
Introduction to communication avoiding
algorithms for direct methods of factorization in
Linear Algebra

Laura Grigori

Abstract Modern, massively parallel computers play a fundamental role in a large
and rapidly growing number of academic and industrial applications. However, ex-
tremely complex hardware architectures, which these computers feature, effectively
prevent most of the existing algorithms to scale up to a large number of processors.
Part of the reason behind this is the exponentially increasing divide between the
time required to communicate a floating-point number between two processors and
the time needed to perform a single floating point operation by one of the proces-
sors. Previous investigations have typically aimed at overlapping as much as pos-
sible communication with computation. While this is important, the improvement
achieved by such an approach is not sufficient. The communication problem needs
to be addressed also directly at the mathematical formulation and the algorithmic
design level. This requires a shift in the way the numerical algorithms are devised,
which now need to reduce, or even minimize when possible, the number of commu-
nication instances. Communication avoiding algorithms provide such a perspective
on designing algorithms that minimize communication in numerical linear algebra.
In this document we describe some of the novel numerical schemes employed by
those communication avoiding algorithms, with a particular focus on direct methods
of factorization.

1 Introduction

This document discusses one of the main challenges in high performance computing
which is the increased communication cost, the fact that the time needed to com-
municate a floating-point number between two processors exceeds by huge factors
the time required to perform a single floating point operation by one of the proces-

Laura Grigori
Inria Paris, Alpines, and UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis
Lions, Paris, France, e-mail: Laura.Grigori@inria.fr

1

2 Laura Grigori

sors. Several works have shown that this gap has been increasing exponentially (see
e.g. [37]) and it is predicted that it will continue to do so in the foreseeable future!
The memory wall problem, the disparity between the time required to transfer data
between different levels of the memory hierarchy and the time required to perform
floating point operations, was predicted already in 1995 by Wulf and McKee [72].
However, we are also facing now the inter-processor communication wall. Because
of this, most of the algorithms are not able to scale to a large number of processors
of these massively parallel machines. The slow rate of improvement of latency is
mainly due to physical limitations, and it is not expected that the hardware research
will find a solution to this problem soon. Hence the communication problem needs
to be addressed also at the algorithmic and software level.

The communication gap is already seen and felt in the current, highly optimised
applications, as illustrated by the top panel of figure 1, which displays the perfor-
mance of a linear solver based on iterative methods used in the cosmic microwave
background (CMB) data analysis application from astrophysics. This performance
result is extracted from [44] 1 where a more detailed description of the algorithms
can be found. It shows the cost of a single iteration of conjugate gradient iterative
solver preconditioned by a block diagonal preconditioner, together with the time
spent on computation and communication. These runs were performed on a Cray
XE6 system, each node of the system is composed of two twelve-cores AMD Mag-
nyCours. It can be seen that the communication becomes quickly very costly, po-
tentially dominating the runtime of the solver when more than 6000 cores are used
(each MPI process uses 6 cores). The bottom part of figure 1 displays the perfor-
mance estimated on a model of an exascale machine of a dense solver based on
Gaussian elimination with partial pivoting (GEPP) factorization 2 (see also [42]).
The plot displays the computation to communication ratio as a function of the prob-
lem size, vertical axis, and the number of used nodes, horizontal axis. The plot
shows two regimes, at the top left corner this is the computation which dominates
the run time, while at the bottom right this is the communication. The white region
marks the regime where the problem is too large to fit in memory. We note that
the communication-dominated regime is reached very fast, even for such a com-
putationally intensive operation requiring O(n3) floating point operations (flops) as
shown here (where the matrix to be factored is of size n×n).

1.1 Communication avoiding algorithms

New communication avoiding algorithms have been introduced in the recent years
that minimize communication and are as stable as classic algorithms. We describe
in more details the communication complexity of direct methods of factorization in
section 2. Then in the following sections we describe communication avoiding al-

1 Courtesy of M. Szydlarski.
2 Courtesy of M. Jacquelin.

Communication avoiding algorithms 3

0.010

0.100

1.000

10.000

 64 128 256 512 1024

Ti
m

e
[s

]

Number of MPI processes

1 It. with MBD
Computation
Communication

Fig. 1 Communication bottleneck of two algorithms, a dense linear solver based on LU factoriza-
tion with partial pivoting (bottom figure) and a sparse iterative solver applied to the map-making
problem in astrophysics (top figure, using data extracted from [44]).

gorithms for direct methods of factorization that attain the lower bounds on commu-
nication discussed in section 2 (up to polylogarithmic factors). Section 3 describes
CALU, a communication avoiding LU factorization. Section 4 presents CAQR, a
communication avoiding QR factorization, while section 5 discusses a communica-
tion avoiding rank revealing factorization. Section 5.3 focuses on computing a low
rank matrix approximation. We assume for simplicity real matrices, but the algo-
rithms can be generalized to complex matrices.

This document follows the presentation of the communication avoiding algo-
rithms from the original papers that introduced them. The communication avoiding
LU factorization is introduced in [40, 41], while the communication avoiding QR
factorization is introduced in [24], and with many more details in the technical re-
port [21]. A follow-up paper [4] allows to reconstruct Householder vectors such
that it is sufficient to replace the panel factorization in a QR factorization to obtain
a communication avoiding algorithm. A communication avoiding rank revealing
QR factorization is presented in [20], while an LU factorization more stable than
Gaussian elimination with partial pivoting is presented in [55]. When executed in

4 Laura Grigori

parallel, these algorithms reduce significantly the number of messages exchanged
with respect to classic algorithms as for example implemented in LAPACK [1]
and ScaLAPACK [12]. They sometimes perform redundant computations, however
these computations represent lower order terms with respect to the computational
complexity of classic algorithms. In practice, when used with advanced scheduling
techniques, the new algorithms lead to important speedups over existing algorithms
[25, 26].

We cite here several other communication avoiding algorithms that were intro-
duced in the recent years, but they are not described in this document. Communi-
cation avoiding algorithms for singular value decomposition (SVD) and eigenvalue
problems are described in [3]. Bounds on communication for fast matrix multipli-
cation are introduced in [7] and communication optimal algorithms for Strassen
matrix multiplication are discussed in [6]. For sparse matrices, the communication
complexity of the Cholesky factorization is studied in [39], while a communication
optimal sparse matrix matrix multiplication algorithm is presented in [2].

Let’s now give an example of classic algorithms that do not attain the lower
bounds on communication. Several direct methods of factorization require some
form of pivoting to preserve numerical stability, or reveal the rank of a matrix. The
classic pivoting schemes, as partial pivoting in LU factorization or column pivoting
in rank revealing QR, imply that the subsequent parallel algorithm cannot attain the
lower bounds on communication. For a machine with one level of parallelism, the
number of messages exchanged is on the order of n logP, where n is the number of
columns of the matrix and P is the number of processors used in the algorithm. For
square matrices and when the memory per processor is of size O(n2/P), the lower
bound on number of messages is Ω(

√
P) (see equation (4) in section 2). Hence

in this case minimizing communication requires to invent novel pivoting schemes.
There are examples in the literature of pivoting schemes, as for example proposed by
Barron and Swinnerton-Dyer in their notable work [10], that minimize communica-
tion on sequential machines. At that time the matrices were of dimension 100×100
and the pivoting scheme was stable. But as shown in [40], this method can become
unstable for sizes of the matrices we encounter nowadays. The solution that we have
developed for LU factorization is described in section 3.

For iterative methods of factorization, most of the research around communi-
cation avoiding algorithms focuses on Krylov subspace methods. Those methods,
as Conjugate Gradient (CG) [48], Generalized Minimal RESidual (GMRES) [63],
Bi-Conjugate Gradient STABilized (Bi-CGSTAB) [70] are the most used iterative
methods for solving linear systems of the form Ax = b, where A is very large and
sparse. Starting from an initial solution x0 and an initial residual r0, a new approxi-
mate solution xk is computed at iteration k by minimizing a measure of the error over
x0 +Kk(A,r0), where Kk(A,r0) = span[r0,Ar0, . . . ,Ak−1r0,] is the Krylov subspace
of dimension k. Every iteration requires computing the product of A (and in some
cases of AT) with a vector and several other operations as dot products related to the
orthogonalization of the vectors of the basis. In the parallel case, the input matrix
and the vectors are distributed over processors. Hence every iteration requires point
to point communications for multiplying A with a sparse vector and collective com-

Communication avoiding algorithms 5

munications for the dot products. On a large number of processors, the collective
communications start dominating the overall cost of the iterative process. There are
two main approaches used to reduce communication. The first approach relies on so
called s-step methods [17, 31, 51, 15] that compute s vectors of the Krylov basis with
no communication and then orthogonalize them against the previous vectors of the
basis and against themselves. With this approach, the communication is performed
every s iterations and this results in an overall reduction of the communication cost
of the iterative method [15, 22, 51]. A second approach, described in [43], relies on
enriching the subspace used in these methods that allows, at the cost of some extra
computation, to reduce communication, while ensuring theoretically that the con-
vergence is at least as fast as the convergence of the corresponding existing Krylov
method. For this, first the problem is partitioned into P domains, and at each itera-
tion of the iterative method, P dimensions are added to the search space instead of
one dimension as in classic methods. Experimental results presented in [43] show
that enlarged CG converges faster than CG on matrices arising from several different
applications. This method is related to block Krylov subspace methods [59]. There
are few preconditioners developed in this context, one of them is the communication
avoiding incomplete LU preconditioner described in [43].

1.2 Different previous approaches for reducing communication

Most of the approaches investigated in the past to address this problem rely on
changing the schedule of the computation such that the communication is over-
lapped as much as possible with the computation. However such an approach can
lead to limited improvements. Ghosting is a different technique for reducing com-
munication, in which a processor ghosts some data and performs redundantly some
computation, thus avoiding waiting to receive the results of this computation from
other processors. But the dependency between computations in linear algebra oper-
ations prevents a straightforward application of ghosting. There are operations for
which ghosting would require storing and performing on one processor an important
fraction of the entire computation. Cache-oblivious algorithms represent a different
approach introduced in 1999 for Fast Fourier Transforms [33], and then extended to
graph algorithms, dynamic programming, etc. They were also applied to several op-
erations in linear algebra (see e.g. [30, 46, 68]) as dense LU and QR factorizations.
These cache-oblivious factorizations are computed through recursive calls of linear
algebra operations on sub-blocks of the matrix to be factored. Since the sub-blocks
become smaller and smaller, at some level of the recursion they fit in memory, and
overall the amount of data transferred between different levels of the memory hier-
archy is reduced. However there are cases in which the number of messages is not
reduced and they perform asymptotically more floating-point operations.

6 Laura Grigori

1.3 Notations

We use Matlab like notation. We refer to the element of A at row i and column j
as A(i, j). The submatrix of A formed by rows from i to j and columns from k to
s is referred to as A(i : j,k : s). The matrix formed by concatenating two matrices
A1, A2 stacked atop one another is referred to as [A1;A2]. The matrix formed by
concatenating two matrices one next to another is referred to as [A1,A2]. The matrix
formed by the absolute value of the elements of A is referred to as |A|. The identity
matrix of size n×n is referred to as In.

To estimate the performance of an algorithm, we use the α−β − γ model. With
this model, the time required for transferring one message of n words between two
processors is estimated as β · n+α , where β is the interprocessor bandwidth cost
per word and α is the interprocessor latency. Given the time required to compute
one floating point operation (flop) γ , the time of a parallel algorithm is estimated as,

T = γ ·# flops+β ·# words+α ·# messages, (1)

where # f lops represents the computation, #words the volume of communication,
and #messages the number of messages exchanged on the critical path of the parallel
algorithm.

2 Lower bounds on communication for dense linear algebra

In this section we review recent results obtained on the communication complexity
of dense linear algebra operations. In the sequential case, these results consider a
machine with two levels of memory, at the first level the memory has size M words,
at the second level, the memory has infinite size but the access to the data is much
slower. In the parallel case, they assume one level of parallelism, that is a parallel
machine with P processing units connected through a fast network. One notable
previous theoretical result on communication complexity is a result derived by Hong
and Kung [52] providing lower bounds on the volume of communication of dense
matrix multiplication for sequential machines. These bounds are extended to dense
parallel matrix multiplication in [53] (with a different approach used for the proofs).
It was shown in [21] that these bounds hold for LU and QR factorizations (under
certain assumptions) and that they can be used to also identify lower bounds on
the number of messages. General proofs that hold for almost all direct dense linear
algebra operations are given in [8]. Consider a matrix of size m× n and a direct
dense linear algebra algorithm as matrix multiplication, LU, QR, or rank revealing
QR factorization, executed on a sequential machine with fast memory of size M
words and slow memory of infinite size. The number of words and the number of
messages transferred between slow and fast memory is bounded as,

Communication avoiding algorithms 7

words≥Ω

(
mn2

M1/2

)
, # messages≥Ω

(
mn2

M3/2

)
. (2)

The bounds can be obtained by using the Loomis-Whitney inequality, as proven in
[8, 53], which allows to bound the number of flops performed given an amount of
data available in the memory of size M. Equation (2) can be used to derive bounds
for a parallel program executed on P processors. For simplicity we consider in the
following square dense matrices of size n× n. Assuming that at least one proces-
sor does n3/P floating point operations, and that the size of the memory of each
processor M has a value between n2/P and n2/P2/3, the lower bounds become

words≥Ω

(
n3

P ·M1/2

)
, # messages≥Ω

(
n3

P ·M3/2

)
. (3)

When the memory of each processor is on the order of n2/P, that is each processor
has enough memory to store /1/P-th of the matrices involved in the linear algebra
operation and there is no replication of the data, the lower bounds become

words≥Ω

(
n2
√

P

)
, # messages≥Ω

(√
P
)
. (4)

Algorithms that attain these bounds are referred to as 2D algorithms. Cannon’s ma-
trix multiplication [14] is such an algorithm that attains the lower bounds on com-
munication from (4). The lower bounds from (3) become smaller when the memory
size is increased, and this until M is on the order of n2/P2/3. Indeed, even in the
case of infinite memory M, it is shown in e.g. [5] that at least one processor must
communicate Ω(n2/P2/3) words of data. This leads to the following lower bounds,

words≥Ω

(
n2

P2/3

)
, # messages≥Ω (1) . (5)

Algorithms that attain the lower bounds on communication in the case when M is
larger than n2/P are referred to as 3D algorithms. In these algorithms, the matrices
are replicated over a 3D grid of processors.

These lower bounds on communication allow to identify that most of the exist-
ing algorithms as implemented in well-known numerical libraries as ScaLAPACK
and LAPACK do not minimize communication. In the rest of this document we
will discuss 2D algorithms that store only one copy of the matrices involved in the
computation and use a memory on the order of n2/P per processor (for square ma-
trices). We discuss only the parallel case, however the algorithms can be adapted to
minimize communication between two levels of memory in the sequential case.

8 Laura Grigori

3 Communication avoiding LU factorization

Given a matrix A ∈ Rm×n, m ≥ n, the LU factorization decomposes the matrix A
into the product L ·U , where L is a lower triangular matrix of size m× n with unit
diagonal and U is an upper triangular matrix of size n× n. This algorithm can be
written as three nested loops, whose order can be interchanged. A so-called right-
looking version of the algorithm is presented in Algorithm 1. To avoid division by
small elements and preserve numerical stability, this algorithm uses partial pivoting.
During the factorization, for each column k, the element of maximum magnitude in
A(k : n,k) is permuted to the diagonal position before the column is factored. Then,
multiples of row k are added to all subsequent rows k+1 to m to annihilate all the
nonzero elements below the diagonal. This algorithm requires mn2−n3/3 flops. An
in-place version can be easily obtained by overwriting the matrix A with the matrices
L and U .

Algorithm 1 LU factorization with partial pivoting (GEPP)
Require: A ∈ Rm×n

1: Let L ∈ Rm×n be initialized with identity matrix and U ∈ Rn×n with zero matrix.
2: for k = 1 to n−1 do
3: Let A(i,k) be the element of maximum magnitude in A(k : m,k)
4: Permute row i and row k
5: U(k,k : n) = A(k,k : n)
6: L(k+1 : m,k) = A(k+1 : m,k)/A(k,k)
7: for i = k+1 : m do
8: for j = k+1 : n do
9: A(i, j) = A(i, j)−A(i,k)A(k, j)

10: end for
11: end for
12: end for
13: U(n,n) = A(n,n)

Typically, this factorization is implemented by using a block algorithm, in which
the matrix is partitioned into blocks of columns of size b. In the remaining of this
document, without loss of generality, we consider that n and m are multiples of b.
At the first iteration, the matrix A is partitioned as

A =

[
A11 A12
A21 A22

]
, (6)

where A11 is of size b× b, A21 is of size (m− b)× b, A12 is of size b× (n− b),
and A22 is of size (m−b)× (n−b). With a right looking approach, the block algo-
rithm computes the LU factorization with partial pivoting of the first block-column
(panel), it determines the block U12, and then it updates the trailing matrix A22. The
factorization obtained after the first iteration is

Communication avoiding algorithms 9

Π1A =

[
L11
L21 Im−b

]
·
[
U11 U12

A1
22

]
, (7)

where A1
22 = A22−L21U12. The algorithm continues recursively on the trailing ma-

trix A1
22.

Parallel block LU factorization

We describe now briefly a parallel block LU algorithm by following its implemen-
tation in ScaLAPACK (PDGETRF routine). The input matrix is distributed over a
Pr×Pc grid of processors using a bidimensional (2D) block cyclic layout with blocks
of size b×b. As an example, with a 2×2 grid of processors, the blocks of the matrix
are distributed over processors asP0 P1 P0 P1 . . .

P2 P3 P2 P3 . . .
...

...
...

...
. . .

 .

Algorithm 2 LU factorization with partial pivoting using a block algorithm
Require: A ∈ Rm×n distributed over a 2D grid of processors P = Pr×Pc
1: Let L ∈ Rm×n be initialized with identity matrix and U ∈ Rn×n with zero matrix
2: for k = 1 to n/b do
3: kb = (k−1) ·b+1, ke = kb +b−1
4: Compute panel factorization using partial pivoting (processors in the same column of the

process grid)

ΠkA(kb : m,kb : ke) = L(kb : m,kb : ke) ·U(kb : ke,kb : ke)

5: Broadcast pivot information along the rows of the process grid, pivot by applying the per-
mutation matrix Πk on the entire matrix (all processors)

A = ΠkA

6: Broadcast right L(kb : ke,kb : ke), compute block row of U (processors in the same row of
the process grid)

U(kb : ke,ke +1 : n) = L(kb : ke,kb : ke)
−1A(kb : ke,ke +1 : n)

7: Broadcast along rows of the process grid L(ke +1 : m,kb : ke), broadcast along columns of
the process grid U(kb : ke,ke +1 : n), update trailing matrix (all processors)

A(ke +1 : m,ke +1 : n) = A(ke +1 : m,ke +1 : n)−L(ke +1 : m,kb : ke) ·U(kb : ke,ke +1 : n)

8: end for

10 Laura Grigori

Algorithm 2 presents the main operations executed at each iteration of the block
LU factorization. In terms of number of messages, it can be seen that, except for the
panel factorization, all the other operations rely on collective communications which
require exchanging O(logPr) or O(logPc) messages. Hence, the latency bottleneck
lies in the panel factorization, where the LU factorization is performed column by
column as in Algorithm 1. For each column, finding the element of maximum mag-
nitude requires a reduce-type communication based on exchanging logPr messages.
In other words, partial pivoting requires performing a number of O(n logPr) collec-
tive communications, which depends on n, the number of columns of the matrix.
Since the lower bound on number of messages in equation (4) is Ω(

√
P) for square

matrices, LU factorization with partial pivoting as implemented in ScaLAPACK
does not allow to minimize communication on a parallel machine. However we note
that recently it has been shown that with a sophisticated data layout, it is possible to
minimize data movement on a sequential machine for LU with partial pivoting [9].

3.1 Tournament pivoting

Communication avoiding LU based on tournament pivoting was introduced in [40,
41] where a more detailed description can be found. We refer to this factorization
as CALU. As in a classic LU factorization, the matrix is partitioned in blocks of b
columns. At the first iteration, consider the matrix A partitioned as

A =

[
A11 A12
A21 A22

]
,

where A11 is of size b×b, A21 is of size (m−b)×b, A12 is of size b× (n−b), and
A22 is of size (m− b)× (n− b). With tournament pivoting, the panel factorization
is performed as following. A preprocessing step plays a tournament to find at low
communication cost b pivots that can be used to factor the entire panel. The selected
b rows are permuted into the leading positions and they are used as pivots for the LU
factorization of the entire panel (which is performed hence with no permutation).
The preprocessing step is performed as a reduction operation where at each node of
the reduction tree Gaussian elimination with partial pivoting (GEPP) is used to select
b pivot rows. This strategy has the property that the communication for computing
the panel factorization does not depend on the number of columns, but depends
only on the number of processors. We refer to this procedure for computing the
LU factorization of the panel as TSLU. The communication avoiding LU algorithm
computes then the block U12, updates the trailing matrix A22, and a factorization as
in equation (7) is obtained. It then continues recursively on the updated block A1

22.
We explain now in more details tournament pivoting. Given P processors, the

panel is partitioned into P block rows. We consider here the simple case P = 4, a
binary reduction tree, and we suppose that m is a multiple of 4. The first panel is
partitioned as A(:,1 : b) = [A00 ; A10 ; A20 ; A30]. Each processor p has associated

Communication avoiding algorithms 11

a block row Ap0. At the first step of the reduction, b rows are selected from each
block Ap0 by using GEPP. The selected rows correspond to the pivot rows used
during the LU factorization. After this step we obtain 4 sets of b candidate rows. In
the second step, the sets are combined two by two, we obtain two matrices of size
2b× b each. From each matrix we select b rows by using again GEPP. In the last
step of tournament pivoting, the two sets of candidate rows form a new matrix of
size 2b× b from which the final b rows are selected. This algorithm is illustrated
in figure 2 from [40], where the function f (Ai j) computes the GEPP factorization
of Ai j and returns the b pivot rows used by partial pivoting. The input matrix Ai j
of dimension 2b× b is formed by the two sets of candidate rows selected by the
previous steps of tournament pivoting.

A30

A20

A10

A00

→
→
→
→

f (A30)

f (A20)

f (A10)

f (A00)

↗
↘

↗
↘

f (A11)

f (A01)

↗
↘

f (A02)

Fig. 2 TSLU with binary tree based tournament pivoting. This figure is from [40]. Copyright
c©[2011] Society for Industrial and Applied Mathematics. Reprinted with permission. All rights

reserved.

Algorithm 3 Parallel TSLU factorization
Require: P processors, i is my processor’s index, all reduction tree with height L = logP
Require: A ∈Rm×n,m� n, distributed in block row layout; Ai,0 is the block of rows belonging to

my processor i
1: Compute Πi,0Ai,0 = Li,0Ui,0 using GEPP
2: for each level k in the reduction tree from 1 to L do
3: s = bi/2kc, f = 2kbi/2kc, j = f +(i+2k−1) mod 2k

4: si = bi/2k−1c, s j = b j/2k−1c
5: Non-blocking send (Πsi,k−1Asi,k−1)(1 : n,1 : n) to processor j
6: Non-blocking receive (Πs j ,k−1As j ,k−1)(1 : n,1 : n) from processor j
7: Wait until the previous send and receive have completed

8: Form the matrix As,k of size 2n×n as As,k =

[
(Πsi,k−1Asi,k−1)(1 : n,1 : n)
(Πs j ,k−1As j ,k−1)(1 : n,1 : n)

]
9: Compute Πs,kAs,k = Ls,kUs,k using GEPP

10: end for
11: Determine the final permutation Π , such that (ΠA)(1 : n, :) are the k selected rows at the end

of tournament
12: All P processors compute the Gaussian elimination with no pivoting of their blocks, ΠA= LU
Ensure: U0,L is the U factor obtained at step 12 for all processors i.

Algorithm 3 presents a pseudo-code for the parallel implementation of TSLU on
P processors. It follows the presentation of TSLU in [40], where a more detailed
description can be found. For simplicity, we consider that P is a power of 2. We
consider here an all reduction tree based on a butterfly scheme, whose height is

12 Laura Grigori

L = logP. The matrix A is distributed block row-wise over processors. The levels
of the tree are numbered from 0 to L, where the first level 0 corresponds to the
phase with no communication and each leaf node represents a processor. At the first
level k = 1, each node s has associated two processors i and i− 1, where i is an
odd number. The two processors exchange their set of candidate rows. Then each
processor forms a matrix with the two sets of candidate rows and selects a new set
of candidate rows using GEPP. In general, at a given level k, processor i participates
to the computation associated with node numbered s = bi/2kc. The first processor
associated with this node is f = 2kbi/2kc and the processor exchanging information
with this processor is numbered f + 2k−1. Processor i exchanges information with
processor j = f +(i+2k−1) mod 2k. They exchange the candidate rows that were
selected at the previous level k−1 in the reduction tree at the children nodes si and
s j.

TSLU requires exchanging logP messages among processors. This allows the
overall CALU algorithm to attain the lower bounds on communication in terms of
both number of messages and volume of communication. When the LU factoriza-
tion of a matrix of size n×n is computed by using CALU on a grid of P = Pr×Pc
processors, as shown in [40] where a more detailed description can be found, the
parallel performance of CALU in terms of number of messages, volume of commu-
nication, and flops, is

TCALU (m,n,P) ≈ γ ·
(

1
P

(
mn2− n3

3

)
+

1
Pr

(
2mn−n2)b+

n2b
2Pc

+
nb2

3
(5log2 Pr−1)

)
+ β ·

((
nb+

3n2

2Pc

)
log2 Pr +

1
Pr

(
mn− n2

2

)
log2 Pc

)
+ α ·

(
3n
b

log2 Pr +
3n
b

log2 Pc

)
. (8)

To attain the lower bounds on communication, an optimal layout can be chosen
with Pr = Pc =

√
P and b = log−2 (√P

)
· n√

P
. The blocking parameter b is chosen

such that the number of messages attains the lower bound on communication from
equation (4), while the number of flops increases only by a lower order term. With
this layout, the performance of CALU becomes,

TCALU (m,n,P =
√

P×
√

P) ≈ γ ·
(

1
P

2n3

3
+

5n3

2P log2 P
+

5n3

3P log3 P

)
+ β · n2

√
P

(
2log−1 P+1.25logP

)
+ α ·3

√
P log3 P. (9)

We note that GEPP as implemented for example in ScaLAPACK (PDGETRF rou-
tine) has the same volume of communication as CALU, but requires exchanging a
factor on the order of b more messages than CALU.

Communication avoiding algorithms 13

3.2 Pivoting strategies and numerical stability

The backward stability of the LU factorization depends on the growth factor gW ,
defined as,

gW =
maxi, j,k |A(k)(i, j)|

maxi j |A(i, j)|
, (10)

where A(k)(i, j) denotes the entry in position (i, j) obtained after k steps of elimina-
tion. This is illustrated by the following Lemma 1.

Lemma 1 (Lemma 9.6, section 9.3 of [49]). Let A = LU be the Gaussian elimina-
tion without pivoting of A. Then ‖|L||U |‖∞ is bounded using the growth factor gW
by the relation ‖|L||U |‖∞ ≤ (1+2(n2−n)gW)‖A‖∞.

A comparison of the upper bound of the growth factors obtained by different
pivoting strategies is given in Table 1. All the results discussed in this section hold
in exact arithmetic. The growth factor of CALU is obtained by using the fact that
performing CALU on a matrix A is equivalent with performing GEPP on a larger
matrix formed by blocks from the original matrix A and blocks of zeros. In addi-
tion to partial pivoting (GEPP) and CALU, we also include in this table the growth
factor of the LU factorization with panel rank revealing pivoting (LU PRRP) and
its communication avoiding version (CALU PRRP), presented in [55]. We observe
that the upper bound of the growth factor is larger for CALU than for GEPP. How-
ever many experiments presented in [40] show that in practice CALU is as stable as
GEPP. There is one particular case of nearly singular matrices in which CALU can
lead to a large growth factor, and a solution to this case is presented in a paper in
preparation [23].

Table 1 Bounds for the growth factor gW obtained from different pivoting strategies for a matrix
of size m×n. CALU PRRP and LU PRRP select pivots using strong rank revealing QR (that uses
a parameter τ typically equal to 2). The reduction tree used during tournament pivoting is of height
logP.

CALU GEPP CALU PRRP LU PRRP
Upper bound 2n(logP+1)−1 2n−1 (1+ τb)(n/b−1) logP ·2b−1 (1+ τb)n/b−1 ·2b−1

3.3 Selection of references for LU factorization

The LU factorization has been largely studied in the litterature, and we give here
only several references. One of the first references (if not the first) to a block al-
gorithm is [10], a paper by Barron and Swinnerton-Dyer. The authors were inter-
ested in solving a linear system of equations on EDSAC 2 computer, by using a

14 Laura Grigori

magnetic-tape store. Hence they were interested in using as much as possible the
data in main store, and reduce the number of transfers between magnetic tape and
main store. They introduce two algorithms, the first one uses a pivoting strategy
referred to nowadays as pairwise pivoting, the second one is the block LU factor-
ization presented at the beginning of this section. The numerical stability of the LU
factorization is studied for example in [49, 50, 69, 71]. Techniques as pairwise piv-
oting and block pivoting are studied in [65, 69]. In [69] it is shown experimentally
that two factors are important for the numerical stability of the LU factorization,
the elements of L are bounded in absolute value by a small number and the correc-
tion introduced at each step of the factorization is of rank 1. The latter property is
satisfied by GEPP, CALU, LU PRRP, and CALU PRRP. Pairwise pivoting, parallel
pivoting and their block versions do not satisfy this property, and block parallel piv-
oting can lead to an exponential growth factor [69]. As shown in [40], for matrices
with more than 212 rows and columns, block pairwise pivoting leads to a growth of
gW which is faster than linear. Potentially this pivoting strategy can become unstable
for very large matrices.

4 Communication avoiding QR factorization

The QR factorization decomposes a matrix A ∈ Rm×n as A = QR, where Q ∈ Rm×m

is orthogonal and R ∈Rm×n. We can further decompose the factors into Q1 ∈Rm×n,
Q2 ∈ Rm×(m−n), and the upper triangular matrix R1 ∈ Rn×n to obtain the factoriza-
tion

A = QR =
[
Q1 Q2

][R1
0

]
= Q1R1. (11)

If A is full rank, the thin factorization Q1R1 is unique (modulo signs of diagonal
elements of R). We consider in this document the QR factorization based on House-
holder transformations. Algorithm 4 presents such a factorization. A Householder
transformation is a symmetric and orthogonal matrix of the form H = I− 2

yT y yyT ,
which is independent of the scaling of the vector y. When applied to a vector x, it
reflects x through the hyperplane span(y)⊥.

At each iteration k of the QR factorization from Algorithm 4, the Householder
matrix Hk = I− τkykyT

k is chosen such that all the elements of A(k : m,k) are anni-
hilated, except the first one, HkA(k : m,k) =±‖A(k : m,k)‖2e1. For more details on
how to compute the Householder matrix, the reader can refer to [35, 49] or to the
LAPACK implementation [1]. We obtain

QT A = HnHn−1 . . .H1A = R,

Q = (I− τ1y1yT
1) . . .(I− τnynyT

n).

A block version of this algorithm can be obtained by using a storage efficient
representation of Q [64],

Communication avoiding algorithms 15

Algorithm 4 QR factorization based on Householder transformations
Require: A ∈ Rm×n

1: Let R ∈ Rn×n be initialized with zero matrix and Y ∈ Rm×n with identity matrix
2: for k = 1 to n do

. Compute Householder matrix Hk = I− τkykyT
k s.t. HkA(k : m,k) =±‖A(k : m,k)‖2e1. Store

yk in Y () and τk in T (k)
3: R(k,k) =−sgn(A(k,k)) · ‖A(k : m,k)‖2
4: Y (k+1 : m,k) = 1

R(k,k)−A(k,k) ·A(k+1 : m,k) . vector yk

5: T (k) = R(k,k)−A(k,k)
R(k,k) . scalar τk

. Update trailing matrix A(k : m,k+1 : n)
6: A(k : m,k+1 : n) = (I−Y (k+1 : m,k)T (k)Y (k+1 : m,k)T) ·A(k : m,k+1 : n)
7: R(k,k+1 : n) = A(k,k+1 : n)
8: end for

Ensure: A = QR, where Q = H1 . . .Hn = (I−τ1y1yT
1) . . .(I−τnynyT

n), the Householder vectors yk
are stored in Y , and T is an array of size n.

Q = (I− τ1y1yT
1) . . .(I− τnynyT

n) = I−Y TY T , (12)

where Y is the matrix containing the Householder vectors as obtained in Algorithm
4 and T is computed from Y and the scalars τk stored in T . As example, for n = 2,
the compact representation is obtained as follows,

Y = [y1,y2], T =

[
τ1 −τ1yT

1 y2τ2
0 τ2

]
.

The product of two compact representations can be represented by one compact
representation as follows [30],

Q = (I−Y1T1Y T
1)(I−Y2T2Y T

2) = (I−Y TY T),

Y = [Y1,Y2],

T =

[
T1 −T1Y T

1 Y2T2
0 T2

]
.

A block algorithm for computing the QR factorization is obtained by partitioning
the matrix A of size m×n as

A =

[
A11 A12
A21 A22

]
, (13)

where A11 is of size b× b, A21 is of size (m− b)× b, A12 is of size b× (n− b),
and A22 is of size (m− b)× (n− b). The first step of the block QR factorization
algorithm computes the QR factorization of the first b columns [A11;A21] to obtain
the following factorization,

A =

[
A11 A12
A21 A22

]
= Q1

[
R11 R12

A1
22

]
.

16 Laura Grigori

The algorithm continues recursively on the trailing matrix A1
22. The algebra of block

QR factorization is presented in Algorithm 5.

Algorithm 5 QR factorization based on Householder transformations using a block
algorithm
Require: A ∈ Rm×n

1: Let R ∈ Rm×n be initialized with zero matrix
2: for k = 1 to n/b do
3: kb = (k−1) ·b+1, ke = kb +b−1
4: Compute by using Algorithm 4 the factorization

A(kb : m,kb : ke) = QkR(kb : ke,kb : ke)

5: Compute the compact representation Qk = I−YkTkY T
k

6: Apply QT
k on the trailing matrix

A(kb : m,ke +1 : n) = (I−YkT T
k Y T

k)A(kb : m,ke +1 : n)

= A(kb : m,ke +1 : n)−Yk
(
T T

k
(
Y T

k (A(kb : m,ke +1 : n))
))

7: R(kb : ke,ke +1 : n) = A(kb : ke,ke +1 : n)
8: end for

Ensure: A = QR, where Q = (I−Y1T1Y T
1) . . .(I−Yn/bTn/bY T

n/b)

A parallel implementation of the QR factorization as implemented in ScaLA-
PACK, PDGEQRF routine, considers that the matrix A is distributed over a grid of
processors P = Pr ×Pc. We do not describe here in detail the parallel algorithm.
We note that similarly to the LU factorization, the latency bottleneck lies in the
QR factorization of each panel, that is based on Algorithm 4. The computation of a
Householder vector at each iteration k of Algorithm 4 requires computing the norm
of column k. Given that the columns are distributed over Pr processors, computing
the norm of each column requires a reduction among Pr processors. Hence overall
a number of messages proportional to the number of columns of A needs to be ex-
changed during PDGEQRF. Such an algorithm cannot attain the lower bounds on the
number of messages. We note however that PDGEQRF attains the lower bound on
the volume of communication.

4.1 Communication avoiding QR factorization for a tall and skinny
matrix: TSQR

Consider a matrix A∈Rm×n for which m� n. TSQR is a QR factorization algorithm
that allows to minimize communication between different processors or between
different levels of the memory hierarchy. It is performed as a reduction operation,
in which the operator used at each step of the reduction is a QR factorization. We
describe here the parallel case, for more details the reader is referred to [21]. We

Communication avoiding algorithms 17

assume that the matrix A is distributed over P processors by using a block row
distribution. We consider in the following that P = 4, m is a multiple of 4, and the
matrix A is partitioned among processors as,

A =


A00
A10
A20
A30

 , (14)

where Ai0, i = 0, . . . ,3 is of dimension m/4× n. At the first step of TSQR, each
processor computes locally a QR factorization,

A =


A00
A10
A20
A30

=


Q00R00
Q10R10
Q20R20
Q30R30

=


Q00

Q10
Q20

Q30




R00
R10
R20
R30

 . (15)

At the second step, the upper triangular factors Ri0, i = 1 : 4 are grouped into pairs,
and each pair is factored in parallel as,

R00
R10
R20
R30

=

[
Q01R01
Q11R11

]
=

[
Q01

Q11

][
R01
R11

]
. (16)

At the last step the resulting upper triangular factors are factored as,[
R01
R11

]
= Q02R02. (17)

The QR factorization obtained by TSQR based on a binary tree is,

A = QR02, (18)

where

Q =


Q00

Q10
Q20

Q30

 ·[Q01
Q11

]
·Q02. (19)

The matrix Q is an orthogonal matrix formed by the product of three orthogonal ma-
trices (the dimensions of the intermediate factors are chosen such that their product
can be written as above). Unless it is required, the matrix Q is not formed explicitely,
but it is stored implicitely. The QR factorization used at each step of TSQR can be
performed by using Algorithm 4 or any other efficient sequential QR factorization
(as recursive QR [30]).

By using an arrow notation similar to CALU, a binary tree based parallel TSQR
factorization is represented in Figure 3. Algorithm 6 presents parallel TSQR by fol-

18 Laura Grigori

lowing its presentation from [21]. The notation used for the nodes and the levels of
the all reduction tree is the same as in Algorithm 3. It can be easily seen that parallel
TSQR requires exchanging only logP messages, and thus it minimizes communica-
tion. It exchanges the same volume of communication as the ScaLAPACK imple-
mentation of Householder QR (PDGEQR2 routine), (n2/2) · logP words. In terms
of floating point operations, TSQR performs 2mn2/P+(2n3/3) · logP flops, while
PDGEQR2 performs 2mn2/P− (2n3)/(3P) flops.

A30

A20

A10

A00

→
→
→
→

R30

R20

R10

R00

↗
↘

↗
↘

R11

R01

↗
↘

R02

Fig. 3 Binary tree based TSQR. This figure is from [24]. Copyright c©[2012] Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved.

Algorithm 6 Parallel TSQR factorization
Require: P processors, i is my processor’s index, all reduction tree with height L = logP
Require: A ∈ Rm×n,m� n, distributed in a block row layout; Ai,0 is the block of rows belonging

to my processor i
1: Compute QR factorization Ai,0 = Qi,0Ri,0
2: for each level k in the reduction tree from 1 to L do
3: s = bi/2kc, f = 2kbi/2kc, j = f +(i+2k−1) mod 2k

4: si = bi/2k−1c, s j = b j/2k−1c
5: Non-blocking send Rsi,k−1 to processor j
6: Non-blocking receive Rs j ,k−1 from processor j
7: Wait until the previous send and receive have completed

8: Compute
[

Rsi,k−1
Rs j ,k−1

]
= Qs,kRs,k

9: end for
Ensure: A = QR0,L, R0,L is available on all processors i
Ensure: Q is implicitly represented by the intermediate Q factors {Qs,k}, for each node s and each

level k in the all reduction tree

We note also that it is possible to reconstruct the Householder vectors of the
classic Householder QR factorization (Algorithm 4) from TSQR. Let A = QR be
the factorization obtained from Householder QR, where A is of size m×n, and let

Q = I−Y TY T = I−
[
Y1
Y2

]
T
[
Y T

1 Y T
2
]

(20)

be the compact representation of Q, where Q is of size m×m. Let Q = [Q1,Q2],
where Q1 is formed by the first n columns of Q. This is also called a basis-kernel
representation of an orthogonal matrix, and as described in [67], there are several

Communication avoiding algorithms 19

different basis-kernel representations. The reconstruction of Householder vectors
introduced in [4] relies on the observation that

Q1−S = Y (−TY T
1), (21)

where S is a sign matrix which reflects the sign choice of the diagonal of R made
in line 3 of Algorithm 4. Since Y is unit lower triangular and (−TY T

1) is upper
triangular, this represents the unique LU decomposition of Q1−S. In other words, Y
and T can be reconstructed by computing the LU decomposition of Q1−S. With this
approach, denoted as TSQR-HR in [4], the performance of the algorithm becomes:

TT SQR−HR(m,n,P) = γ ·
(

4mn2

P
+

4n3

3
logP

)
+β ·n2 logP+α ·2logP. (22)

We note that this algorithm performs 2.5 times more floating point operations than
TSQR. However, in practice it leads to a faster algorithm than PDGEQR2, as shown
in [4]. It can also be used to obtain a communication avoiding QR factorization by
only replacing the panel factorization in PDGEQRF. Faster approaches are possible,
but they could be less stable. For example the Householder vectors can be recon-
structed from the LU factorization of A−R, and this approach is stable when A is
well conditioned.

4.2 Communication avoiding QR factorization

We consider now the case of general matrices. CAQR was introduced in [21] and it
relies on using TSQR for its panel factorization. Each QR factorization performed
during TSQR induces an update of the trailing matrix. Hence the update of the trail-
ing matrix is driven by the reduction tree used during TSQR. CAQR exchanges the
same volume of communication as PDGEQRF. But the number of messages with an
optimal layout is (3/8)

√
P log3 P for CAQR, while for PDGEQRF is (5n/4) log2 P.

The number of floating point operations remains the same (only lower order terms
change).

Another approach [4] consists in reconstructing the Householder vectors from
TSQR. A communication avoiding version can be obtained by replacing the panel
factorization in a classic algorithm such that the update of the trailing matrix does
not change. This leads to a simpler algorithm to implement, and better performance
on parallel machines, as described in [4].

20 Laura Grigori

5 Communication avoiding rank revealing factorization and low
rank matrix approximation

In this section we consider the problem of estimating the singular values of a ma-
trix or computing its numerical rank, a problem with many diverse applications in
both scientific computing and data analytics, a detailed description can be found in
[16]. One such application is computing the rank-k approximation Ãk of a matrix
A ∈ Rm×n, Ãk = ZW T , where Z ∈ Rm×k, W T ∈ Rk×n, and k is much smaller than m
and n. Very often, this low rank approximation is used in the context of an iterative
process which involves multiplying a matrix with a vector. Hence instead of com-
puting the product Ax, which requires computing 2mn flops when A is dense, one
could compute the product ZW T x with 2(m+n)k flops.

The best rank-k approximation of A is the rank-k truncated singular value decom-
position (SVD) of A. The singular value decomposition of A is

A =UΣV T =
[
U1 U2

]
·
[

Σ1 0
0 Σ2

]
·
[
V1 V2

]T
,

where U is m×m orthogonal matrix, the left singular vectors of A, U1 is formed by
the first k vectors, U2 is formed by the last m−k vectors. Σ is of dimension m×n, its
diagonal is formed by σ1(A) ≥ . . . ≥ σn(A), Σ1 is of dimension k× k and contains
the first k singular values, Σ2 is of dimension (m−k)× (n−k) and contains the last
n− k singular values. V is n× n orthogonal matrix, the right singular vectors of A,
V1 is formed by the first k vectors, V2 is formed by the last n−k vectors. The rank-k
truncated singular value decomposition of A is Ak = U1Σ1V T

1 . Eckart and Young
[29] have shown that

min
rank(Ãk)≤k

||A− Ãk||2 = ||A−Ak||2 = σk+1(A), (23)

min
rank(Ãk)≤k

||A− Ãk||F = ||A−Ak||F =

√
n

∑
j=k+1

σ2
j (A). (24)

Since computing the SVD of a matrix is very expensive, several different ap-
proaches exist in the literature to approximate the singular value decomposition
which trade-off accuracy for speed. Those include the Lanczos algorithm [18, 62],
rank revealing factorizations as the rank revealing QR or LU factorizations, and
more recently randomized algorithms. For an overview of randomized algorithms
the reader can refer to [57].

5.1 Rank revealing QR factorization

In this section we consider the rank revealing QR factorization based on QR factor-
ization with column pivoting. Given a matrix A ∈ Rm×n, its QR factorization with

Communication avoiding algorithms 21

column pivoting is

AΠc = QR = Q
[

R11 R12
R22

]
, (25)

where Πc is a column permutation matrix, Q ∈ Rm×m is orthogonal, R11 ∈ Rk×k

is upper triangular, R12 ∈ Rk×(n−k), R22 ∈ R(m−k)×(n−k). We say that this is a rank
revealing factorization (RRQR) if the column permutation matrix Πc is chosen such
that

1≤ σi(A)
σi(R11)

,
σ j(R22)

σk+ j(A)
≤ q(k,n), (26)

for any 1≤ i≤ k and 1≤ j≤min(m,n)−k, where q(k,n) is a low degree polynomial
in n and k, and σ1(A)≥ . . .≥ σn(A) are the singular values of A (we assume in this
document that the singular values of A and R are all nonzero). In other words, the
column permutation allows to identify a submatrix of k columns whose singular
values provide a good approximation of the largest k singular values of A, while the
singular values of R22 provide a good approximation of the min(m,n)− k smallest
singular values of A. If ||R22||2 is small and since σk+1(A) ≤ σmax(R22) = ||R22||2,
then the numerical rank of A is k. Then Q(:,1 : k) forms an approximate orthogonal

basis for the range of A. Since AΠc

[
R−1

11 R12
−I

]
= Q

[
0
−R22

]
then Πc

[
R−1

11 R12
−I

]
are

approximate null vectors.
The usage of a QR factorization to reveal the rank of a matrix was introduced

in [34] and the first algorithm to compute it was introduced in [13]. With this al-
gorithm, the absolute value of the entries of R−1

11 R12 is bounded by O(2k) and it
might fail sometimes to satisfy (26), for example on the so-called Kahan matrix
[54]. However, in most cases it provides a good approximation to the SVD and it is
the method of choice for estimating the singular values of a matrix through a piv-
oted QR factorization. We refer to this algorithm as QRCP, which stands for QR
with Column Pivoting. It chooses at each step of the QR factorization the column of
maximum norm and permutes it to the leading position before proceeding with the
factorization.

The strong RRQR factorization was introduced in [45]. For a given k and a pa-
rameter f > 1, the results in [45] show that there exists a permutation Πc such that(

R−1
11 R12

)2
i, j +ω

2
i (R11)χ

2
j (R22)≤ f 2, (27)

for any 1≤ i≤ k and 1≤ j≤ n−k, where ωi(R11) denotes the 2-norm of the i-th row
of R−1

11 and χ j(R22) denotes the 2-norm of the j-th column of R22. This inequality
bounds the absolute values of the elements of R−1

11 R12 and leads to the following
bounds on singular values.

Theorem 1. (Gu and Eisenstat [45]) Let the factorization in equation (25) satisfy
inequality (27). Then

1≤ σi(A)
σi(R11)

,
σ j(R22)

σk+ j(A)
≤
√

1+ f 2k(n− k), (28)

22 Laura Grigori

for any 1≤ i≤ k and 1≤ j ≤min(m,n)− k, .

A strong RRQR factorization can be obtained by computing first a QR factor-
ization with column pivoting to choose a rank k. For this rank k and a given f ,
additional permutations are performed until the inequality in (27) is satisfied, for a
cost of O(mnk) floating point operations [45].

When executed on a distributed memory computer, the matrix A is distributed
over a 2D grid of processors P = Pr ×Pc. Finding the column of maximum norm
at each step of QRCP requires a reduction operation among Pr processors, which
costs O(logPr) messages. After k steps of factorization, this requires exchanging
O(k · logPr) messages. Hence, when run to completion, QRCP and its strong variant
cannot attain the lower bound on communication Ω(

√
P).

5.2 Tournament pivoting for selecting a set of k columns

A communication avoiding rank revealing QR factorization, referred to as CAR-
RQR, was introduced in [20]. This factorization is based on tournament pivoting,
and performs a block algorithm which computes the factorization by traversing
blocks of k columns (where k is small). At each iteration, it selects k columns that are
as well conditioned as possible by using a tournament which requires only O(logPr)
messages. The selected columns are permuted to the leading positions before the al-
gorithm computes k steps of a QR factorization with no more pivoting.

A00 A10 A20 A30

↓ ↓ ↓ ↓
f (A00) f (A10) f (A20) f (A30)

↘ ↙ ↘ ↙
f (A01) f (A11)

↘ ↙
f (A02)

Fig. 4 Binary tree based QR factorization with tournament pivoting. This figure is from [20].
Copyright c©[2015] Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

Algorithm 7 describes the selection of k columns from a matrix A by using binary
tree based tournament pivoting. This selection is displayed in figure 4, in which
the matrix A is partitioned into 4 subsets of columns, A = [A00,A10,A20,A30]. At
the leaves of the reduction tree, for each subset of columns A0 j, f (A0 j) selects k
columns by using strong rank revealing QR factorization of A0 j. Then at each node
of the reduction tree, a new matrix Ai j is obtained by adjoining the columns selected

Communication avoiding algorithms 23

by the children of the node, and f (Ai j) selects k columns by using strong rank
revealing QR factorization of Ai j.

Algorithm 7 QR TP (A,k): Select k linearly independent columns from a matrix A
by using QR factorization with binary tree based tournament pivoting
Require: A ∈ Rm×n, number of columns to select k
1: Partition the matrix A = [A00, . . . ,An/k,0], where Ai0 ∈Rm×2k, i = 1, . . .n/(2k) // Assume

n is a multiple of 2k
2: for each level in the reduction tree j = 0 to log2 n/(2k)−1 do
3: for each node i in the current level j do
4: if j = 0 (at the leaves of the reduction tree) then
5: Ai0 is the i-th block of 2k columns of A
6: else Form Ai j by putting next to each other the two sets of k column candidates selected

by the children of node j
7: end if
8: Select k column candidates by computing Ai j = Q1R1 and then computing a RRQR

factorization of R1, R1Pc2 = Q2

[
R2 ∗
∗

]
9: if j is the root of the reduction tree then

10: Return Πc such that (AΠc)(:,1 : k) = (Ai jΠc2)(:,1 : k)
11: else Pass the k selected columns, AΠc2 (:,1 : k) to the parent of i
12: end if
13: end for
14: end for
Ensure: Πc such that (AΠc)(:,1 : k) are the k selected columns

It is shown in [20] that the factorization as in equation (25) computed by CAR-
RQR satisfies the inequality

χ
2
j
(
R−1

11 R12
)
+(χ j (R22)/σmin (R11))

2 ≤ F2
T P, for j = 1, . . . ,n− k, (29)

where χ j(B) denotes the 2-norm of the j-th column of B. This inequality is very
similar to the one characterizing a strong RRQR factorization. The following The-
orem 2 shows that CARRQR reveals the rank by satisfying an inequality similar
to (27), where the constant f is replaced by FT P, a quantity which depends on the
number of columns n, the rank k, and the depth of the tree used during tournament
pivoting. More details can be found in [20].

Theorem 2. Assume that there exists a permutation Πc for which the QR factoriza-
tion

AΠc = Q
[

R11 R12
R22

]
, (30)

where R11 is k× k and satisfies (29). Then

1≤ σi(A)
σi(R11)

,
σ j(R22)

σk+ j(A)
≤
√

1+F2
T P(n− k), (31)

for any 1≤ i≤ k and 1≤ j ≤min(m,n)− k.

24 Laura Grigori

If only one step of QR with binary tree based tournament pivoting is used to
select k columns of the m×n matrix A, Corollaries 2.6 and 2.7 from [20] show that
the rank of A is revealed by satisfying inequality (31), with bound

FT P−BT ≤
1√
2k

(√
2 f k
)log2(n/k)

=
1√
2k

(n/k)log2(
√

2 f k) . (32)

Given that f is a small constant and k in general is small compared to n, this bound
can be seen as a polynomial in n. If tournament pivoting uses a flat tree, then the
bound becomes

FT P−FT ≤
1√
2k

(√
2 f k
)n/k

, (33)

exponential in n/k. The exponent of both bounds has an additional factor on the or-
der of n/k if multiple steps of QR with tournament pivoting are required to reveal the
rank (which is hence larger than k). However, the extensive numerical experiments
performed in [20] show that both binary tree and flat tree are effective in approx-
imating the singular values of A. For a large set of matrices, the singular values
approximated with CARRQR are within a factor of 10 of the singular values com-
puted with the highly accurate routine dgesvj [27, 28]. Figure 5 shows the results
obtained for two matrices (from [19]), EXPONENT, a matrix whose singular values
follow an exponential distribution σ1 = 1, σi = α i−1 (i = 2, . . . ,n), α = 10−1/11

[11], and SHAW, a matrix from an 1D image restoration model [47]. The plots dis-
play the singular values computed by SVD and their approximations computed by
QR factorizations with column permutations (given by the diagonal values of the R
factor): QR with column pivoting (QRCP), CARRQR based on binary tree tourna-
ment pivoting (CARRQR-B), and flat tree tournament pivoting (CARRQR-F). The
plots also display bounds for trustworthiness,

ε min{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (34)
ε max{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (35)

where Π j(j = 0,1,2) are the permutation matrices obtained by QRCP, CARRQR-B,
and CARRQR-F respectively, and ε is the machine precision. Those bounds display
for each column an estimate of uncertainty in any entry of that column of R as
computed by the three pivoting strategies.

On a distributed memory computer, CARRQR is implemented by distributing
the matrix over a 2D grid of processors P = Pr ×Pc. By using an optimal layout,
Pr =

√
mP/n, Pc =

√
nP/m, and b = B ·

√
mn/P, B = 8−1 log−1

2 (Pr) log−1
2 (Pc), the

overall performance of CARRQR (some lower order terms are ignored) is:

Communication avoiding algorithms 25

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) EXPONENT

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a

lu
e

s
,

s
in

g
u

la
r

v
a

lu
e

s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(b) SHAW

Fig. 5 Singular values as computed by SVD and approximations obtained from QRCP, CARRQR-
B, and CARRQR-F.

TCARRQR(m,n,P) ≈ γ ·
(

6mn2−6n3/3
P

+ cmn2
)

+ β ·2
√

mn3
√

P

(
log2

√
mP
n

+ log2

√
nP
m

)

+ α ·27

√
nP
m

log2
2

√
mP
n

log2
2

√
nP
m

,

where c < 1. This shows that parallel CARRQR performs three times more floating
point operations than QRCP as implemented in ScaLAPACK (routine pdgeqpf),
and it is communication optimal, modulo polylogarithmic factors.

26 Laura Grigori

5.3 Low rank matrix approximation for sparse matrices

In this section we focus on computing the low rank approximation of a sparse matrix
by using rank revealing factorizations. In this case, the factors obtained by using
Cholesky, LU, or QR factorizations have more nonzeros than the matrix A. The R
factor obtained from the QR factorization is the Cholesky factor of AT A, and since
AT A can be much denser than A, it is expected that its Cholesky factor has more
nonzeros than the Cholesky factor of A. Hence, the QR factorization can lead to
denser factors than the LU factorization. Similarly, a rank revealing QR factorization
can be more expensive in terms of both memory usage and floating point operations
than a rank revealing LU factorization. We present in the following LU CRTP, a
rank revealing LU factorization that also minimizes communication cost. A detailed
presentation can be found in [38]. Given a desired rank k, the factorization is written
as

ΠrAΠc =

[
Ā11 Ā12
Ā21 Ā22

]
=

[
I

Ā21Ā−1
11 I

][
Ā11 Ā12

S(Ā11)

]
, (36)

where A ∈Rm×n, Ā11 ∈Rk,k, S(Ā11) = Ā22− Ā21Ā−1
11 Ā12. The rank-k approximation

matrix Ãk is

Ãk =

[
I

Ā21Ā−1
11

][
Ā11 Ā12

]
=

[
Ā11
Ā21

]
Ā−1

11
[
Ā11 Ā12

]
. (37)

The second formulation of Ãk from (37) is referred to as CUR decomposition (see
[36, 57, 66] and references therein), since the first factor is formed by columns of
A and the third factor is formed by rows of A. This decomposition is of particular
interest for sparse matrices because its factors C and R remain sparse as the matrix
A.

In LU CRTP, the first k columns are selected by using QR with tournament piv-
oting of the matrix A. This leads to the factorization

AΠc = Q
[

R11 R12
R22

]
=

[
Q11 Q12
Q21 Q22

][
R11 R12

R22

]
. (38)

After tournament pivoting we have the QR factorization of the first k columns,
A(:,1 : k) = Q(:,1 : k)R11. The first k rows are then obtained by using QR factoriza-
tion with tournament pivoting of the rows of the thin Q factor, Q(:,1 : k)T ,

ΠrQ =

[
Q̄11 Q̄12
Q̄21 Q̄22

]
,

such that ||Q̄21Q̄−1
11 ||max ≤ FT P and bounds for the singular values of Q̄11 with re-

spect to the singular values of Q are governed by a low degree polynomial. This
leads to the factorization,

Communication avoiding algorithms 27

ΠrAΠc =

[
Ā11 Ā12
Ā21 Ā22

]
=

[
I

Ā21Ā−1
11 I

][
Ā11 Ā12

S(Ā11)

]
=

[
I

Q̄21Q̄−1
11 I

][
Q̄11 Q̄12

S(Q̄11)

][
R11 R12

R22

]
(39)

where

Q̄21Q̄−1
11 = Ā21Ā−1

11 ,

S(Ā11) = S(Q̄11)R22 = Q̄−T
22 R22.

The following theorem from [38] shows that LU CRTP (A,k) factorization re-
veals the singular values of A, and in addition also bounds the absolute value of the
largest element of S(Ā11). This is important for the backward stability of the LU
factorization.

Theorem 3 ([38]). Let A be an m×n matrix. The LU CRTP(A,k) factorization,

Ā = ΠrAΠc =

[
Ā11 Ā12
Ā21 Ā22

]
=

[
I

Q̄21Q̄−1
11 I

][
Ā11 Ā12

S(Ā11)

]
(40)

where
S(Ā11) = Ā22− Ā21Ā−1

11 Ā12 = Ā22− Q̄21Q̄−1
11 Ā12, (41)

satisfies the following properties

ρl(Ā21Ā−1
11) = ρl(Q̄21Q̄−1

11)≤ FT P, (42)

||S(Ā11)||max ≤ min
(
(1+FT P

√
k)||A||max,FT P

√
1+F2

T P(m− k)σk(A)
)

(43)

1≤ σi(A)
σi(Ā11)

,
σ j(S(Ā11))

σk+ j(A)
≤ q(m,n,k), (44)

for any 1≤ l ≤m−k, 1≤ i≤ k, and 1≤ j ≤min(m,n)−k. Here ρl(B) denotes the
2-norm of the l-th row of B, FT P is the bound obtained from QR with tournament

pivoting, as in equation (32), and q(m,n,k)=
√(

1+F2
T P(n− k)

)(
1+F2

T P(m− k)
)
.

The existence of a rank revealing LU factorization has been proven by Pan in
[60], who shows that there are permutation matrices Πr,Πc such that the factoriza-
tion from (36) satisfies

1≤ σk(A)
σmin(Ā11)

,
σmax(S(Ā11))

σk+1(A)
≤ k(n− k)+1. (45)

The existence of a stronger LU factorization has been proven by Miranian and Gu
in [58], which in addition to (45) also upper bounds ||Ā−1

11 Ā12||max by a low degree
polynomial in k, n, and m. Pan also introduces two algorithms for computing such
a factorization which are based on the notion of local maximum volume, where the

28 Laura Grigori

volume of a square matrix refers to the absolute value of its determinant. The first
algorithm starts by performing LU factorization with conventional column pivoting
(chooses as pivot the element of largest magnitude in the current row) followed by a
block pivoting phase. The second algorithm relies on using the LU factorization of
AT A to perform symmetric pivoting. Experiments presented in [32] show that when
there is a sufficiently large gap in the singular values of the matrix A, pivoting strate-
gies as rook pivoting or complete pivoting produce good low rank approximations.
However, they can fail for nearly singular matrices, as shown by examples given in
[61].

The bounds on the approximation of singular values from (44) are worse than
those from (45) showing the existence of a rank revealing LU factorization. How-
ever LU CRTP is a practical algorithm that also minimizes communication. The
bounds from (44) are also slightly worse than those obtained by CARRQR for which

q(m,n,k) =
√

1+F2
T P(n− k) (see Theorem 2 for more details). But for sparse ma-

trices, CARRQR requires significantly more computations and memory, as the ex-
perimental results in [38] show. A better bound than (44) can be obtained by using
strong rank revealing QR for selecting the rows from the thin Q factor in equation
(39), in which case ||Ā21Ā−1

11 ||max ≤ f , similar to the LU factorization with panel
rank revealing pivoting from [56].

The bound on the growth factor from (43) is the minimum of two quantities. The
first quantity has similarities with the bound on the growth factor obtained by the LU
factorization with panel rank revealing pivoting from [56]. The second quantity is
new and it relates the growth factor obtained after k steps of factorization to σk(A).

Experiments reported in [38] show that LU CRTP approximates well the singular
values. For the matrices considered in that paper, the ratio of the singular values
approximated by LU CRTP to the singular values computed by SVD is at most 13
(and 27 for the devil’s stairs, a more difficult matrix). Figure 6 [38] shows the results
obtained for SHAW matrix, the 1D image restoration matrix also used in section 5.2.

References

1. E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. DU
CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK
Users’ Guide, SIAM, Philadelphia, PA, USA, 1999.

2. G. BALLARD, A. BULUC, J. DEMMEL, L. GRIGORI, O. SCHWARTZ, AND S. TOLEDO,
Communication optimal parallel multiplication of sparse random matrices, in Proceedings of
ACM SPAA, Symposium on Parallelism in Algorithms and Architectures, 2013.

3. G. BALLARD, J. DEMMEL, AND I. DUMITRIU, Communication-optimal parallel and se-
quential eigenvalue and singular value algorithms, Tech. Report EECS-2011-14, UC Berke-
ley, February 2011.

4. G. BALLARD, J. DEMMEL, L. GRIGORI, M. JACQUELIN, H. D. NGUYEN, AND
E. SOLOMONIK, Reconstructing Householder Vectors from Tall-Skinny QR, in Proceedings
of IEEE International Parallel and Distributed Processing Symposium IPDPS, 2014.

5. G. BALLARD, J. DEMMEL, O. HOLTZ, B. LIPSHITZ, AND O. SCHWARTZ, Brief announce-
ment: strong scaling of matrix multiplication algorithms and memory-independent communi-

Communication avoiding algorithms 29

Index of singular values
0 50 100 150 200 250 300

Si
ng

ul
ar

 v
al

ue

10 -20

10 -15

10 -10

10 -5

10 0

10 5 Evolution of singular values for shaw

QRCP
LU-CRTP
LU-CTP
SVD

Fig. 6 Singular values as computed by SVD and as approximated by LU CRTP (LU with column
and row tournament pivoting) and LU CTP (LU with column tournament pivoting and row partilal
pivoting) for SHAW matrix.

cation lower bounds, in Proceedings of the 24th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA ’12, New York, NY, USA, June 2012, ACM, pp. 77–79.

6. , Communication-optimal parallel algorithm for Strassen’s matrix multiplication, in
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’12, New York, NY, USA, June 2012, ACM, pp. 193–204.

7. G. BALLARD, J. DEMMEL, O. HOLTZ, AND O. SCHWARTZ, Graph expansion and commu-
nication costs of fast matrix multiplication, in Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’11, ACM, June 2011, pp. 1–12.

8. G. BALLARD, J. DEMMEL, O. HOLTZ, AND O. SCHWARTZ, Minimizing communication in
linear algebra, SIAM J. Matrix Anal. Appl., (2011).

9. G. BALLARD, J. DEMMEL, B. LIPSHITZ, O. SCHWARTZ, AND S. TOLEDO, Communication
efficient gaussian elimination with partial pivoting using a shape morphing data layout, in
Proceedings of 25th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2013.

10. D. W. BARRON AND H. P. F. SWINNERTON-DYER, Solution of Simultaneous Linear Equa-
tions using a Magnetic-Tape Store, Computer Journal, 3 (1960), pp. 28–33.

11. C. H. BISCHOF, A parallel QR factorization algorithm with controlled local pivoting, SIAM
J. Sci. Stat. Comput., 12 (1991), pp. 36–57.

12. L. S. BLACKFORD, J. CHOI, A. CLEARY, E. D’AZEVEDO, J. W. DEMMEL, I. DHILLON
J. J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET, K. STANLEY, D. WALKER,
AND R. C. WHA LEY, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, USA, May 1997.

13. P. A. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder trans-
formations, Numer. Math., 7 (1965), pp. 269–276.

14. L. E. CANNON, A cellular computer to implement the Kalman filter algorithm, PhD thesis,
Montana State University, 1969.

15. E. CARSON, Communication-Avoiding Krylov Subspace Methods in Theory and Practice,
PhD thesis, EECS Department, University of California, Berkeley, Aug 2015.

16. T. F. CHAN AND P. C. HANSEN, Some applications of the rank revealing QR factorization,
SIAM J. Sci. Stat. Comput., 13 (1992), pp. 727–741.

17. A. T. CHRONOPOULOS AND W. GEAR, S-step iterative methods for symmetric linear sys-
tems, J. of Comput. Appl. Math., 25 (1989), pp. 153–168.

18. J. K. CULLUM AND R. A. WILLOUGHBY, Lanczos Algorithms for Large Symmetric Eigen-
value Computations, vol. I: Theory, SIAM, Philadelphia, 2002.

30 Laura Grigori

19. J. W. DEMMEL, L. GRIGORI, M. GU, AND H. XIANG, Communication avoiding rank re-
vealing QR factorization with column pivoting, Tech. Report UCB/EECS-2013-46, EECS De-
partment, University of California, Berkeley, May 2013.

20. J. W. DEMMEL, L. GRIGORI, M. GU, AND H. XIANG, Communication-avoiding rank-
revealing QR decomposition, SIAM Journal on Matrix Analysis and its Applications, 36
(2015), pp. 55–89.

21. J. W. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, Communication-optimal
parallel and sequential QR and LU factorizations, Tech. Report UCB/EECS-2008-89, UC
Berkeley, 2008. LAPACK Working Note 204.

22. J. W. DEMMEL, M. HOEMMEN, M. MOHIYUDDIN, AND K. YELICK, Avoiding commu-
nication in sparse matrix computations, in IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp. 1–12.

23. J. W. DEMMEL, L. GRIGORI, M. GU, AND H. XIANG, TSLU for nearly singular matrices.
In preparation, July 2017.

24. J. W. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU, Communication-optimal
parallel and sequential QR and LU factorizations, SIAM Journal on Scientific Computing,
(2012), pp. 206–239. short version of technical report UCB/EECS-2008-89 from 2008.

25. S. DONFACK, L. GRIGORI, W. D. GROPP, AND V. KALE, Hybrid static/dynamic scheduling
for already optimized dense matrix factorization, IEEE International Parallel and Distributed
Processing Symposium IPDPS, (2012).

26. S. DONFACK, L. GRIGORI, AND A. KUMAR GUPTA, Adapting communication-avoiding LU
and QR factorizations to multicore architectures, Proceedings of IPDPS, (2010).

27. Z. DRMAČ AND K. VESELIC, New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix
Anal. Appl., 29 (2008), pp. 1322–1342.

28. , New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl., 29
(2008), pp. 1343–1362.

29. C. ECKART AND G. YOUNG, The approximation of one matrix by another of lower rank,
Psychometrika, 1 (1936), pp. 211–218.

30. E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KAGSTROM, Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software, SIAM Review, 46 (2004),
pp. 3–45.

31. J. ERHEL, A parallel GMRES version for general sparse matrices, Electronic Transactions on
Numerical Analysis, 3 (1995), pp. 160–176.

32. L. V. FOSTER AND X. LIU, Comparison of rank revealing algorithms applied to matrices with
well defined numerical ranks. www.math.sjsu.edu/ foster/rank/rank revealing s.pdf, 2006.

33. M. FRIGO, C. E. LEISERSON, H. PROKOP, AND S. RAMACHANDRAN, Cache-oblivious
algorithms, In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, (1999). IEEE Computer Society.

34. G. H. GOLUB, Numerical methods for solving linear least squares problems, Numer. Math.,
7 (1965), pp. 206–216.

35. G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations (3rd Ed.), Johns Hopkins Uni-
versity Press, Baltimore, MD, USA, 1996.

36. N. L. ZAMARASHKIN, S. A. GOREINOV, AND E. E. TYRTYSHNIKOV, A theory of pseu-
doskeleton approximations, Linear Algebra and Its Applications, 261 (1997), pp. 1–21.

37. S. L. GRAHAM, M. SNIR, AND C. A. PATTERSON, eds., Getting Up to Speed: The Future of
Supercomputing, National Academies Press, Washington, D.C., USA, 2005.

38. L. GRIGORI, S. CAYROLS, AND J. W. DEMMEL, Low rank approximation of a sparse matrix
based on LU factorization with column and row tournament pivoting, Research Report RR-
8910, inria, Mar. 2016. submitted to SIAM Journal on Scientific Computing, in revision.

39. L. GRIGORI, P.-Y. DAVID, J. DEMMEL, AND S. PEYRONNET, Brief announcement: Lower
bounds on communication for direct methods in sparse linear algebra, Proceedings of ACM
SPAA, (2010).

40. L. GRIGORI, J. DEMMEL, AND H. XIANG, CALU: a communication optimal LU factoriza-
tion algorithm, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1317–
1350.

Communication avoiding algorithms 31

41. L. GRIGORI, J. W. DEMMEL, AND H. XIANG, Communication avoiding Gaussian elimina-
tion, Proceedings of the ACM/IEEE SC08 Conference, (2008).

42. L. GRIGORI, M. JACQUELIN, AND A. KHABOU, Performance predictions of multilevel com-
munication optimal LU and QR factorizations on hierarchical platforms, in Proceedings of
International Supercomputing Conference, LNCS, 2014.

43. L. GRIGORI, S. MOUFAWAD, AND F. NATAF, Enlarged Krylov subspace conjugate gradient
methods for reducing communication, SIAM Journal on Matrix Analysis and Applications,
(2016). preliminary version published as Inria TR 8597.

44. L. GRIGORI, R. STOMPOR, AND M. SZYDLARSKI, A parallel two-level preconditioner for
cosmic microwave background map-making, Proceedings of the ACM/IEEE Supercomputing
SC12 Conference, (2012).

45. M. GU AND S. C. EISENSTAT, Efficient algorithms for computing a strong rank-revealing
QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

46. F. GUSTAVSON, Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms, IBM Journal of Research and Development, 41 (1997), pp. 737–755.

47. P. C. HANSEN, Regularization tools version 4.1 for matlab 7.3.
48. M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear sys-

tems., Journal of research of the National Bureau of Standards., 49 (1952), pp. 409–436.
49. N. HIGHAM, Accuracy and Stability of Numerical Algorithms, SIAM, second ed., 2002.
50. N. HIGHAM AND D. J. HIGHAM, Large growth factors in Gaussian elimination with pivoting,

SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155–164.
51. M. F. HOEMMEN, Communication-avoiding Krylov subspace methods, PhD thesis, EECS

Department, University of California, Berkeley, Apr 2010.
52. J.-W. HONG AND H. T. KUNG, I/O complexity: The Red-Blue Pebble Game, in STOC ’81:

Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, New York,
NY, USA, 1981, ACM, pp. 326–333.

53. D. IRONY, S. TOLEDO, AND A. TISKIN, Communication lower bounds for distributed-
memory matrix multiplication, J. Parallel Distrib. Comput., 64 (2004), pp. 1017–1026.

54. W. M. KAHAN, Numerical linear algebra, Canad. Math. Bull., 9 (1966), pp. 757 – 801.
55. A. KHABOU, J. DEMMEL, L. GRIGORI, AND M. GU, Communication avoiding LU factor-

ization with panel rank revealing pivoting, SIAM Journal on Matrix Analysis and Applica-
tions, 34 (2013), pp. 1401–1429. preliminary version published as INRIA TR 7867.

56. A. KHABOU, J. W. DEMMEL, L. GRIGORI, AND M. GU, Communication avoiding LU fac-
torization with panel rank revealing pivoting, SIAM Journal on Matrix Analysis and Applica-
tions, 34 (2013), pp. 1401 – 1429.

57. M. W. MAHONEY, Randomized algorithms for matrices and data, Found. Trends Mach.
Learn., 3 (2011), pp. 123–224.

58. L. MIRANIAN AND M. GU, Strong rank revealing LU factorizations, Linear Algebra and its
Applications, (2003), pp. 1–16.

59. D. P. O’LEARY, The block conjugate gradient algorithm and related methods., Linear Alge-
bra and Its Applications, 29 (1980), pp. 293–322.

60. C.-T. PAN, On the existence and computation of rank-revealing LU factorizations, Linear
Algebra and its Applications, 316 (2000), pp. 199–222.

61. G. PETERS AND J. H. WILKINSON, The least squares problem and pseudo-inverses, Com-
puter Journal, 13 (1970), pp. 309–316.

62. Y. SAAD, Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM, Philadelphia,
2011.

63. Y. SAAD AND M. H. SCHULTZ, GMRES: a generalized minimal residual algorithm for solv-
ing non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

64. R. SCHREIBER AND C. VAN LOAN, A storage-efficient WY representation for products
of Householder transformations, SIAM Journal on Scientific and Statistical Computing, 10
(1989), pp. 53–57.

65. D. C. SORENSEN, Analysis of pairwise pivoting in Gaussian elimination, IEEE Transactions
on Computers, 3 (1985), pp. 274 –278.

32 Laura Grigori

66. G.W. STEWART, Four algorithms for the efficient computation of truncated QR approxima-
tions to a sparse matrix, Numer. Math., 83 (1999), pp. 313–323.

67. X. SUN AND C. BISCHOF, A basis-kernel representation of orthogonal matrices, SIAM Jour-
nal on Matrix Analysis and Applications, 16 (1995), pp. 1184–1196.

68. S. TOLEDO, Locality of reference in LU Decomposition with partial pivoting, SIAM J. Matrix
Anal. Appl., 18 (1997).

69. L. N. TREFETHEN AND R. S. SCHREIBER, Average-case stability of Gaussian elimination,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

70. H. A. VAN DER VORST, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Com-
puting, 13 (1992), pp. 631–644.

71. J. H. WILKINSON, Error analysis of direct methods of matrix inversion, J. Assoc. Comput.
Mach., 8 (1961), pp. 281–330.

72. W. WULF AND S. MCKEE, Hitting the wall: Implications of the obvious, ACM SIGArch
Computer Architecture News, 23 (1995), pp. 20–24.

