈ Rm×n, C columns subset of A, r ∈ Z++ and ε
Output: R ∈ Rr×n. W ∈ Rc×r (corresponding rows of C, which
gives U ∈ Rr×c

1. Compute qi

2. (Implicitly) construct SR and DR using Exactly(r) or
Expected(r) algorithm

3. Construct R = DRSTRA

4. Construct W = DRSTRC

5. Let U = W+

Full SVD of C is O(c2m) and U requires O(c2r) + lower order
terms. So the dominating factor is O(mn) in reading A
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`2-regression: Algorithm 3
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Theorem 5

Theorem
Suppose A ∈ Rm×n has rank no greater than k, B ∈ Rm×p,
ε ∈ (0, 1], and Z = minX ‖B−AX‖F where
Xopt = A+B = A+

k B.

Running Algorithm 3 with pi ≥ β
k ‖[UA,k](i)‖22 for some

β ∈ (0, 1] giving output X̃opt.
Then if r = O(k2/(βε2)) with Exactly(r) or r = O(k log k/(βε2))
with Expected(r), we have with constant probability

‖B−AX̃opt‖F ≤ (1 + ε)Z
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Prior art

Sub-optimal and randomized algorithms.

c r rank(U) ‖A − CUR‖2
F ≤ Time

1 k/ε2 k/ε k ‖A − Ak‖2
F + ε‖A‖2

F nnz(A)
2 k/ε4 k/ε2 k ‖A − Ak‖2

F + ε‖A‖2
F nnz(A)

3 (k log k)/ε2 (k log k)/ε4 (k log k)/ε2 (1 + ε)‖A − Ak‖2
F n3

4 (k log k)/ε2 (k log k)/ε2 (k log k)/ε2 (2 + ε)‖A − Ak‖2
F n3

5 k/ε k/ε2 k/ε (1 + ε)‖A − Ak‖2
F n2k/ε

References:
1 Drineas and Kannan. Symposium on Foundations of Computer Science, 2003.

2 Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 2006.

3 Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.

4 Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.

5 Wang and Zhang. Journal of Machine Learning Research, 2013.



Lower bound

Theorem

Fix appropriate matrix A ∈ Rn×n. Consider a factorization CUR,

‖A − CUR‖2F ≤ (1 + ε)‖A − Ak‖2F.

Then, for any k ≥ 1 and for any ε < 1/3:

c = Ω(k/ε),

and
r = Ω(k/ε),

and
rank(U) ≥ k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]



Input-sparsity-time CUR

Theorem

There exists a randomized algorithm to construct a CUR with

c = O(k/ε)

and
r = O(k/ε)

and
rank (U) = k

such that, with constant probability of success,

‖A − CUR‖2F ≤ (1 + ε)‖A − Ak‖2F.

Running time: O (nnz (A) log n + (m + n) · poly (log n, k ,1/ε)) .



Adaptive Sampling

Adaptive Sampling method [Wang ’13] works by

1. Approximating SVD (compute or random projection)

2. Dual Set Sparsification (DSS) Sampling

3. Adaptive Sampling (i.e. based on E = A−CC†A)

Algorithm 1 here refers to the Near-Optimal Column Selection
Algorithm of Boutsidis et al. (2011)

Towards More Efficient Nyström Approximation and CUR
Matrix Decomposition [on Arxiv, March 29 2015]
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Woodruff MMDS Slides: http://researcher.watson.ibm.
com/researcher/files/us-dpwoodru/mmds.pdf

CUR with Adaptive Sampling Code:
https://sites.google.com/site/zjuwss/

CUR in R:
http://cran.r-project.org/web/packages/rCUR/rCUR.pdf
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