Modified from Talk in 2012 For RNLA study group, March 2015

Ming Gu, UC Berkeley mgu@math.berkeley.edu

Low-Rank Approximations, Random Sampling and Subspace Iteration

Content

- Approaches for low-rank matrix approximations
- Random sampling and Subspace iteration
- Numerical experiments
- Future work

Low-Rank Matrix Approximation:

Problem Statement:

Given: mxn matrix A, and 0 <k < min(m,n) = n. Goal: Compute a rank-k *approximation* to A.

- Fast low-rank matrix approximation is key to efficiency of superfast direct solvers for integral equations and many large sparse linear systems.
- Indispensable tool in mining large data sets.
- Randomized algorithms compute accurate truncated SVD.
- Minimum work and communication/Exceptionally high success rate.

Low-Rank Matrix Approximations: Current Approaches

Modified Gram-Schmidt with column pivoting.

More reliable (not reliable)

Rank-Revealing QR factorization. (guaranteed but limited reliability)

> Partial SVD. (limited reliability)

The Lanczos Algorithm. (too much communication)

Truncated SVD (Best quality, but too slow) UWEI CUS

Low-Rank Matrix Approximations: Current Approaches

Modified Gram-Schmidt with column pivoting.

(not reliable)

More Rank-Revealing QR/LU factorization.

(Actually better than random sampling. Talks in April)

Partial SVD. (limited reliability)

The Lanczos Algorithm. (too much communication)

Truncated SVD (Best quality, but too slow)

eliable.

UVVEI CUS

Low-Rank Matrix Approximations: Goals

Highly Efficient

Minimum communication

As accurate/reliable as Truncated SVD

Golden Standard: Truncated SVD

Given mxn matrix with $n \le m$, the SVD of A is

$$A = U \Sigma V^{T} = (u_{1} \quad \cdots \quad u_{n}) \begin{pmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \end{pmatrix} (v_{1} \quad \cdots \quad v_{n})^{T}$$

The rank-k truncated SVD is

$$A_{k} = U_{k} \Sigma_{k} V_{k}^{T} = (u_{1} \cdots u_{k}) \begin{pmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{k} \end{pmatrix} (v_{1} \cdots v_{k})^{T}$$

Theorem [Can't beat A] (Eckart & Young, 1936)

$$Min_{rank(B) \le k} \|A - B\|_{2} = \|A - A_{k}\|_{2} = \sigma_{k+1}$$
$$Min_{rank(B) \le k} \|A - B\|_{F} = \|A - A_{k}\|_{F} = \sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}}$$

Low-rank Approximations: Strong Rank-Revealing QR

Theorem [Limited Warranty] (Gu & Eisenstat, 1994) Given mxn matrix with $n \le m$, there exists a permutation Π ,

$$A \Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} with \quad 1 \le \frac{\sigma_j}{\sigma_j(R_{11})} \le \sqrt{1 + 4k(n-k)}$$
$$j = 1, \cdots, k.$$

- Factorization can be computed in O(mnk) operations.
- Basis for some popular low-rank matrix approximation schemes.
- > Permutation can be arbitrary, excessive communication possible.

Low-rank Approximations: Strong Rank-Revealing QR

Theorem [Limited Warranty] (Gu & Eisenstat, 1994) Given mxn matrix with $n \le m$, there exists a permutation Π ,

$$A \Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} with \ 1 \le \frac{\sigma_j}{\sigma_j(R_{11})} \le \sqrt{1 + 4k(n-k)} \\ j = 1, \cdots, k.$$

- Factorization can be computed in O(mnk) operations.
- Basis for some popular low-rank matrix approximation schemes.
- > Permutation can be arbitrary, excessive communication possible.

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\varSigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\hat{U}_k \hat{\Sigma}_k \hat{V}_k^T$
- > Output: $B = (Q \hat{U}_k) \hat{\Sigma}_k \hat{V}_k^T$

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - and SVD: $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\hat{U}_k \hat{\Sigma}_k \hat{V}_k^T$

• Output: $B = (Q \hat{U}_k) \hat{\Sigma}_k \hat{V}_k^T$

- Easy to implement.
- Very efficient computation.
- Minimum communication.

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - Draw a random nx(k+p) 1. matrix Ω .
 - Compute $QR = A \Omega$ 2.
 - and SVD: $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$ Truncate SVD: $\widehat{U}_k \, \widehat{\Sigma}_k \, \widehat{V}_k^T$ 3.
 - 4.

 $B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$ Output:

- Easy to implement. Very efficient computation.
- Minimum communication.

Thm [(Remarkable) Limited Warranty] (Halko/Martinsson/Tropp, 2011) $\|A - B\|_{2} = O(\sigma_{k+1}) \gg \sigma_{k+1}$

with failure probability 5p^{-p}

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\hat{U}_k \hat{\Sigma}_k \hat{V}_k^T$

• Output: $B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$

> Easy to implement.

> Very efficient computation.

Minimum communication.

Thm [(Remarkable) Limited Warranty] (Halko/Martinsson/Tropp, 2011) $\|A - B\|_2 = O(\sigma_{k+1}) \gg \sigma_{k+1}$ with failure probability 5p^{-p}

> 4 lines of code 40 pages of analysis

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T$

• Output: $B = (Q \hat{U}_k) \hat{\Sigma}_k \hat{V}_k^T$

Easy to implement.

> Very efficient computation.

Minimum communication.

Thm [(Remarkable) Limited Warranty] (Halko/Martinsson/Tropp, 2011) $\|A - B\|_2 = O(\sigma_{k+1}) \gg \sigma_{k+1}$ with failure probability $5p^{-p}$

(For p = 13,
$$5p^{-p} = 1.6 \times 10^{-14}$$
)

Is 10⁻¹⁴ small enough failure chance?

Chance of DNA match = 10^{-14}

For the Truly Motivated, Bound in Full Glory

$$||A - B||_{2} \le \sigma_{k+1} + ||(I - P_{Y})A||_{2}$$

THEOREM 10.8 (Deviation bounds for the spectral error). Frame the hypotheses of Theorem 10.5. Assume further that $p \ge 4$. For all $u, t \ge 1$,

$$\begin{aligned} \|(\mathbf{I} - P_{\mathbf{Y}})A\| \\ \leq \left[\left(1 + t \cdot \sqrt{12k/p}\right) \sigma_{k+1} + t \cdot \frac{e\sqrt{k+p}}{p+1} \left(\sum_{j>k} \sigma_j^2\right)^{1/2} \right] + ut \cdot \frac{e\sqrt{k+p}}{p+1} \sigma_{k+1}, \end{aligned}$$

with failure probability at most $5t^{-p} + e^{-u^2/2}$.

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\hat{U}_k \hat{\Sigma}_k \hat{V}_k^T$

Output: $B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$

- Earlier work by Rokhlin/Tygert (2008)
- Many variations.
- Randomized rank-revealing QR
 (Demmel/Dumitriu/Holtz, 2008; Toledo, 2010)

Algorithm RandSam0

- Input: mxn matrix A, int k, p.
 - 1. Draw a random nx(k+p)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\varSigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T$
- > Output: $B = (Q \hat{U}_k) \hat{\Sigma}_k \hat{V}_k^T$

 Algorithm can work far better than theory predicts.

Improved Randomized Sampling

Algorithm RandSam1

- Input: mxn matrix A, int k, p, c.
 - Draw a random nx(k+p+c) 1. matrix Ω .
 - Compute $QR = A \Omega$ 2.
 - $egin{aligned} Q^T A &= \widehat{U} \ \widehat{\Sigma} \widehat{V}^T \ D &: & \widehat{U}_k \widehat{\Sigma}_k \widehat{V}_k^T \end{aligned}$ and SVD: 3.
 - Truncate SVD: 4.

Output:

$$B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$$

Only change from RandSamO: p becomes p + c

Smallest modification of any algorithm.

Improved Randomized Sampling

Algorithm RandSam1

- Input: mxn matrix A, int k, p, c.
 - 1. Draw a random nx(k+p+c)matrix Ω .
 - 2. Compute QR = A Ω
 - 3. and SVD: $Q^T A = \widehat{U} \, \widehat{\varSigma} \, \widehat{V}^T$
 - 4. Truncate SVD: $\hat{U}_k \hat{\Sigma}_k \hat{V}_k^T$

 $B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$

Only change from RandSamO: p becomes p + c

Smallest modification of any algorithm.

c allows a drastically different error bound, controls accuracy.

p remains in control of failure chance.

Output:

Improved Randomized Sampling

A = 2000x2000 random matrix with geometrically decaying singular values.

p = 10, k = 20.
$$\sigma_1 = 45$$
, $\sigma_{20} = 2$

Accuracy increases with c

Randomized Power Method (I)

Algorithm RandSam2

- Input: mxn matrix A, int k, p, c, q.
 - 1. Draw a random nx(k+p+c) matrix Ω
 - 2. Compute QR of $(AA^T)^q A \Omega$
 - 3. and SVD:
 - 4. Truncate SVD $Q^T A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^T$ $\widehat{U}_k \widehat{\Sigma}_k \, \widehat{V}_k^T$
- Output:

 $B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$

QR needs done carefully for numerical accuracy.

Algorithm is old one when q = 0; but q = 1 far more accurate.

Should converge faster when singular values do not decay very fast.

Thm [Limited Warranty] (Halko/Martinsson/Tropp, 2011)

 $\|A - B\|_{2} = O(\sigma_{k+1}) > \sigma_{k+1}$ with failure probability $5p^{-p}$

Randomized Power Method (I)

Algorithm RandSam2

- Input: mxn matrix A, int k, p, c, q.
 - 1. Draw a random nx(k+p+c) matrix Ω
 - 2. Compute QR of $(AA^T)^q A \Omega$
 - 3. and SVD:
 - 4. Truncate SVQ: $^{T}A = \widehat{U} \, \widehat{\Sigma} \, \widehat{V}^{T}$ $\widehat{U}_{k} \widehat{\Sigma}_{k} \, \widehat{V}_{k}^{T}$
- Output:

$$B = (Q\hat{U}_k)\hat{\Sigma}_k\hat{V}_k^T$$

Traditional Subspace Iteration with random start matrix

QR needs done carefully for numerical accuracy.

Algorithm is old one when q = 0; but q = 1 far more accurate.

Should converge faster when singular values do not decay very fast.

Thm [Limited Warranty] (Halko/Martinsson/Tropp, 2011)

> $\|A - B\|_2 = O(\sigma_{k+1}) > \sigma_{k+1}$ with failure probability $5p^{-p}$

Bounds both stronger and weaker than those for traditional Subspace Iteration

New Error Bound Analysis

THEOREM 5.8. Let $A = U\Sigma V^T$ be the SVD of A, and $0 \le p \le \ell - k$. Further let QB_k be a rank-k approximation computed by Algorithm 2.2. Given any $0 < \Delta \ll 1$, define

$$\mathcal{C}_\Delta = rac{e\sqrt{\ell}}{p+1} \left(rac{2}{\Delta}
ight)^{rac{1}{p+1}} \left(\sqrt{n-\ell+p} + \sqrt{\ell} + \sqrt{2\lograc{2}{\Delta}}
ight).$$

We must have for $j = 1, \dots, k$,

$$\sigma_{j}\left(QB_{k}\right) \geq \frac{\sigma_{j}}{\sqrt{1 + \mathcal{C}_{\Delta}^{2}\left(\frac{\sigma_{\ell-p+1}}{\sigma_{j}}\right)^{4q+2}}},$$

and

$$\| \left(I - QQ^T \right) A \|_F \le \| A - QB_k \|_F \le \sqrt{\left(\sum_{j=k+1}^n \sigma_j^2 \right) + k \mathcal{C}_\Delta^2 \sigma_{\ell-p+1}^2 \left(\frac{\sigma_{\ell-p+1}}{\sigma_k} \right)^{4q}}, \\ \| \left(I - QQ^T \right) A \|_2 \le \| A - QB_k \|_2 \le \sqrt{\sigma_{k+1}^2 + k \mathcal{C}_\Delta^2 \sigma_{\ell-p+1}^2 \left(\frac{\sigma_{\ell-p+1}}{\sigma_k} \right)^{4q}}.$$

with exception probability at most Δ .

Fast Randomized Algorithm with Subsampled random Fourier Transform: $T_{
m struct} \sim mn\log(\ell) + \ell^2 n$

HALKO, MARTINSSON, AND TROPP

Algorithm 4.5: Fast Randomized Range Finder

Given an $m \times n$ matrix \mathbf{A} , and an integer ℓ , this scheme computes an $m \times \ell$ orthonormal matrix \mathbf{Q} whose range approximates the range of \mathbf{A} .

- 1 Draw an $n \times \ell$ SRFT test matrix Ω , as defined by (4.6).
- 2 Form the $m \times \ell$ matrix $\mathbf{Y} = \mathbf{A}\mathbf{\Omega}$ using a (subsampled) FFT.
- 3 Construct an $m \times \ell$ matrix Q whose columns form an orthonormal basis for the range of Y, e.g., using the QR factorization Y = QR.

Numerical Experiment (I): Computing truncated SVD Comparison between randomized algorithm and svds

$$A = (\log |x_i - y_j|)$$

 x_i, y_j disjoint 2D points

Numbers of Matrix-Vector Multiplies

is 4000x4000 matrix,

Tolerance	q = 0	q = 2	q = 4	svds
10^{-6}	143	5×96	9×79	500
10^{-8}	180	5×96	9×87	600
10^{-10}	190	5×96	9×93	600

27

Numerical Experiment (II): Fast Structured Matrix Preconditioners:

T. Davis' SPD Sparse Matrix

A = Bottom Schur Complement of dimension 3300. CG takes 878 iterations for 10^{-12} residual

Maximum off-diagonal rank k	<i>p</i> = 10	p = 20	p = 40
20	75	77	72
40	69	69	69
60	64	61	61

Numerical Experiment (III): Eigenface Comparison with truncated SVD for 200 classifications

| 20
40
60
80
100 | 20406080 | |
|-----------------------------|----------|-----------------------------|----------|-----------------------------|----------|-----------------------------|----------|-----------------------------|----------|--|
| 20
40
60
80
100 | 20406080 | |
| 20
40
60
80
100 | 20406080 | |

Comparison of Numbers of Incorrect Matches

Rank k	p = 10	p = 20	p = 40	Truncated SVD
10	32	25	23	24
20	25	26	25	21
30	21	20	18	17
40	20	17	17	16

```
N = 4000;
x = (pi/2)*(-N:N)/N;
e = ones(2*N+1,1);
B = log((abs(sin(e*x-x'*e'))));
B(\sim isfinite(B)) = 0;
B=B(1:N/2,N/2+1:end);
p = 30;
W = randn(N+N/2+1,p);
BW = B*W;
[QW, RW] = qr(BW, 0);
[UW,SW,VW] = svd(B'*QW,0);
srnd = diag(SW);
[QB,RB,P] = qr(B,0);
sqr = svd(RB(1:p,:));
```


Current Work On Randomized Algorithms

- Randomized Gaussian elimination with complete pivoting
- Randomized spectrum-revealing LU, QR, Cholesky factorizations

(vs. CUR/CX decompositions, pivoted Cholesky factorizations, randomized low-rank matrix approximations)

• Big Data applications.