Avoiding communication in linear algebra

Laura Grigori
INRIA Saclay
Paris Sud University

Motivation

Algorithms spend their time

- in doing useful computations (flops)
- or in moving data
- between different levels of the memory hierarchy
- and between processors

Page 2

Motivation

- Time to move data >> time per flop

Running time $=$ \#flops * time_per_flop + \#words_moved / bandwidth + \#messages * latency

Improvements per year

DRAM	Network
23%	26%
5%	15%

- Gap steadily and exponentially growing over time
"There is an old network saying: Bandwidth problems can be cured with money. Latency problems are harder because the speed of light is fixed -- you can't bribe God." Anonymous
"We are going to hit the memory wall, unless something basic changes" [W. Wulf, S. McKee, 95]
- And we are also going to hit the "interconnect network wall"

Motivation

- The communication problem needs to be taken into account higher in the computing stack
- A paradigm shift in the way the numerical algorithms are devised is required
- Communication avoiding algorithms - a novel perspective for numerical linear algebra
- Minimize volume of communication
- Minimize number of messages
- Minimize over multiple levels of memory/parallelism
- Allow redundant computations (preferably as a low order term)

Plan

- Motivation
- Selected past work on reducing communication
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
- LU, LU_PRRP, QR, Rank Revealing QR factorizations
- Often not in ScaLAPACK or LAPACK
- Algorithms for multicore processors
- Communication avoiding for sparse linear algebra
- Sparse Cholesky factorization
- Iterative methods and preconditioning
- Conclusions

Selected past work on reducing communication

- Only few examples shown, many references available

A. Tuning

- Overlap communication and computation, at most a factor of 2 speedup
B. Ghosting
- Standard approach in explicit methods
- Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE

$$
u_{t}=\alpha \Delta u
$$

with a finite difference, the solution at a grid point is:

$$
\begin{aligned}
u_{i, j+1} & =u\left(x_{i}, t_{j+1}\right) \\
& =f\left(u_{i-1, j}, u_{i j}, u_{i+1, j}\right)
\end{aligned}
$$

Selected past work on reducing communication

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra

- Barron and Swinnerton-Dyer, 1960
- LU factorization used to solve a system with 31 equations - first subroutine written for EDSAC 2
- Block LU factorization used to solve a system with 100 equations using an auxiliary magnetic-tape
- The basis of the algorithm used in LAPACK

Cache oblivious algorithms for dense linear algebra

- recursive Cholesky, LU, QR (Gustavson '97, Toledo ‘97, Elmroth and Gustavson ‘98, Frens and Wise ‘03, Gustavson ‘97, Ahmed and Pingali ‘00)

Selected past work on reducing communication

D. Same algebraic framework, different numerical algorithm

More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)

- LU-like factorization based on pairwise pivoting and its block version $P A=L_{1} L_{2} \ldots L_{n} U$
- With small modifications, minimizes communication between two levels of fast-slow memory
- Stable for small matrices, unstable for nowadays matrices

Communication Complexity of Dense Linear Algebra

- Matrix multiply, using $2 n^{3}$ flops (sequential or parallel)
- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth $=\Omega$ (\#flops / $\mathrm{M}^{1 / 2}$)
- Lower bound on Latency $=\Omega$ (\#flops / M ${ }^{3 / 2}$)
- Same lower bounds apply to LU using reduction
- Demmel, LG, Hoemmen, Langou 2008

$$
\left(\begin{array}{ccc}
I & & -B \\
A & I & \\
& & I
\end{array}\right)=\left(\begin{array}{lll}
I & & \\
A & I & \\
& & I
\end{array}\right)\left(\begin{array}{ll}
I & \\
& -B \\
& I \\
& A B \\
& \\
& I
\end{array}\right)
$$

- And to almost all direct linear algebra [Ballard, Demmel, Holtz, Schwartz, 09]

Sequential algorithms and communication bounds

Algorithm	Minimizing \#words (not \#messages)	Minimizing \#words and \#messages
Cholesky	LAPACK	[Gustavson, 97] [Ahmed, Pingali, 00]
LU	LAPACK (few cases) [Toledo,97], [Gustavson, 97] both use partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting
QR	LAPACK (few cases) [Elmroth,Gustavson,98]	[Frens, Wise, 03], 3x flops [Demmel, LG, Hoemmen, Langou, 08] uses different representation of Q
RRQR	$?$	[Branescu, Demmel, LG, Gu, Xiang 11] uses tournament pivoting, 3x flops

- Only several references shown for block algorithms (LAPACK), cache-oblivious algorithms and communication avoiding algorithms

2D Parallel algorithms and communication bounds

- If memory per processor $=n^{2} / P$, the lower bounds become \#words_moved $\geq \Omega\left(n^{2} / P^{1 / 2}\right), \quad \# m e s s a g e s \geq \Omega\left(P^{1 / 2}\right)$

Algorithm	Minimizing \#words (not \#messages)	Minimizing \#words and \#messages
Cholesky	ScaLAPACK	ScaLAPACK
LU	ScaLAPACK uses partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting
QR	ScaLAPACK	[Demmel, LG, Hoemmen, Langou, 08] uses different representation of Q
RRQR	$?$	[Branescu, Demmel, LG, Gu, Xiang 11] uses tournament pivoting, 3x flops

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms

Scalability of communication optimal algorithms

- 2D communication optimal algorithms, $M=3 \cdot n^{2} / P$ (matrix distributed over a $\mathrm{P}^{1 / 2}-$ by- $\mathrm{P}^{1 / 2}$ grid of processors)
$\mathrm{T}_{\mathrm{P}}=\mathrm{O}\left(\mathrm{n}^{3}\right) \gamma+\Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right) \beta+\Omega\left(\mathrm{P}^{1 / 2}\right) \alpha$
- Isoefficiency: $n^{3} \propto P^{1.5}$ and $n^{2} \propto P$
- For GEPP, $\mathbf{n}^{3} \propto \mathbf{P}^{2.25}$ [Grama et al, 93]
- 3D communication optimal algorithms, $M=3 \cdot P^{1 / 3}\left(n^{2} / P\right)$ (matrix distributed over a $\mathrm{P}^{1 / 3}$-by- $\mathrm{P}^{1 / 3}$-by- $\mathrm{P}^{1 / 3}$ grid of processors) $T_{P}=O\left(n^{3}\right) \gamma+\Omega\left(n^{2} / P^{2 / 3}\right) \beta+\Omega(\log (P)) \alpha$
- Isoefficiency: $\mathbf{n}^{3} \propto \mathbf{P}$ and $\mathbf{n}^{2} \propto \mathbf{P}^{2 / 3}$
- 2.5D algorithms with $M=3 \cdot c \cdot\left(n^{2} / P\right)$, and 3D algorithms exist for matrix multiplication and LU factorization
- References: Dekel et al 81, Agarwal et al 90, 95, Johnsson 93, McColl and Tiskin 99, Irony and Toledo 02, Solomonik and Demmel 2011

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a $P=P_{r} \times P_{c}$ grid of processors
For ib $=1$ to $\mathrm{n}-1$ step b
$A^{(i b)}=A(i b: n, i b: n) \quad$ \#messages
(1) Compute panel factorization

$$
O\left(n \log _{2} P_{r}\right)
$$

- find pivot in each column, swap rows
(2) Apply all row permutations

$$
O\left(n / b\left(\log _{2} P_{c}+\log _{2} P_{r}\right)\right)
$$

- broadcast pivot information along the rows
- swap rows at left and right
(3) Compute block row of U

$$
O\left(n / b \log _{2} P_{c}\right)
$$

- broadcast right diagonal block of L of current panel
(4) Update trailing matrix
- broadcast right block column of L

$$
O\left(n / b\left(\log _{2} P_{c}+\log _{2} P_{r}\right)\right)
$$

- broadcast down block row of U

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of $m \times b$ matrix W, $m \gg b$
- P processors, block row layout
- Classic Parallel Algorithm
- Compute Householder vector for each column
- Number of messages $\propto b \log P$
- Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages $\propto \log P$

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{array}\right] \rightarrow R_{01} \rightarrow R_{11} \rightarrow R_{02}
$$

Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02

CAQR for general matrices

- Use TSQR for panel factorizations
- Update the trailing matrix - triggered by the reduction tree used for the panel factorization

Flexibility of TSQR and CAQR algorithms

Parallel: \(w=\left[\begin{array}{l}W_{0}

W_{1}

W_{2}

W_{3}\end{array}\right] \rightarrow\)| R_{00} |
| :--- |
| |$R_{10} \rightarrow R_{01} \longrightarrow R_{20} \longrightarrow R_{11} \longrightarrow R_{02}$

Sequential: $w=\left[\begin{array}{l}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{ } R_{00} \longrightarrow R_{01} \longrightarrow R_{02} \longrightarrow R_{03}$
Dual Core:w $=\left[\begin{array}{c}W_{0} \\ W_{1} \\ W_{2} \\ W_{3}\end{array}\right] \xrightarrow{R_{00} \longrightarrow R_{01} \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02} \longrightarrow R_{03}}$
Reduction tree will depend on the underlying architecture, could be chosen dynamically
Source slide: J. Demmel

Performance of TSQR vs Sca/LAPACK

- Parallel
- Intel Xeon (two socket, quad core machine), 2010
- Up to $5.3 x$ speedup (8 cores, $10^{5} \times 200$)
- Pentium III cluster, Dolphin Interconnect, MPICH, 2008
- Up to 6.7x speedup (16 procs, 100K x 200)
- BlueGene/L, 2008
- Up to 4x speedup (32 procs, 1M x 50)
- QR computed locally using recursive algorithm (Elmroth-Gustavson) - enabled by TSQR
- See [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS 10].

Modeled Speedups of CAQR vs ScaLAPACK

Petascale machine with 8192 procs, each at $500 \mathrm{GFlops} / \mathrm{s}$, a bandwidth of $4 \mathrm{~GB} / \mathrm{s}$.

$$
\gamma=2 \cdot 10^{-12} s, \alpha=10^{-5} s, \beta=2 \cdot 10^{-9} s / \text { word } .
$$

Obvious generalization of TSQR to LU

- Block parallel pivoting:
- uses a binary tree and is optimal in the parallel case

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \rightarrow U_{00} \rightarrow U_{10} \rightarrow U_{30} \rightarrow U_{11} \rightarrow U_{02}
$$

- Block pairwise pivoting:
- uses a flat tree and is optimal in the sequential case
- used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \xrightarrow{\rightarrow U_{00} \longrightarrow U_{01} \longrightarrow} U_{02} \longrightarrow U_{03}
$$

Stability of the LU factorization

- The backward stability of the LU factorization of a matrix A of size n-by-n

$$
\|L|\cdot| U\|_{\infty} \leq\left(1+2\left(n^{2}-n\right) g_{w}\right)\|A\|_{\infty}
$$

depends on the growth factor

$$
g_{W}=\frac{\max _{i, j, k}\left|a_{i j}^{k}\right|}{\max _{i, j}\left|a_{i j}\right|} \text { where } a_{i j}^{k} \text { are the values at the k-th step. }
$$

- $\mathrm{g}_{\mathrm{w}} \leq 2^{\mathrm{n}-1}$, but in practice it is on the order of $\mathrm{n}^{2 / 3}-\mathrm{n}^{1 / 2}$
- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90] :
- the multipliers in L are small,
- the correction introduced at each elimination step is of rank 1.

Block parallel pivoting

- Unstable for large number of processors P
- When $\mathrm{P}=$ number rows, it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)

Page 22

Block pairwise pivoting

- Results shown for random matrices
- Will become unstable for large matrices $W=$

$$
W=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right] \xrightarrow{\longrightarrow U_{00} \longrightarrow U_{01} \longrightarrow U_{02} \longrightarrow} U_{03}
$$

Page 23

Tournament pivoting - the overall idea

- At each iteration of a block algorithm

$$
\left.\left.A=\left(\begin{array}{cc}
b & n-b \\
\widetilde{A}_{11} & \overparen{A}_{21} \\
A_{21} & A_{22}
\end{array}\right)\right\} \begin{array}{c}
\\
\hline
\end{array}\right\} n-b \text { where } \quad W=\binom{A_{11}}{A_{21}}
$$

- Preprocess W to find at low communication cost good pivots for the LU factorization of W , return a permutation matrix P .
- Permute the pivots to top, ie compute PA.
- Compute LU with no pivoting of W, update trailing matrix.

$$
P A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& A_{22}-L_{21} U_{12}
\end{array}\right)
$$

Tournament pivoting

Growth factor for binary tree based CALU

- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and \mid ㄴ| <= 4.2

Stability of CALU (experimental results)

- Results show ||PA-LU||/||A\|, normwise and componentwise backward errors, for random matrices and special ones
- See [LG, Demmel, Xiang, 2010] for details
- BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Our "proof of stability" for CALU

- CALU as stable as GEPP in following sense:

CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and blocks of zeros.

- Example of one step of tournament pivoting:

$$
\begin{aligned}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right) & \left.\left.\begin{array}{c}
\text { tournament pivoting: } \\
\bar{A}_{11} \\
\\
G
\end{array}\right) \quad \begin{array}{c}
A_{11} \\
A_{21} \\
A_{31}
\end{array}\right] \rightarrow A_{11} \rightarrow A_{21}
\end{aligned} \rightarrow \bar{A}_{11}
$$

- Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).

Growth factor of different pivoting strategies

- Matrix of size m-by-n, reduction tree of height $\mathrm{H}=\log (\mathrm{P})$.
- (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. Demmel, LG, M. Gu, 2012)
- "In practice" means observed/expected/conjectured values.

	CALU	GEPP	CALU_PRRP	LU_PRRP
Upper bound	$2^{n(\log (\mathrm{P})+1)-1}$	$2^{\mathrm{n}-1}$	$(1+2 \mathrm{~b})^{(n / b) \log (P)}$	$(1+2 b)^{(n / b)}$
In practice	$\mathrm{n}^{2 / 3}-\mathrm{n}^{1 / 2}$	$\mathrm{n}^{2 / 3}-\mathrm{n}^{1 / 2}$	$(\mathrm{n} / \mathrm{b})^{2 / 3}--(\mathrm{n} / \mathrm{b})^{1 / 2}$	$(n / b)^{2 / 3}--(n / b)^{1 / 2}$

- For a matrix of size 10^{7}-by- 10^{7} (using petabytes of memory)

$$
\mathrm{n}^{1 / 2}=10^{3.5}
$$

- When will Linpack have to use the QR factorization for solving linear systems ?

Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)
- IBM Power 5
- Up to 4.37x faster (16 procs, 1M x 150)
- Cray XT4
- Up to 5.52 x faster (8 procs, $1 \mathrm{M} \times 150$)
- Parallel CALU (LU on general matrices)
- Intel Xeon (two socket, quad core)
- Up to 2.3x faster (8 cores, 10^6 x 500)
- IBM Power 5
- Up to 2.29x faster (64 procs, 1000×1000)
- Cray XT4
- Up to 1.81x faster (64 procs, 1000×1000)
- Details in SC08 (LG, Demmel, Xiang), IPDPS'10 (S. Donfack, LG).

Scheduling CALU's Task Dependency Graph

- Static scheduling
+ Good locality of data
- Ignores noise

- Dynamic scheduling
+ Keeps cores busy
- Poor usage of data locality
- Can have large dequeue overhead

Lightweight scheduling

- A self-adaptive strategy to provide
- A good trade-off between load balance, data locality, and dequeue overhead.
- Performance consistency
- Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Combined static/dynamic scheduling:

- A thread executes in priority its statically assigned tasks
- When no task ready, it picks a ready task from the dynamic part
- \quad The size of the dynamic part is guided by a performance model

Impact of data layout on performance

Data layouts:

- CM : Column major order
- BCL : Each thread stores its data using CM
- 2I-BL : Each thread stores its data in blocks

Block cyclic layout (BCL)

Two level block layout (2l-BL)

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).
Page 33

Best performance of CALU on multicore architectures

Static scheduling

Static + 10\% dynamic scheduling

100\% dynamic scheduling

- Reported performance for PLASMA uses LU with block pairwise pivoting.

Plan

- Motivation
- Selected past work on reducing communication
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
- LU, LU_PRRP, QR, Rank Revealing QR factorizations
- Often not in Scal APACK or LAPACK
- Algorithms for multicore processors
- Communication avoiding for sparse linear algebra
- Sparse Cholesky factorization
- Iterative methods and preconditioning
- Conclusions

Sparse Cholesky factorization for 2D/3D regular grids

- Matrix A from a finite difference operator on a regular grid of dimension $\mathrm{s} \geq 2$ with k^{s} nodes.
- Its Cholesky L factor contains a dense lower triangular matrix of size $\mathrm{k}^{\mathrm{s}-1} \times \mathrm{k}^{\mathrm{s}-1}$. \# words_moved $\geq \Omega\left(\left(k^{3(s-1) /(2 P))} / \mathrm{M}^{1 / 2}\right)\right.$ $\#$ messages $\geq \Omega\left(\left(k^{\left.3(s-1) /(2 P)) / M^{3 / 2}\right)}\right.\right.$

- PSPASES with an optimal layout minimizes communication
- Uses nested dissection to reorder the matrix
- Distributes the matrix using the subtree-to-subcube algorithm
- Sequential multifrontal algorithm minimizes communication
- Every dense multifrontal matrix is factored using an optimal dense Cholesky
- But in general for sparse matrix operations, the known lower bounds on communication can become vacuous

Communication in Krylov subspace methods

Iterative methods to solve $A x=b$

- Find a solution x_{k} from $x_{0}+K_{k}\left(A, r_{0}\right)$, where $K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$ such that the Petrov-Galerkin condition $b-A x_{k} \perp L_{k}$ is satisfied.
- For numerical stability, an orthonormal basis $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ for $K_{k}\left(A, r_{0}\right)$ is computed (CG, GMRES, BiCGstab,...)
- Each iteration requires
- Sparse matrix vector product
- Dot products for the orthogonalization process
- S-step Krylov subspace methods
- Unroll s iterations, orthogonalize every s steps
- Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu, Reichel '91 (Newton basis), Joubert and Carey '92 (Chebyshev basis), etc.
- Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication, next slide)

S-step Krylov subspace methods

- To avoid communication, unroll s steps, ghost necessary data,
- generate a set of vectors W for the Krylov subspace $K_{k}\left(A, r_{0}\right)$
- orthogonalize the vectors using TSQR(W)

Domain and ghost data to compute $\mathrm{A}^{2} \mathrm{x}$ with no communication

121122123124125126127128129130171172173174175176177178179180
131132133134135136137138139140181182183184185186187188189190
141142143144145146147148149150191192193194195196197198199200
Example: 5 point stencil 2D grid partitioned on 4 processors

- A factor of $\mathrm{O}(\mathrm{s})$ less data movement in the memory hierarchy
- A factor of $\mathrm{O}(\mathrm{s})$ less messages in parallel

Research opportunities and limitations

Length of the basis " s " is limited by

- Size of ghost data
- Loss of precision

Cost for a 3D regular grid, 7 pt stencil

s-steps	Memory	Flops
GMRES	$O(s \mathrm{n} / \mathrm{P})$	$\mathrm{O}(\mathrm{s} \mathrm{n} / \mathrm{P})$
CA-	$\mathrm{O}(\mathrm{s} \mathrm{n} / \mathrm{P})+$	$\mathrm{O}(\mathrm{s} \mathrm{n} / \mathrm{P})+$
GMRES	$\mathrm{O}\left(\mathrm{s}(\mathrm{n} / \mathrm{P})^{2 / 3}\right)+$	$\mathrm{O}\left(\mathrm{s}^{2}(\mathrm{n} / \mathrm{P})^{2 / 3}\right)+$
	$\mathrm{O}\left(\mathrm{s}^{2}(\mathrm{n} / \mathrm{P})^{1 / 3}\right)$	$\mathrm{O}\left(\mathrm{s}^{3}(\mathrm{n} / \mathrm{P})^{1 / 3}\right)$

Preconditioners: few identified so far to work with s-step methods

- Highly decoupled preconditioners: Block Jacobi
- Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)

A look at three classes of preconditioners

- Incomplete LU factorizations (joint work with S. Moufawad)
- Two level preconditioners in DDM
- Deflation techniques through preconditioning

ILU0 with nested dissection and ghosting

```
Let \mp@subsup{\alpha}{0}{}}\mathrm{ be the set of equations to be solved by one processor
For j=1 to s do
```



```
    Find \mp@subsup{\delta}{j}{}=\operatorname{Adj}(G(A), \mp@subsup{\gamma}{j}{})
    Set \mp@subsup{\alpha}{j}{}=\mp@subsup{\delta}{j}{}
end
```

Ghost data required:
$x(\delta), A(\gamma, \delta)$,
$L(\gamma, \gamma), U(\beta, \beta)$
\Rightarrow Half of the work
performed on one processor

332	282283284285286287288289290291
333	292293294295296297298299300301
334	302303304305306307308309310311
335	312313314315316317318319320321
336	322323324325326327328329330331
452	453454455456457458459460461462
437	387388389390391392393394395396
438	397398399400401402403404405406
439	407408409410411412413414415416
440	417418419420421422423424425426
441	427428429430431432433434435436

Ghost data from current solution vector

CA-ILU0 with alternating reordering and ghosting

- Reduce volume of ghost data by reordering the vertices:
- First number the vertices at odd distance from the separators
- Then number the vertices at even distance from the separators
- CA-ILU0 computes a standard ILU0 factorization
 248271265270268267269266275235 237242238245240241244239243232 442459445458446447460448461443 342347343348345346350344349337
353376373375370369374372380340
$469 \quad 351367358361359360362355378338$
$471 \quad 354368364384383382386357379341$
352366363381365366385356377339

334
336
336

284320297330306309307310308311 286322298331326329325328324327 $333 \quad 283321296302299303300304301305$ $335 \quad 285323315319314318313317312316$ $\left[\begin{array}{l}335 \\ 332\end{array}\right)$ 282291287292288293289294290295 $462 \quad 444457452456451455450454449453$ $4337 \quad 387396392397393398394399395400$ $440 \quad 390428420424419423418422417421$
438388426401407404408405409406410
441
439
\square

Two level preconditioners

In the unified framework of (Tang et al. 09), let :

$$
P:=I-A Q, \quad Q:=Z E^{-1} Z^{\top}, \quad E:=Z^{\top} A Z
$$

where
M is the first level preconditioner (eg based on additive Schwarz)
Z is the deflation subspace matrix of full rank
E is the coarse grid correction, a small dense invertible matrix
P is the deflation matrix

Examples of preconditioners:

$$
P_{A D D}=M^{-1}+Z E^{-1} Z^{\top}, \quad P_{A D E F 2}=P^{T} M^{-1}+Z E^{-1} Z^{\top}(\text { Mandel } 1993)
$$

- \quad DDM $-Z$ and Z^{\top} are the restriction and prolongation operators based on subdomains, E is a coarse grid, P is a subspace correction
- Deflation - Z contains the vectors to be deflated
- Multigrid - interpretation possible

Two level preconditioners

$P_{A D D}$ for a Poisson-like problem, using Z defined as in (Nicolaides 1987):

Ghosting requires
replicating A on each processor

Page 43

Conclusions

- Introduced a new class of communication avoiding algorithms that minimize communication
- Attain theoretical lower bounds on communication
- Minimize communication at the cost of redundant computation
- Are often faster than conventional algorithms in practice
- Remains a lot to do for sparse linear algebra
- Communication bounds, communication optimal algorithms
- Numerical stability of s-step methods
- Preconditioners - limited by the memory size, not flops
- And BEYOND
- Our homework for the next years !

Conclusions

- Many previous results
- Only several cited, many references given in the papers
- Flat trees algorithms for QR factorization, called tiled algorithms used in the context of
- Out of core - Gunter, van de Geijn 2005
- Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra (2007, 2008), Quintana-Orti, Quintana-Orti, Chan, van Zee, van de Geijn $(2007,2008)$
- Upcoming related talks at this conference:
- MS50: Innovative algorithms for eigenvalue and singular value decomposition, Friday
- MS59: Communication in Numerical Linear Algebra, Friday PM
- CP15: A Class of Fast Solvers for Dense Linear Systems on Hybrid GPU-multicore Machines, M. Baboulin, Friday PM
- CP15: Communication-Avoiding QR: LAPACK Kernels Description, Implementation, Performance and Example of Application, R. James, Friday PM

Collaborators, funding

Collaborators:

- A. Branescu, INRIA, S. Donfack, INRIA, A. Khabou, INRIA, M. Jacquelin, INRIA, S. Moufawad, INRIA, H. Xiang, University Paris 6
- J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen, UC Berkeley, J. Langou, CU Denver, V. Kale, UIUC

Funding: ANR Petal and Petalh projects, ANR Midas, Digiteo Xscale NL, COALA INRIA funding

Further information: http://www-rocq.inria.fr/who/Laura.Grigori/

References

Results presented from:

- J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal parallel and sequential QR and LU factorizations, UCB-EECS-2008-89, 2008, published in SIAM journal on Scientific Computing, Vol. 34, No 1, 2012.
- L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian elimination, Proceedings of the IEEE/ACM SuperComputing SC08 Conference, November 2008.
- L. Grigori, J. Demmel, and H. Xiang, CALU: a communication optimal LU factorization algorithm, SIAM. J. Matrix Anal. \& Appl., 32, pp. 1317-1350, 2011.
- M. Hoemmen's Phd thesis, Communication avoiding Krylov subspace methods, 2010.
- L. Grigori, P.-Y. David, J. Demmel, and S. Peyronnet, Brief announcement: Lower bounds on communication for sparse Cholesky factorization of a model problem, ACM SPAA 2010.
- S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding LU and QR factorizations to multicore architectures, Proceedings of IEEE International Parallel \& Distributed Processing Symposium IPDPS, April 2010.
- S. Donfack, L. Grigori, W. Gropp, and V. Kale, Hybrid static/dynamic scheduling for already optimized dense matrix factorization, Proceedings of IEEE International Parallel \& Distributed Processing Symposium IPDPS, 2012.
- A. Khabou, J. Demmel, L. Grigori, and M. Gu, LU factorization with panel rank revealing pivoting and its communication avoiding version, LAWN 263, 2012.
- L. Grigori, S. Moufawad, Communication avoiding incomplete LU preconditioner, in preparation, 2012

