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Logical relations are a central concept used to study various higher-order type theories and occur frequently
in the proofs of a wide variety of meta-theorems. Besides extending the logical relation principle to more
general languages, an important research question has been how to represent and thus verify logical relation
arguments in logical frameworks.

We formulate a theory of logical relations for dependent type theory (DTT) with Bn-equality which
guarantees that any valid logical relation satisfies the Basic Lemma. Our definition is syntactic and reflective
in the sense that a relation at a type is represented as a DT type family but also permits expressing semantic
definitions.

We use the Edinburgh Logical Framework (LF) incarnation of DTT and implement our notion of logical
relations in the type-checker Twelf. This enables us to formalize and mechanically decide the validity of
logical relation arguments. Furthermore, our implementation includes a module system so that logical
relations can be built modularly.

We validate our approach by formalizing and verifying several syntactic and semantic meta-theorems in
Twelf. Moreover, we show how object languages encoded in DTT can inherit a notion of logical relation
from the logical framework.
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1. INTRODUCTION AND RELATED WORK

Logical relations provide a general principle for induction on the derivations of a formal
system. Because they subsume many important constructions, they have become a key
concept in the study of higher-order type theories.

A typical logical relations argument for a given type theory proceeds by (i) defining a
type-indexed family of relations on terms, constructed inductively from the corresponding
definitions at smaller types, and (i) showing that all well-typed terms respect the relation at
the respective type . The latter theorem is referred to by various names including abstraction
theorem, parametricity, and Basic Lemma, and we will go with the latter for consistency.

Research on logical relations can be roughly divided into three directions.
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(1) Generalizations. Many type theories admit the definition of logical relations, most
importantly simple type theory and System F', although formulating the definition and
proving the Basic Lemma may be difficult in individual cases. Advanced examples include
extensions of F,, with representation types or higher-kinded polymorphisms in [Vytiniotis
and Weirich 2010] and [Atkey 2012], respectively; a system with explicit strictness in [Johann
and Voigtldnder 2006]; a language with casting in [Neis et al. 2011]; and the calculus of
inductive constructions with an impredicative sort in [Keller and Lasson 2012]. A very
general result is given in [Bernardy et al. 2010] for a large class of pure type systems. In
fact, authors may even use the Basic Lemma as a guiding intuition when defining new
languages such as originally done in [Reynolds 1983].

Specific definitions of the concept “logical relation” vary. Logical relations are usually
stated in a meta-language, i.e., a language talking about the type theory of interest. Then,
depending on the the meta-language, the definitions can be classified as semantic (using,
e.g., a set or domain-theoretical universe) or syntactic (using a second formal system). We
can also distinguish reflective definitions as the special case of syntactic ones where the
type theory is used as its own meta-language. Semantic definitions usually follow [Reynolds
1983], and early examples of syntactic definitions are given in [Mairson 1991] and [Plotkin
and Abadi 1993]. The possibility of reflective definitions has been studied in [Bernardy et al.
2010].

A specialty of semantic definitions is that the type theory is interpreted in the meta-
language (e.g., by assigning a set to every type), and the logical relation provides relations
between different interpretations (e.g., in [Reynolds 1974]). In principle, a similar approach
is possible for syntactic definitions. However, it is common to choose the meta-language
in such a way that it subsumes the type theory so that the interpretation is the identity
function.

Somewhat of an intermediate class arises if the syntactic interpretation is used in a
semantic logical relation. In this case, all types are interpreted as their set of terms so
that the logical relation is a family of relations between terms after all. Such relations are
used in [Coquand and Gallier 1990] and [Harper and Pfenning 2005].

(2) Applications. Applications of logical relations include a wide variety of meta-level theo-
rems. Examples include proving normalization of type theories [Statman 1985], [Girard et al.
1989], [Coquand and Gallier 1990]; showing completeness of equivalence algorithms [Harper
and Pfenning 2005]; characterizing lambda definability [Plotkin 1973]; proving correctness
of program transformations [Johann 2002], and relating different denotational semantics
[Reynolds 1974].

Another group of applications uses a fixed logical relation and then instantiates the Basic
Lemma to obtain object-level theorems. This is valuable even in the seemingly-trivial case
in which the fixed logical relation is uniquely determined because there are no user-declared
operators or variables. In particular, in polymorphic languages this is called theorems-
for-free or parametricity: [Wadler 1989] shows how to use Reynold’s abstraction theorem
[Reynolds 1983] to derive important properties of parametrically polymorphic functions
solely from their type.

(8) Representations. As logical relations are usually stated in a meta-language, their
representation in a proof assistant or logical framework usually requires a representation of
that meta-language. As the meta-language is often more complex than the object language,
this impedes the development of tool support for logical relation arguments. This includes
the formalization and verification of the Basic Lemma itself as well as the application of the
Basic Lemma to specific logical relations as part of some other formal proof.

[Atkey 2009] formalizes system F' in Coq [Bertot and Castéran 2004] and uses Coq it-
self as the meta-language to define logical relations for System F' and prove the Basic
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Lemma. [Schiirmann and Sarnat 2008] formalize the logical relation-based normalization
proof for simple type theory: they formalize both simple type theory and an appropriate
meta-language in Twelf [Pfenning and Schiirmann 1999] and then establish the Basic Lemma
for the specific logical relation needed.

Basic tool support in the theorems-for-free style was developed for Agda [Norell 2005]
as part of [Bernardy et al. 2010] and experimentally for Coq as part of [Keller and Lasson
2012]. [Bohme 2007] gives an online free theorem generator for sublanguages of Haskell.

Contribution. The central idea of our logical relations can be summarized as follows.
Consider DTT-signature morphisms 1, ..., 4y, : S — T for DTT-signatures S and 7. A
logical relation r : g3 X ... X p, on these morphisms inductively defines a T-predicate
r(A) : p1(A) — ... = pn(A) — type for all S-types A. Our central result is to show the
Basic Lemma: If r is well-typed at all base cases (i.e., for the base types and constants
declared in S), then it is well-typed for all expressions. Thus, the judgment for the validity
of logical relations is simple and decidable.

This yields a definition of logical relations for DTT that attempts to unify the above-
mentioned semantic and syntactic approaches: Intuitively, S represents the DTT-signature
of interest, and T represents the meta-language in which logical relations are stated. Then
the u; represent interpretations of S in the meta-language 7'

In particular, semantic definitions arise when T explicitly represents the semantic meta-
language (e.g., as in [lancu and Rabe 2011]); each u; can be understood as giving one
denotational semantics of S. Syntactic definitions arise when T represents a formal system;
the special case when T' = S corresponds to reflective definitions. If S is included into T,
the morphisms pu; are often chosen to be the inclusion morphism S < T'.

The most important application of our work is based on the use of DTT as a logical
framework [Harper et al. 1993]. Our logical relations intend to permit the representation of
logical relations for any object language represented in DTT, including, e.g., the pure type
systems from [Bernardy et al. 2010]. In those cases, S represents the object language in
DTT - e.g., simple type theory — and T the meta-language. Again this representation aims
to uniformly subsume semantic and syntactic logical relations of S, including the situation
when, in the semantic case, the u; are different models of S.

We have implemented our logical relations as a new primitive in the Twelf implemen-
tation [Pfenning and Schiirmann 1999] of DTT. Thus, the formalization of logical relation
arguments in Twelf requires users to define the relation only at the base cases (i.e., for the
identifiers declared in S), and Twelf decides the validity of the logical relation and thus
guarantees the Basic Lemma. Moreover, our implementation is integrated with the Twelf
module system so that logical relations can be constructed and verified modularly.

Finally we present a number of applications of our results to formalize and verify a
variety of syntactic and semantic meta-theorems about formal languages. Examples include
the type preservation of language translations, the observational equivalence of two model
theories, or the termination of S-reduction. The implementation and the Twelf sources of
all examples are available online at [Rabe and Sojakova 2012].

Related Work. [Takeuti 2001] sketches a definition of logical relation for the systems of the
A-cube, which would include DTT. Independently from our work, [Bernardy et al. 2010] gives
a definitions of logical relations for pure type systems, which includes DTT; this definition
is reflective, and a syntactic variant was later given in [Bernardy and Lasson 2011]. This
approach was continued in [Keller and Lasson 2012] to obtain a reflective definition for a
variant of the calculus of constructions.

Our definition and the one in [Bernardy et al. 2010] share the key idea that a logical
relation induces a single translation function that maps (i) types to predicates (which define
the relation at a given type) and (%) terms to proofs of these predicates (which proves the
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Basic Lemma). This is crucial because the nature of DTT requires (i) and () to be defined
in a mutual induction.

But then both approaches move in different directions. [Bernardy et al. 2010] generalizes
the key idea to arbitrary pure type systems whereas we treat only the minimal dependently-
typed system. Our approach, on the other hand, generalizes the key idea to logical rela-
tions between arbitrary interpretations p; : S — T. Moreover, we use n in addition to
B-conversion; while conceptually straightforward, this significantly complicates the proof of
the Basic Lemma, which we give in full detail.

Both results share an important special case. We can first specialize the results in
[Bernardy et al. 2010] to DTT, i.e., the pure type system with axiom * : O and rules
(s, %, %), (*,0,0). Technically, this pure type system does not meet the reflexivity assump-
tion of [Bernardy et al. 2010], but it is straightforward to embed it into one that does.
Second, we can specialize our results to the case where S and T are the empty signature
and all p; are empty morphisms. Then both results yield the same statement of the Basic
Lemma for DTT. The embedding mentioned above has the advantage that it automatically
extends the Basic Lemma to contexts with type variables, which do not exist in pure DTT.
To handle type declarations in our setting, types would be declared in the signature S.

Further related work includes [Harper and Pfenning 2005] and [Coquand and Gal-
lier 1990], which employ logical relation arguments to establish meta-theorems about a
dependently-typed language. [Harper and Pfenning 2005] prove the completeness of an
equality algorithm for LF by using type erasure and constructing a Kripke logical relation
for the resulting simple type theory. While this approach works very well for the intended
purpose, it does not yield a general definition of logical relation for DTT and thus does not
extend to other applications.

[Coquand and Gallier 1990] use logical relations for the Calculus of Constructions to
show strong normalization. Like us, they operate in a dependently-typed setting with no
type erasure. However, they restrict themselves to S-reduction and consider only the case of
unary logical relations. Furthermore, they interpret types semantically as sets of terms and
express predicates on types as their subsets, whereas we express predicates as DTT type
families. While the latter makes relations more difficult to express, it has the advantage of
formalizing all implicit assumptions and permitting mechanic verification of logical relations.

Consequently, the treatment of type families differs in the respect that in [Coquand and
Gallier 1990], a type family ¢ : A — type determines a family of predicates indexed by
terms of type A. In our definition, the indexing only considers those terms of type A which
satisfy the relation at A. Apart from being more uniform, this distinction is needed for
the syntactic version since many such predicates would otherwise be difficult to express
parametrically as DTT type families.

Both results use a semantic logical relation on the syntactic interpretation of types as sets
of terms. These are non-standard (Henkin) interpretations, i.e., they do not interpret func-
tion types compositionally as exponentials. Because morphisms can only represent standard
interpretations, this precludes representing those logical relations in our style. However, we
expect that our treatment of logical relations carries over naturally to an appropriate defi-
nition of non-standard morphisms.

Finally, [Schiirmann and Sarnat 2008] use DTT as a logical framework to formalize an
individual logical relation argument. Their formalization of both the object logic and an
appropriate assertion logic in Twelf corresponds to our use of the DTT-signatures S and
T. In our terms, the given logical relation corresponds to a unary logical relation on the
inclusion morphism S < T'.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

Grammar Typing Equality
Signatures S =18 c:A]S a: K FSsig
Morphisms w o =l ec=M|py, a:=C Fpu:5—=S9
Contexts r «==-|Iz:A FsgT ctx
Terms M u=clz| X AM|MM T'FsM:A 'FsM=M :A
Type families| C,A::—=a|Xx: A.C|CM| ks C: K ks C=0C":K
Mx:A A
Kinds K u=type|llz: A K I'tsg K :kind T'kg K =K':kind

Fig. 1. DTT Syntax and Judgments

2. PRELIMINARIES

Intuitively, DTT arises from simple type theory by adding dependent function types
Iz : A;. A and kinded (i.e., type-valued) symbols a : Iz : Ay. ... Iz, : A,. type for types
A;. Tt is distinguished from more expressive languages such as the calculus of constructions
by the absence of type variables and polymorphism.

We use the well-known LF incarnation of DTT as given in [Harper et al. 1993; Pfenning
2001; Harper and Pfenning 2005]. Fig. 1 gives an overview of the grammar and judgments.

As usual, we omit the subscript S in Fg if it is clear from the context, and we write
Iz : A.U as A — U if x does not occur free in U. Moreover, we adopt the convention of
writing M, N for terms; C for type families of any kind K; A, B for the special type families
of kind type; and K for kinds. Arbitrary expressions (including the symbol kind) will be
denoted by U, V, W. Finally, we write the simultaneous capture-avoiding substitution of M;
for z; in U as UM, /x1, ..., M,/x,]. Finally, we omit the types of bound variables if they
can be inferred easily.

To be self-contained, we repeat the judgmental rules for DTT in Fig. 2. They closely follow
the ones given in [Harper and Pfenning 2005], except that we allow A-abstraction at the
level of type families, which corresponds to the treatment of DTT as a corner of the A-cube.
In particular, we use functional extensionality as a primitive rule, which is equivalent to
n-conversion; for clarity, we include important admissible rules in [brackets]|. For simplicity,
the rules for contexts, kinds, type families, and terms presuppose the ambient signature S
to be valid.

We will freely use the exchange, weakening, and substitution properties of LF, as well as
the fact that all judgements imply the validity of the contexts involved. Furthermore, we
will use the facts that if T M : Athen '+ A : type, if ' C: K then I' - K : kind, and
fIrFU=V:WthenTHFU:Wand 'V :W.

Our logical relations depend crucially on and will be structurally very similar to LF
signature morphisms (see, e.g., [Harper et al. 1994]). Since the notion or morphisms is
somewhat less common, we state the definition and its main property in detail:

Definition 2.1. A valid morphism - T : y — S consists of a T-term ¢ p. : pu(A)
for every constant ¢ : A declared in S and a T-type family F7 p, : u(K) for every type
family a : K declared in S. Here p(—) is the homomorphic extension of p, which maps
S-expressions and contexts to T-expressions and contexts. pu(—) is defined inductively as
follows:
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Valid signatures and contexts

S sig ks A: type =

S sig - ks K : kind T'H A:type

- sig FS,c: Asig
Valid kinds

FT ctx
I' - type : kind

I'z: AF K : kind
T'FIz: AK : kind

Valid type families

F T ctx a: KeS T'FC:Ilzx: AK

FS,a: K sig - ctx FT,z: Actx

' A=A :type Mz: AF K = K’ : kind
PHIz: AK =1z : A .K' : kind

'+M:A r-C=¢":lz: AK r-M=M:A

I'Fa: K

Ne: AFC: K

TFC M : K[M/x]

'A=A":type

rFCcM=0c" M :K[M/z]

Nz:ArC=C:K T,z:AkF B: type

|

I'A=A":type Iz: A+ B=B':type

F'kXx:AC:lz: A K TFAx: A.

C=xz:A.C':lz: AK Tk Iz : A.B : type

Ne:ArCa=C"z:K x ¢ Free(C), z ¢ Free(C')

MFMz:AB=1Ixz: A B : type

I'-C:Mlz: AK z & Free(C)
'FAXz: ACx=C:llx: AK

|

Valid terms

r-Cc=c":Oz: AK

z: AFC: K T'FM:A
I't(Az:AC)M =C[M/z]: K[M/z]

F T ctx c:AeS F T ctx z:Ael 'M:Ilz: A.B 'EN:A
T'kc:A F'kFaxz:A ' M N : B[N/z]
'-M=M:Tlz: AB 'FN=N:A T,z: A+ M:B

I'MN=MN':B[N/z]

'+A=A":type e:A-M=M:B

'Xx: AM:Ilz: A.B

ae:AFrMaz=M z:B x ¢ Free(M), = ¢ Free(M')

| |

TFXz:AM=Xz: A" M :Tlz: A.B '-M=M:Tz:AB
I'FM:Iz: AB z ¢ Free(M) Iz: A+-M:B TEN:A
T'FXx:AMax=M:Ilz: A.B 't (Az:AM)N=M[N/z]: B[N/x]

Equality
reu:v r-u=u:v r-u=u:v rru' =uv":v
rcu=0:Vv rcuv' =v:v rru=0":v
r-uU:Vv rrv=v.w r-u=u:v rrv=v.w
r-uv:v’ rruv=uv:v’
Fig. 2. Typing Rules of D'I'T
kind = kind
O plkind)
p(lz: A) = p(l),z: pu(A) n(type)  =type
uOa s AC) = Az s p(A).u(C) pllz s AK) =z : p(A)- (K
uw(C M) = p(C) u(M) p(Ax: AM) = Az : p(A).p(M)
p(Ilz : A.B) =Tz : u(A).u(B) w(MN) = p(M) p(N)
u(a) = Jta u(x) x
1(c) = He
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Intuitively, a morphism S — T formalizes a compositional type-preserving translations
from S to T'; thus, it demonstrates that all notions of S can be interpreted, represented, or
realized in T. An example will be given below in Ex. 3.1. The key property justifying this
intuition is the following:

THEOREM 2.2 (MORPHISM INVARIANTS). IfF p: S — T, then we have the following
mvariants:

if Fs T ctx then Fr u() ctx
if ThksgU:V then () bFp p(U) = w(V)
if TrsU=V:W then )bty wU)=uwV):puW)

Conversely, all translations that are compositional in the sense of the homomorphic ex-
tension and that satisfy Thm. 2.2 are morphisms.

3. LOGICAL RELATIONS

We will define n-ary logical relations r : p3 X. .. X p, as relations on LF-signature morphisms
W1y« pn 2 S — T. Throughout this section, we will fix S and T as well as p1,..., uy,, and
we will call the signatures S and T the domain and codomain of the relation, respectively.

3.1. General Ideas

As seen in Def. 2.1 and Thm. 2.2, morphisms are compositional mappings of S-expressions to
T-expressions that preserve typing, kinding, and equality judgments. We will define logical
relations in a very similar way, albeit using a different type preservation property. A logical
relation 7 : 1 X ... X p, associates to every closed S-type A a T-type family r(A) : p1(4) —
... = un(A) — type, which represents an n-ary relation on the different translations of A.
Every closed S-term M : A is then mapped to a T-term r(M) : r(A) ur(M) ... pp(M),
which proves that the different translations of M are related.

In general, an S-expression with m free variables will be mapped to a T-expression with
m(n+1) free variables: each variable x will give rise to n copies of x (one for each morphism
;) plus an extra variable asserting that all of these copies are related. At a function type,
terms will be considered related if and only if they map related arguments to related values.
This intuition is known from simple function types and remains true for dependent functions:
the only difference is that the related argument and, crucially, the proof that they are related
are used to construct the relations at later argument types.

As the general definition can be difficult to read, we will first consider a simple motivating
example of a unary logical relation, i.e., n = 1 and then give the formal definition in Sect. 3.2:

Ezample 3.1 (Type Preservation of the Church-Curry Translation). As a simple exam-
ple let us consider the Church and Curry encodings of simple type theory. In the Church
encoding, also referred to as intrinsically typed, terms are indexed by types. Each term thus
has a unique type and terms which are not well-typed are never constructed.

%sig Church = {

tp 1 type

= = tp—otp—tp %infix =
tm : tp — type

lam : IIAIIB.(tm A — tm B) — tm (A= B)

app : IAIB.tm (A= B) —>tmA— tm B

}
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Here we mimic the concrete syntax of our Twelf implementation [Pfenning and Schiirmann
1999; Rabe and Schiirmann 2009] and use the keywords %sig to introduce signatures and
%infix to introduce infix notations for certain binary symbols.

In the Curry encoding, also known as extrinsically typed, terms are defined untyped and
the typing relation is given separately. This allows the assignment of multiple types to a
single term, if needed.

%sig Curry = {

tp : type
= Cotp—tp—tp %infix =
tm 1 type
lam  : (tm— tm) = tm
app : tm— tm— tm
# : tm — tp — type %infix #
Hiom + UAIBILS. (Uz. o # A — (f 2) % B) — (lam f) % (A = B)
Haopp  HAINBIIfIlx. f# (A=B)—>ac#A— (app fz)# B
}

Here the DTT-type family # represents the typing relation of simple type theory using the
Curry-Howard style representation of judgments-as-types.

It is easy give a translation from Church to Curry by simply erasing the type annotations
from terms. We can formalize this concisely as a signature morphism (introduced by the
keyword %view in Twelf):

Y%view TypeEras : Church — Curry = {

tp = 1p

= = =

tm = AA.tm

lam = MNAAXBAf. lam f

app = MNAIBMf.)a.app f a

}

The crucial mapping here is that of ¢m, which becomes a constant type family assigning
to each type the set of untyped terms.

Thm. 2.2 guarantees that TypeEras(—) preserves the DTT-typing relation, i.e., every
Church-term M : tm A is mapped to a Curry-term TypeEras(M) : tm. We now aim to
show that TypeFEras also preserves the typing relation of the encoded object language, i.e.,
that we also have that the type TypeEras(M) # TypeEras(A) in Curry is inhabited. We
formalize this as a unary logical relation TypePres (introduced by the keyword %rel) on
the morphism TypeEras:

%rel TypePres: TypeEras = {

tp = AA:tp. unit
tm = MM:tp. A . dx:tmax# A
= = MM:tp. A\ . AB:tp. A_. %
app = MA:tp. A\ _. AB:tp. A .
Aotm ANf*: f# (A= B). Ax:tm. A\x*:x# A #opp AB fa f*a*
lam = MA:tp. A\_. AB:tp. A

A tmo— tm A (Uztm. z# A — (f2) # B). #wm AB f f*

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.
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Firstly, TypePres assigns a Curry-predicate TypePres(tp) : tp — type to the Church-
type tp. As there is nothing to prove about terms of type tp, we choose any trivially true
predicate; the easiest solution is to assume a unit type * : unit. In the later declarations, we
use anonymous variables _ for all the variables of type unit.

Secondly, TypePres assigns a family

TypePres(tm) : 1A : TypeEras(tp). ILA* : TypePres(tp) A. ( TypeEras(tm) A — type)

of Curry-predicates to the Church-type family tm. Just like tm : tp — type is indexed by
terms of type tp, TypePres(tm) is indexed by terms A of type TypeEras(tp) and proofs A*
that A is in the relation TypePres(tp).

Given a Church-term M : tm A, the inductive translation will be defined such that
TypePres(tm A) = TypePres(tm) TypeEras(A) TypePres(A) = Az : tm. x # TypeEras(A).
Thus, we have the Curry-judgment

TypePres(tm A) TypeEras(M) = TypeEras(M) # TypeEras(A)

as intended.

This concludes the mapping of type family symbols. In the next step, we map each term
symbol to a proof that the relation is satisfied. Of course, this is trivial for the constructors
of tp. Since app takes four arguments, the case for TypePres(app) takes eight: one for each
argument and one for the assumption that they are in the relation, e.g., =* is the assumption
that = is in the relation. For lam, we have to show that whenever f : tm — ¢m satisfies
the relation, then so does lam f : tm (A = B). Since f has a function type, this yields an
assumption f* stating that f preserves the relation.

The Basic Lemma that we prove below in Thm. 3.9 guarantees that for any term M :
tm A, the term TypeEras(M) satisfies the predicate TypePres(tm A), i.e., that the type
TypeEras(M) # TypeEras(A) is inhabited.

3.2. Formal Definition

As mentioned above, r(—) maps expressions with m free variables to expressions with m(n+
1) free variables. To handle this conveniently, we introduce a few auxiliary notations.
First we note that if I' =z : A1,..., 2T : A, the context r(I") will be of the form

ol b (Ay), o 2l ol (Ay), 2t ir(Ay) @t oL 2

al (A, oo wt ol (A, xk s r(Ay) xl, o2

The need for all these variables is twofold. Firstly, we create a copy of /(') for each
morphism ;. Here yj is like ju; except that the variables of I" are mapped to the respective
copy, i.e., u; maps x; to z’;. Secondly, we add one variable z for every z; in I, which serves

as an assumption that the tuple (33]17 ..., x7) is in the relation.
Formally, we define p as follows:

Definition 3.2. If U is an S-expression with free variables among x4, ..., z,,, we define
pi(—) by
i (U) = ()l fxy, oy @ /]
Il=ux1:A41,...,2,m : Ap, we put
pi(T) = @ 2 pi(Ar), @, o pi(Am)
Note that, because p} arises as the composition of a morphism and a substitution, it
preserves validity, typing, kinding, and equality judgements.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10

We also use the following notations to bind sequences of variables and to apply functions
to sequences of arguments:

NoOTATION 3.3. We use the following notations:

— For a context fragment ' = x1 : A1,..., &y @ Ay, we write A\U.U for the expression
Axq Ao ALy, + Ay U. We write IIN.U accordingly.

— For a list of terms M = My,...,My,, and a list of variables T = x1,...,Tpm,
we write U M for the application U My ... M,, and [M/Zz] for the substitution
[M]_/.’I}l,...,Mm/.'Em].

— In order to introduce fresh variables conveniently, we assume that for every variable
name x, we have an unlimited supply of fresh wvariable names, which are denoted by
adding superscripts to x.

Moreover, we use the following notations to produce sequences of bound variables and
sequences of arguments:

NOTATION 3.4. For any type A and term M in S (not necessarily closed) we write

— f: u(A) for the context fragment f1 wi(4), ..., f" s (A)

— z:7H(A) for the context fragment x' : 1} (A), .. ,un(A) x*ir(A)xt .2
— u(M) for the list of terms py (M), ..., pl (M)

— rH(M) for the list of terms py (M), ..., pl (M), r(M)

Then we can finally define logical relation application r(—) as follows:

Definition 3.5 (Logical Relation). Let pq,...,u, : S — T be DTT-morphisms. Given a
T-term r. for every S-constant ¢ and a T-type family r, for every S-type family symbol
a, we define by induction on the syntax (i) a mapping r(—) from S-terms, type families,
and contexts to T-terms, type families, and contexts, as well as (ii) for S-type families C,
a mapping r¢(—) from S-kinds to T-kinds:

r() —.
r(T,z: A) =r(D),z:r"(A)

ri(type) = pi(A) = ... = u,(A) = type
rC(Mx : AK) =z : 7#(A ) r¢(K)

r(a) =7,

r(C M) =r(C) r*(M)

r(\ : r

r(c) =7
r(zx) =uz*
r(M N) ir(M)r“(N)

r(Az: AM) =Xix:r#(A). r(M)
r is called a logical relation, written 7 : puy X ... X p, : S — T, if for each constant ¢ : A
and type family symbol a : K in S we have
Frore:r(A) p(e) and  bFprg:r®(K)
Remark 3.6. Note that, as intended, if the expressions M,C, K have free variables

among 1, ..., Tm, then r(M), 7(C), r¢(K) have free variables among x1,... 2%, o3, ...,
1 n *
Ty oo s Ty T

Remark 3.7. In a language that extends DTT with abstraction over type variables, it is
possible to unify the functions r(—) and r%(—) into a single function r(—) by putting (in
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the unary case) r(type) = AA : type. u1(A) — type. In the special case where 1 = idg is
the identity and can be dropped, this corresponds to the definition given in [Bernardy et al.
2010].

Ezample 3.8. Consider a logical relation 7 : y3 x a1 S — T, and abbreviate U’ := p(U)
for any expression U. Then we have
r(llz : Ally : B.C) =
AfLTIzt - ALIIyY - BL.CL.
Af?:TMz? : A%211y? - B2.C2.
Mot : ALTI2? : A210z* : r(A) 2t 22
y! : BLIIy? : B21y* : r(B) y* >
r(C) (ft 2t y") (f? 2% y?)
Thus, uncurrying works as expected: Two functions f' and f2? are related at
r(Ilz : AIly : B.C) iff they map related argument tuples to related outputs.

As for morphisms, the key property of logical relations is that the characteristic invariant
holds for all expressions iff it holds for all symbols:

THEOREM 3.9 (Basic LEMMA). Assume a logical relation v : 1 X ... X iy, + S — T,
Then:
if ThgC:Kthen () kFr7r(C):r%(K)
if ThkgM:Athen r(T)bFpr(M):r(A) u(M)

3.3. Proof of the Basic Lemma

The proof of the Basic Lemma is rather lengthy and while straightforward in nature, it
requires some care to handle a few technical issues. Since typing/kinding and definitional
equality are mutually recursive in DTT, the proof must be carried out by a mutual induction
on derivations. Consequently, we need a more general induction hypothesis (Thm. 3.11) that
also states the preservation of equality.

To simplify the induction, we modify some of the rules for typing and equality by adding
kinding hypotheses; these are obviously redundant but needed to justify the application of
the induction hypothesis. The modified rules are shown in Fig. 3, with the extra premises
enclosed in {braces}.

First we observe that:

— We have i (U[N/a]) = p(U) [, (N) /],
— IfT kg U :V and b7 7(T) ctx! then 7(T') br pl(U) : pi(V). Similarly, if T Fg U =V :
W and b7 r(T) ctx then »(T) Fp pi(U) = pi(V) « pb(W).
Then we establish the following lemma:
LEMMA 3.10 (SUBSTITUTION). For any S-expressions N, M,C, K we have
r(M[N/x]) = r(M)[r*(N)/z*,... 2", %]
r(C[N/z]) = r(C)[r*(N)/z, ... ", z*]
rCWIE (KN /z]) = r9(K)[r*(N)/a', ... 2™, ¥

PRrROOF. By induction on the structure of M, C, and K respectively. O

IThis condition will be guaranteed by the Logical Relation Invariants Thm. 3.11, once proved.
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I'+-M:Iz: A.B {I',z: A+ B : type} TEN:A
T+ M N : B[N/z]

T'z:A-C: K {I'z: A+ K : kind} I'z:A+-M:B {I'z: A+ B : type}
'Xz:AC: Iz : A K 'tAe:AM:Ilz: A.B

Nz:AFrMaz=M z:B {I'z: A+ B : type} x ¢ Free(M), « ¢ Free(M')
PFM=M :llz:AB

Tz:AFC: K {I'z: A+ K : kind} 'EM:A
T'(Az:AC)M =C[M/z]: K[M/z]

'e:Ar-M:B {I'z: A+ B : type} '-N:A
F(\z:AM)N=M[N/z]: B[N/x]

r-c=0:K {T'+ K :kind} r-M=M:A {I'+ A: type}
r-c’'=C:K M =M:A

r-c=0:K r-c’'=0":K {T'+ K : kind}
r-c=c¢":K

rFM=M":A M =M":A {I'+ A : type}
rrM=M":4A

Fig. 3. Modified Typing Rules of DTT

Now the remainder of this section proves the main theorem:

THEOREM 3.11 (LOGICAL RELATION INVARIANTS). For each logical relation r : p; X
X iy 2 S = T, we have the following invariants:

if FoT ctx then Frr(T) ctx (1)
if TrgK:kind, TFgC: K then  r(I') Fr r9(K) : kind (2)
if TrsC:K then  7(T) k¢ 7(C) : r(K) (3)
if ThksM:A then  r(T) Fp r(M):r(A) u(M) (4)
if TI'FgK=K:kind, I'tgC:Kthen 7(T)Fzrr9(K)=7r%K’):kind (5)
if TIhkgK:kind, IFgC=C":K then r(I)trr¢(K)=7r"(K):kind (6)
if ThrsC=C":K then  7(T) Fr 7(C) = r(C') : r¢(K) (7)
if ThsM=M:A then  7(T) kg r(M)=r(M"):r(A) u(M) (8)
ProoF. The proof proceeds by induction on the (first) S-judgement. The invariant being

verified is marked as I(N).
— For contexts:
— I(1): Case Fg - ctx. Trivial.
— I(1): Case Fg I,z : A ctx from the premise I' Fg A : type. By IH we have
r(T) bpr(A) : pi(A) — ... — ul (A) — type  hence
r(T),x: p(A) Fpr(A) ' ... 2" : type
Thus the context r(I"),z : r#*(A) is well-formed as desired.
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— For kinds:
— I(2): Case I' g type : kind from the premise kg I' ctx, with any I"' Fg A : type. By
TH we have ¢ r(I") ctx. By validity of r(I") we get »(T') F¢ ui(A) : type. Thus

r(T) bp pi(A) = ... — ul (A) — type : kind
as desired.

1(6): Case ' kg type : kind from the premise Fg T ctx, and any I' g A = A’ : type.
Very similar to the previous case, with equality in place of the kinding judgement.

I(2): Case I' kg Iz : A.K : kind from the premise I'yz : A Fg K : kind, with any
kg C:1lz: A.K. By IH and the fact that I',x : AtFg C z : K we get
r(T),z:r"(A) Fr ¢ *(K) : kind  hence
r(T) g Iz : 7#(A).r¢ *(K) : kind
as desired.
1(6): Case I' g Iz : A.K : kind from the premise I'z : A g K : kind, with any

I's C=C':1lz: A.K. Very similar to the previous case, with equality in place of
the kinding judgement.

I(5): Case ' Fg Ha : A.K =Tz : A. K’ : kind from the premisesT'Fg A = A’ : type
and I,z : Atg K = K’ : kind, with any I' Fg C : IIz : A.K. By IH and the fact
that Tz : Abg C x: K we get

r(T) Fpr(A) =r(A") : ph(A) — ... — ul, (A) — type
r(T),z : rH(A) Fp r€ *(K) = r¢ *(K') : kind
Now r(T") Fp p;(A) = ui(A’) : type. Furthermore, from the first IH we get
r(D), 2 w(A) Frr(A) 2t oo a® =r(A) 2! ... 2" type
Combined with the second IH this gives us
() Fp Iz : 7#(A).r¢ 2(K) = Oz : r*(A).r¢ 2 (K) : kind
as desired.
— For type families:
— I(3): Case ' g a : K for a : K € S, from the premise Fg I' ctx. By IH we have

Fr r(T) ctx. By definition of logical relation, - 7 r(a) : r*(K). Since r(T) is
well-formed, we get 7(T") Fr r(a) : r*(K) as desired.

— 1(3): Case ' kg C M : K[M/x] from the premises T'tg C : Iz : A K and T'Fg M :
A. By IH we get
r(T) bp r(C) : M« r#(A).r(@ (K
(L) Fr (M) r(A) (M)
Thus, from the fact that »(T') Fr p(M) : pi(A) and the second IH we get
r(D) b r(C) (M) (@K (M) /.. 2", 2]
By the Substitution Lem. 3.10 we have

rC D (K (M) /2, ... 2", 2] = r© M (K[M/x])
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hence
(D) bp r(C) r* (M) : +(€ M) (K[M/z])
as desired.
I(7): Case T'Fg C M = C'" M’ : K[M/z] from the premises 'Fg C = C’" : Tz : A.K

and I' Fg M = M’ : A. Very similar to the previous case, with equality in place of
the kinding judgement.

I(3): Case I' kg Az : A.C : Ilz : A K from the premises I,z : A Fg¢ C : K and
I'z: Abg K : kind. By TH and the fact that T,z : Abg (Az: A.C)z=C: K we
get

r(T),x : r"(A) Fp r(C) : 79(K)
r(),z : 7#(A) bp rOo 49 7 (K) = +9(K) : kind
We thus have
r(0),z: r*(A) br r(C) : pAzAC) *(K) hence
r(T) br Az rH(A).r(C) : Tz r”(A).r()‘”:A'C) *(K)

as desired.

I(3): Case I' kg IIx : A.B : type from the premise ',z : Atg B : type. By IH we
get

r(T),z:r"(A) br r(B) : uy(B) — ... — ), (B) — type
Since (T") bp p)(x : A.B) : type, we have
r(D), f: w(lz : A.B),z: r"(A) Frr(B) (f* 2') ... (f* 2") : type

Thus

(D) b Af o p(Tlz : A.B)IMz : r#(A).r(B) (ff 2b) ... (f"2™):

pwi(Mz : A.B) — ... — p, (Ilz : A.B) — type

as desired.
I(7): Case ' Fg Iz : A.B =TIz : A’.B’ : type from the premises ' g A = A’ : type
and ',z : Atg B = B’ : type. By IH we get

r(T) bp r(A) =r(A) : pi(A) = ... = ul (A) — type

r(0),z:r"(A) br r(B) =r(B') : py(B) — ... — ., (B) — type

Now r(I") Fr pi(A) = pi(A’) : type; r(T) br p;(llz : A.B) = pl(Ilz : A’.B’) : type.
Thus

D),z w(A) Fpr(A)zt ... 2" =r(A) 2! ... 2" : type
r(D), f:p(Tz : A.B),z: r*(A) Fpr(B) (ff2') ... (f*2") =
H(BY (1 2) .. (7 o™ - type
This gives us
(D) b Af : p(Tlz : AB).dlz : v (A).r(B) (f* 2b) ... (f*a2") =
Mo : A B Iz - v#(A)r(B') (fL 2b) ... (f*a™):
pi(Mx: A.B) — ... — u, (Ilz : A.B) — type
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as desired.

— I(7): Case ' g C = C’ : Tlx : A.K from the premise I',x : Abg Cz=C"z: K. By
IH we have
r(D),z:r*(A) Fpr(C) 2t ...z z* =r(C) 2t ... 2" 2" O F(K)  hence
r(T) Fr r(C) = r(C') : Tz : 7*(A).r¢ *(K)
as desired.
— I(7): Case I' kg (Az: A.C) M = C[M/x] : K[M/z] from the premises I';z : A Fg

C:K,and T,z : Atg K : kind, and I' kg M : A. By IH and the fact that
INz:AFg (M : AC)z=C: K we get

r(T), @ () b r(C) < 1O (K)
r(T),z : TH(A) Fp rO@AO) 2 (K) = vC(K) : kind
r(I) o r(M) 2 r(A) p(M)

Using the fact that »(T') Fp pl (M) : pi(A) thus yields

)
r(T) Fr Az : rH(A).r(C)) r*(M ) r(C)[r“(M)/ml, RPN LA A I
rC (K[ (M) /! ..
) b 0RO A )=
rC(K)[r* (M) /", .. ]:kind

Thus
r(T) Fr Az 7 (A).r(C)) r#(M) = r(C)[r* (M) /2", ... a", x*] :
rOEACY T (R (M) [t 2™, 2]

By the Substitution Lem. 3.10 we have

r(C) (M) /!, ... z", x*] = r(C[M/z])

pAzAC) (K)[r“(M Jxt, 2" at]) = pAz:AC) M(K[M/x))
thus

r(0) ke Az v (A).r(C)) r#(M) = r(C[M /a]) : P54 M(K[M /2])

as desired.

— For terms:
— I(4): Case I' g ¢ : A for ¢ : A € S, from the premise Fg I' ctx. Analogous to the
base case for type families.

— I(4): Case I' kg = : Afor z : A € T, from the premise g I ctx. By IH we have
k7 7(T) ctx. By construction we have z* : r(A) ! ... 2™ € r(T). The validity of
r(T) thus gives us r(T') Fp z* : r(4) 2! ...2", ie., r(T) Fr r(z) : 7(A) u(z) as
desired.
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— I(4): Case I' k¢ M N : B[N/x] from the premises I' bg M : Ilz: A.B and I,z :

AbFg B:typeand I' ¢ N : A. By IH we get
() bpr(M) : (A : p(Ilz : A.B) Iz : r#(A).r(B) (ff 2') ... (f*2™)) p(M)
r(T),z : 7"(A) br r(B) : py(B) — ... — ul,(B) — type

r(T) Fo r(N) :r(A) p(N)

Using the fact that »(T') Fp i (M) @ p;(Ilz : A.B), we thus have
r(0) br (Af : p(Hz : A.B) Iz : v#(A).r(B) (f' 2') ... (" 2™)) p(M) =
M = 1 (A).r(B) (s, (M) 2%) ... (4,(M) 27) : type

r

Hence
F(T) b (M) s Tl 7 (A)r(B) (4 (M) @) ... (s, (M) 27)
Using the fact that #(T') Fr p}(N) : p;(A) and the last TH we get
r(T) bp r(M) r#(N) :
r(B)rH(N) /b, ™, @] (ph (M) iy (N)) . (i (M) g, (N)

Now by the Substitution Lem. 3.10, we have

r(B)[r*(N)/z*, ... 2", «*] = r(B[N/x])
hence

#(T) b (M) (V) : 1(BIN/a]) u(M N)
as desired.

— I(8): CaseI'¢ M N = M’ N’ : B[N/x] from the premisesT' g M = M’ : Tlz : A.B

and ' g N = N’ : A. Very similar to the previous case, with equality in place of
the typing judgement.

— I(4): Case T Fg Az : AM : Tlz : A.B from the premises I,z : A g M : B and
I'z: AbFg B: type. By ITH we get

r(T),z: r*(A) br r(M) : r(B) p(M)

r(T),z:r"(A) br r(B) : py(B) — ... = pu,(B) — type
Thus we have

r(T) bp Az 7#(A).r(M) : Tz : r#*(A).r(B) u(M)
Furthermore, using the fact that »(I') Fr pi(Az : A.M) : p,(x : A.B) we get
r(0) Fr (Af : p(Hz : A.B) Iz : v#(A).r(B) (f' ') ... (" 2")) p(ha: A M) =
Mz : r#(A).r(B) p(M) : type
Thus
r(0) bp Az : r*(A).r(M) :
(Af : p(z : AB)Iz : v#(A).r(B) (f ') ... (f"2™) p(hx: A.M)

as desired.
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— I(8): Case I' ¢ M = M’ : Ilz : A.B from the premises ',z : Ars M o =M'z: B
and I,z : Atg B : type. By IH we get

r(T),z:r*(A) Fpr(M) 2t .. 2" 2" =r(M') 2" ... 2™ 2"
r(B) (py (M) a') ... (up (M) 2™)
r(D),z :r"(A) br r(B) : py(B) — ... — u.,(B) — type
Thus we have
r(D) Fr (M) = r(M') : Tz r#(A).r(B) (1 (M) 2) ... (M) ")
Furthermore, using the fact that r(I') F¢ pi(M) @ pl(Ilz : A. B) we have
r(0) Fr (Af + p(Mz » AB)dlw : r(A).r(B) (f* 2') ... (f" 2")) u(M) =
Iz 7 (A).r(B) (uy (M) @) ... (u, (M) @ )-type
Hence
r(T) bpr(M) =r(M'):
(Af : p(Mz : AB).MMa : r(A).r(B) (f' «') ... (f" 2™)) u(M)
as desired.
— I(8): Case I' kg (Ax: A.M) N = M[N/z] : B[N/x] from the premises I',x : A Fg
M:B,and 'z : AFg B:type,and ' g N : A. By IH we get
r(D),z:r*(A) bp r(M) : r(B) p(M)
r(T),z:r"(A) by r(B) : py(B) — ... — pu\,(B) — type
() b r(N) 2 r(A) p(N)
Using the fact that 7(T') Fp p}(N) : pi(A) thus yields
r(D) Fr Az (A).r(M)) r#(N) = r(M)[r*(N) /o', ... 2", a"]
r(B)rH(N) [t ", 2] (M) [y (N) /2] g, (M) [y, (N) /2"
Since (T) Fr pj((Az : A.M) > (M) [ (N) /)« (B[ (N) /], we et
r(0) b r(B)[r*(N) /2", .. '] [y (N) /'] - i (M) [, (N) /2] =
r(B)[r"(N)/x, ... a" x*] Az : AM) N) : type
Hence
r(T) Fr Az r(A).r(M)) r*(N) = r(M)[r*(N)/z*, ... 2™ 2] :
r(B)[r*(N)/x, ..., 2", a*] w((Az : A.M) N)
By the Substitution Lem. 3.10 we have
7“( I (N) /a2, a*] = r(M[N/z])
(B (N)/a!,... a", 2] = r(B[N/a])
thus
r(T) Fr (A : rH(A).r(M)) r*(N) = r(M[N/x]) : 7(B[N/z]) p((Ax : A.M) N)

as desired.

— For equality judgements: Straightforward using the modified rules.
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This finishes the proof. O

4. APPLICATIONS

In this section we show how a number of known as well as new applications of logical relations
can be formalized in DTT. All concrete examples have been formalized and mechanically
verified by our implementation (see Sect. 5) and are available online at [Rabe and Sojakova
2012].

4.1. Meta-Theorems

Ex. 3.1 already gave an example of representing an inductively proved meta-theorem about
formal systems as a logical relation. As another example, we show that in propositional
logic the law of excluded middle can be proved if it is assumed for all atomic formulas:

Ezample 4.1. The following signature gives (a fragment of) a well-known (see, e.g.,
[Harper et al. 1993]) encoding of intuitionistic propositional logic with a natural deduction
calculus:

%sig PL = {
o . type
of : 00— type
Y% i 0—=>0—=o0 %infix V
- i 0—o0
Vi HTAIB. pf A — pf(AV B)
Vig : HAIIB.pfB — pf(AV B)
Vg : HAIBIC. pf(AV B) = (pf A= pfC) — (pf B — pfC) — pfC
-1 ¢ A (pfA— §) — pf(=A)
-5 A pfA—pf(=4) =4

}

We use the symbol 4 to abbreviate the type IIA : o. pf A, which encodes inconsistency.
We now give a unary logical relation Tnd (for tertium non datur) on the identity morphism
idpyr, : PL — PL to prove that the type pf (A V —A) is inhabited for every formula A.

%rel Tnd: idpr, = {
o = M:o.pf(AV-A)
Vo= Ao MA*:pf(AV—A). AB:o. AB*: pf(BV —B). Vg A*
E)\P pfA. Vg (\/]L P))
AP : pf (—A). Vg B*
E/\Q : pr. V1L (\/[R Q))
AQ :pf (—B).Vig (-1 AR :pf(AV B).\C.VE R
(AP':pfA.~g P' PC)
(AQ':pfB.~p Q' Q(C)))))
- = Ao MA*:pf(AV—-A). vy A*
E)\P :pf A Vig (-1 (AP : pf (—A). \C. —g P P’ C)))
AP : pf (mA). VL P)

.

All cases relating to the type family pf are trivial because we use a trivially satisfied predi-
cate.
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Applying the Basic Lemma to this logical relation yields that excluded middle is an
admissible rule — in the special case without atomic formulas. To handle the presence of
atomic formulas, we add constants p : o to PL. Consequently, we have to add to Tnd the
corresponding cases p := P for proofs P : pf (pV —p). Thus, it follows that excluded middle
is admissible if it is admissible for all atoms.

4.2. Congruence Relations

In a single-typed language such as that of universal algebra, congruence relations are binary
relations on the type that are closed under all operations on that type. More generally, we
can consider congruence relations for arbitrary formal languages, represented by a signature
S. In that case, they are type-indexed families of binary relations that are closed under all
operations. This closure property is exactly the Basic Lemma of a binary logical relation
on ids:

Definition 4.2 (Congruence). A logical congruence on a signature S is a binary logical
relation on the identity morphism idg.

Example 4.3. First we extend PL from Ex. 4.1 sufficiently to make the rules for the
equivalence connective < provable (e.g., by adding conjunction and implication and then
using the usual definition of <):

& : 0—=>0—0 %infix <
S : HAIB. (pf A — pf B) — (pf B — pf A) — pf(A < B)

<p, : HAIB.pf(A< B) —»pfA—pfB

<pr : HAIB.pf(A< B) = pf B — pfA

Then we further extend this to an encoding FOL of first-order logic; we do not need the
details of FOL here and will only assume that it adds the declarations

1 type

= t—+1—0 %infix =
vV : (i—o0)—o

3 (i—=0)—o0

where 7 is the type of terms.
Then we can give a logical congruence on FOL by

%rel Cong: idpor X idror, = {

i = Ax:i.y:iiopf(e=vy)

o = M:o0.AB:o.pf(A< B)

pf = AMA:0.AB:o.A_:pf(AS B). AP :pfA. \Q : pf B. unit
- = M:0.AB:o. Mr:pf(A< B). ©f

(Ap : pf(mA).=1Aq : pfA'. =g (&ER 7 q) D)
(Ap : pf(mA"). —~1Aq : pfA. =g (SEL T q) p)

.

Again, this uses a trivial judgment for pf, which amounts to a proof irrelevance condition:
all proofs of equivalent formulas are related by Cong.

Filling in all the cases of this logical relation amounts to proving that the connectives and
quantifiers of FOL preserve equality of terms and equivalence of formulas. We only give the
case for — as an example.
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A special case of logical congruences arises when we represent the extensional equality of
foundational languages such as set theory:

Ezxample 4.4 (Extensional Equality). The signature ZFC sketches the encoding of first-
order ZFC set theory used in [Iancu and Rabe 2011]. It renames the symbols o, i, pf of FOL
to prop, set, true and adds the usual €-predicate and a definite description operator J:

%sig ZFC = {
set :  type
prop . type
true : prop — type
= : set — set — prop %infix =
€ . set — set — prop %infix ¢
0 . IIF : set — prop. pf (3'\x : set. F x) — set

}

The analogue of the logical relation Cong formalizes extensional equality as a congruence
on ZFC.

§ F P returns the unique set that satisfies the unary predicate F' (where 3' is the easily-
definable quantifier of unique existence). Here P acts as a guard that ensures that the term
0 F' P is only well-formed if F' is indeed uniquely satisfiable. Such guarded operators are
useful in a variety of situations, e.g., to avoid division by 0.

The disadvantage of guarded operators is that they permit proofs to occur in other
expressions such as sets and propositions. The above congruence constitutes a formalized
and verified proof that guarded operators do not affect the adequacy of the encoding. To
see that, consider a guarded set, i.e., a term Fzpo s @ true G — set, and two sets s P and
s P’ that differ only in using two different guards P and P’ proving G. As all proofs of
the same proposition are related, applying the Basic Lemma to s yields true (s P) = (s P’).
Thus, using different guards never alters the semantics

Note that Def. 4.2 does not require that congruence relations are equivalence relations. It
is straightforward to refine Def. 4.2 to require equivalence. In that case, one must avoid the
following following deceptively natural inductive argument: If a logical relation has property
P at all atomic types, then it has property P at all types. This is true if P is symmetry but
does not hold if P is reflexivity or transitivity.

4.3. Logical Relations for Object Languages

One of the most desirable applications is to represent existing logical relation arguments.
More specifically, if we use DTT as a logical framework in which object languages are
represented, then we would like to represent logical relations of the object language as
logical relations of the framework.

Encoding logical relation arguments in Twelf, however, has shown to be very difficult
due to the parametric nature of DTT’s function space. [Schiirmann and Sarnat 2008] show
how in certain cases, one can circumvent this problem by introducing an additional layer of
abstraction, which they term the assertion logic. Intuitively, the assertion logic represents
explicitly as a DTT signature the implicitly assumed meta-language in which the logical
relation is stated. Thus, a given logical relation for the object language can be encoded in
the flexible assertion logic, rather than by using the fixed DTT constructors directly.

Our approach yields a general framework for encodings along these lines. We represent
the object language [ as a DTT-signature L and the meta language m as a DTT-signature
M. Moreover, we assume a morphism p : L — M that interprets the object language in the
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meta language. Then we represent (n-ary) l-logical relations as DTT-logical relations on (n
copies of) the morphism p.

For simplicity, we will constrain attention to the special case where n = 1 and p is an
inclusion morphism ¢ : L < M. In this case, M corresponds to the assertion logic used in
[Schiirmann and Sarnat 2008]. The prototypical example arises when [ is simple type theory
and L is its representation in either Church or Curry-style as described in Ex. 3.1:

Ezample 4.5 (Logical Relations for Simple Type Theory). Let | be simple type theory
represented as L = Church. Let M = Assertion be an extension of Church with a first-order
assertion logic such that Assertion contains in particular the declarations

type

o0 — type

0—=0—0 %infix D

A : tp. (tm A — 0) — 0

A, B : tp.IIF : tm A — tm B.I1X : tm A.
pf(app (lam F) X = (F X))

Q<U3°

An n-ary logical relation for simple type theory is represented as an n-ary logical relation
r:iX...X1i: Church — Assertion of DTT, where 7 is the inclusion morphism Church —
Assertion. In the unary case, r is given by

%rel Basic : i : Church — Assertion = {

tp = MA:tp. (tmA— o)

tm = AA:tp.Ap:tmA — o.\x: tmA. proof (p x)

= = M :tp.Ap:tmA— o0 AB:ip.\q:tmB — o.
Af:tm(A= B).V(Az:tmA. (px) D (¢(fx)))

.

The proof terms for lam and app are straightforward and prove the type preservation prop-
erty of the Basic Lemma for simple type theory.

We represent concrete signatures of simple type theory as DTT-signatures S that extend
Church with declarations of the form a : tp or ¢ : tm A. Then we represent concrete unary
logical relations of simple type theory as logical relations r that extend Basic. r maps S-
constants a : tp to unary predicates r(a) : tma — o and S-constants ¢ : tm A to proofs
r(c) : pf(r(a)c). Now the Basic Lemma for our framework language induces the Basic
Lemma for the object language in the sense that for all S-types A : tp and S-terms M : tm A,
the type 7(A) M is inhabited.

Here we used an assertion logic just strong enough to state the relation Basic. Alterna-
tively, we can use any stronger language M. Moreover, as we will show in Thm. 5.2, if the fact
that M is at least as strong as Assertion is witnessed by a morphism sem : Assertion — M,
we immediately obtain a logical relation with codomain M by composing Basic and sem. Of
particular interest is the case where M represents set theory, e.g., M = ZF(C from Ex. 4.4.
In that case, morphisms Church — ZFC correspond to set assignments and logical relations
on them to relation assignments in the sense of [Reynolds 1974].

In Ex. 4.5, we had to give the logical relation Basic explicitly. Thus, while we inherited the
Basic Lemma from DTT, we had to provide the expressions in Basic manually. Therefore,
our approach of inheriting DTT-logical relations for a specific object language [ requires
the initial investment of giving the relation Basic. However, this investment is acceptable
for two reasons.
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Firstly, Basic only has to be given once and can be reused whenever a concrete logical
relation is formalized. This is particularly easy by using a module system as we present in
Sect. 5.

Secondly, giving Basic explicitly also gives users the flexibility to use different assertion
logics and different definitions of logical relations. Indeed, often any inductively defined
type-indexed family of relations that holds for all terms is called a logical relation even if
it does not define functions to be related if they map related arguments to related outputs.
A typical example is the following;:

Ezample 4.6 (Termination of S-reduction). We use the same signatures as in Ex. 4.5
except that we state S-conversion in terms of a new binary predicate symbol ~~ instead of
using the equality predicate = built into the logic Assertion. We think of ~~ as a directed
reduction relation. Moreover, we use a unary predicate val on terms that distinguishes the
values. Instead, of using the logical relation Basic, we give a new logical relation Termination
that differs from Basic in two key respects.

Firstly, Termination maps Church-types a : tp not simply to unary predicates on tm A,
but to unary predicates on ¢tm A that are closed under expansion. Such predicates can be
easily encoded using the dependent sum type:

Termination(tp) = IIA. P : tm — o JIM.IIN.
proof (M ~» N) — proof (P N) — proof (P M)

In our variant of DTT, we do not have dependent sum types; therefore, we introduce a
new type family that encodes this particular instance of dependent sums. For simplicity,
we will gloss over this in the sequel and directly use a ¥-type with constructor (—, —) and
projections 1 (—) and ma(—). The full encoding in plain DTT is available online.

Analogously to the well-known pen-and-paper proof, the relation at a base type requires
that terms reduce to a value and the relation at a function type requires that terms evaluate
to a function which preserves the relation:

Termination (i) = (AM : tmi. IAV. M ~ V Aval V),...)
Termination(=) = AAAPA.ABAPg. (AF : tm (A= B). 3(AG. F ~ G A val G A
VAN, (m1(Pa) N) S (ma(Pp) (app G N)))....)

Here we have omitted the proofs of closure under expansion for clarity. The case for ¢m now
states that each term has to satisfy the relation at its type:

Termination(tm) = NMAXPa.AM : tm A. proof (71(Pa) M)

Finally, the cases for lam and app prove that these constructors preserve the relations. The
full encoding can be found online.

An analogous formalization is possible for Curry-version. It is also available online.

For a more complex object language, we consider the notion of logical relations for reflec-
tive pure type systems from [Bernardy et al. 2010]:

Ezample 4.7 (Reflective Pure Type Systems). To represent pure type systems (PTS) in
DTT, we use the following base signature:
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%sig PTS = {
sort : type
tm ;. type
! : sort — tm
v : tm— (tm— tm) — tm
rule : sort — sort — sort — type
# : tm — tm — type %infix #
#V . 1151, S53,S55 : sort.rule S1 S3 S5 — I1IA : tm. IIB : tm — tm.

A#'S; - Mz :tma# A — (Bx)#'Se) > VAB#'Ss

.

Here we have omitted the declarations and typing rules for abstraction lam and application
app. Now a specific PTS arises by adding sorts s : sort, axioms of type 's1#’s2, and rules
of type rule s1 so s3 to PTS.

A reflective PTS arises by extending PTS with meta-axioms that express the closure
properties of the sorts, axioms, and rules. These include

%sig Reflective = {

.N . sort — sort
r : I1Sy, 89,53 : sort.rule S1 So S3 — rule (~ S1) (~ S3) (~ S3)

}
Then logical relations of PTS can be represented as DTT-logical relations on the inclusion
morphism i : PT'S < Reflective. Again we only consider the unary case; n-ary relations are

treated accordingly. We present the two key cases and refer to [Rabe and Sojakova 2012]
for the details:

%rel Parametricity : i : PTS — Reflective = {
tm = X_.tm

# = MM :tm AA*tm. AB :tm. AB* : tm. \_. A* # app B* A

}
The case for tm does not make a judgment about terms M : tm; instead, it simply man-
dates that Parametricity translates M to some other expression. Then the cases for the
constructors of ¢m formalize the inductive translation of expressions (Def. 4 in [Bernardy
et al. 2010]).
The case for # states the type preservation property: the translation A* of A must be
typed by the application of the translation B* of B to A (Thm. 1 in [Bernardy et al. 2010]).

Then the cases for the constructors of # formalize the proof of this property (sketched in
Fig. 6 of [Bernardy et al. 2010]).

Due to the generality of pure type systems, Ex. 4.7 yields a mechanically verified proof
of the Basic Lemma for a wide variety of type theories.
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4.4. Model Theoretical Properties

In [Rabe 2012], we showed that we can use DTT morphisms to represent models. The main
idea is to use a signature D that represents the semantic universe and to use morphisms
i L — D to represent models of L in D. For simplicity, we will restrict attention to the
special case where L = FOL and D = ZF(C are as in Ex. 4.3 and 4.4.

In that case, we encode set-theoretical models of first-order logic as morphisms p : S —
ZF(C where S extends FOL with declarations of function symbols f:4 — ... — ¢ — i and
predicate symbols p : ¢ — ... — ¢ — o. In particular, u(7) is the universe of the model;
(o) is the set {0,1} of booleans, and p(pf) = is the type true (x = 1). Morphism application
u(—) encodes the interpretation function that maps expressions to their denotation in ZFC
and p satisfies the formula Frop F : o if there is a term Fzpe p @ u(pf F), i.e., if p(F) is
extensionally equal to 1. All details can be found in [Horozal and Rabe 2011].

We can now use logical relations to express concisely and uniformly various model theo-
retical closure and preservation properties.

Ezample 4.8 (Submodels). A submodel of 4 is given by a subset of the universe that is
closed under all operations.

Such subsets correspond to the unary logical relations 7 : p. In particular, (i) : p(i) —
type is the predicate identifying the subset of the universe, and r(0) and r(pf) are trivial
judgments. Then for every function symbol f, the term r(f) proves that r(i) is closed under

u(f)-

Ezample 4.9 (Quotient Models). A quotient model of y is given by an equivalence re-
lation on the universe such that each p(p) yields equal truth values for related argument
tuples and each p(f) respects the equivalence.

Such relations correspond to the binary logical relations r : u x p, where r(i) : u(i) —
u(i) — type is an equivalence relation, r(o) z y is given by extensional equality true (x = y),
and r(pf) is a trivial judgment. Then for every function symbol f, the term r(f) proves the
congruence property of r(i) with respect to u(f). And for every predicate symbol p, the
term r(p) proves the respective condition on predicate symbols.

Note that r is not necessarily an equivalence relation at higher types. However, that is
acceptable when working with first-order logic.

Ezxample 4.10 (Algebra Homomorphisms). Algebraic logic arises from FOL by dropping
all connectives and quantifiers except for equality; in that case, we call the models algebras.
An algebra homomorphism h : u — p' is given by a function from the p-universe to the
i/ -universe that commutes with all function symbols and preserves all predicate symbols.

Such functions correspond to the binary logical relations r : u x p/, where 7(z) : p(i) —
w(i) — type is a function, (o) z y is given by true (x < y) (where < is the usual ordering on
the booleans); and r(pf) is a trivial judgment. Then for every function symbol f, the term
r(f) proves the commutation property for r(¢) and u(f). And for every predicate symbol p,
the term r(p) proves the preservation of predicates.

The above encodings of submodels and quotient models easily generalize to other logics
than FOL. In particular, submodels and quotient models of typed languages are given by
type-indexed families of relations, corresponding exactly to logical relations.

Encoding of homomorphisms, however, do not generalize to higher-order logics — not due
to a limitation of our approach but due to the inherent difficulty of relating models of higher-
order logics. In our terminology, this difficulty can be traced to the following observation:
A logical relation that is functional at all atomic types is not necessarily functional at all
types. A viable alternative is to drop the functionality requirement altogether and define
homomorphisms as typed-indexed families of relations (rather than type-indexed families
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of functions) as done in [Reynolds 1974]. Such definitions of homomorphisms correspond
exactly to logical relations.

4.5. Observational Equivalence

A well-known application of logical relations is to establish the observational equivalence of
two interpretations. By using morphisms to represent interpretations syntactically, we can
use our logical relations to represents observational equivalence proofs.

Definition 4.11 (Observational Equivalence). Consider a signature S with a predicate
Fsj: A— type. We say that a morphism p : .S — T realizes a term Fg M : A at j if there
is a term Fp p: p(j M).

We call two morphisms p1 : S — T and ps : S — T observationally equivalent at j if
they realize the same terms at j.

It is straightforward to generalize Def. 4.11 to the case of n-ary judgments.

Example 4.12. A FOL-model p satisfies the formula Fpop, F' : o if it realizes F' at pf.
Thus, two models are observationally equivalent at pf iff they satisfy the same formulas
(which is usually called elementary equivalence in the context of first-order logic).

Ezample 4.13. We can represent programs as morphisms in the same way as we have
represented models as morphisms above. Let S be a software specification and 7" an im-
plementation language; then implementations of S in 7' can be represented as morphisms
w:S — T. Often T provides definitions for all identifiers declared in S so that u becomes
an inclusion.

Now consider a type A that represents observable behavior of the software and a judgment
j that describes which behavior occurs. For example, in the binary case, j could be the
input-output relation. Then Def. 4.11 captures the intuition of observational equivalence of
implementations.

To state the connection between logical relations and observational equivalence, we use
one auxiliary definition:

Definition 4.14. Assume a signature S. An equivalence type of two types I' g Ay : type
and I' Fg Ao : type is a type I' Fg E : type such that there are terms I' g e : (47 —
Ag)%(Ag%Al)%EandFFSel:E%AlﬁAg andFFSeQ:E%AQ%Al.

Clearly, this definition is redundant in an extension of DTT with product types where
equivalence types always exist, namely (A; — As) X (A2 — Ap). But the assumption of
product types is stronger than necessary and we often find equivalence types in special
cases. For example, if we add an equivalence connective < with appropriate proof rules to
Ex. 4.4, then true (F} < F3) is an equivalence type of true Fy and true Fb.

THEOREM 4.15. In the situation of Def. 4.11, assume there exists a logical relation
rip X oS — T and a term t such that

ot (A), 2% pp(A), 2F cr(A) ot 2t bt B

where E is an equivalence type of ju1(j) x' and uz(j) 22 under the context above. Then p
and po are observationally equivalent at j.

PROOF. Since the equivalence type E is inhabited, so are the types u1(j) 21 — pa(j) @
and p2(j) 22 — pi(j) z'. Now consider a term - Fg M : A. By the Basic Lemma 3.9 we
have - b (M) : r(A) up (M) p2(M). Thus the types

(11 (j) =" — pa(j) @) [ (M) [z, po (M) /a®,7(M) /2]
(n2(j) 2* = pa (§) =) [ (M) /2", po (M) /2, 7(M) /2]
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are both inhabited, 1.e., u1(j) (M) = pia(j) pa(M) and iz (j) ji2(M) = iy () 2 (M) are
both inhabited. In other words, p;(j) 11 (M) is inhabited iff pa(j) pa(M) is, i.e., p; realizes
M under j iff po does. Since M was arbitrary, this shows p; and poe are observationally
equivalent at j. O

In our experience, it is usually easy to give the term ¢ : E' of Thm. 4.15. And giving the
logical relation r corresponds case-by-case to the informal proof of observational equivalence.
An example application is given in Sect. 4.16.

4.6. Verifying Logic Translations

Logic translations from a logic L to a logic L’ are commonly used to justify borrowing an
automated theorem prover for a logic L’ to reason about a logic L. There are generally two
ways to verify the soundness of borrowing. Proof theoretical borrowing (e.g., as in [Meng
and Paulson 2008]) uses the found L’-proofs to construct explicit L-proofs and verifies them.
Model theoretical borrowing as in [Cerioli and Meseguer 1997] uses a semantic argument to
establish the soundness of the translation once and for all. The former has the disadvantage
that the backwards proof construction is often very difficult. The latter has the disadvantage
that the model theoretical soundness argument is not formalized itself.

Building on our representation of logics as signatures, ML p > FOL/
models as morphisms, and logic translations as morphisms
[Rabe 2012], we can apply observational equivalence to
formalize and verify the soundness of model theoretical ML**™  FOL**™

borrowing.
) Msem

Ezample 4.16 (Model Theoretical Borrowing).  Con- KripkeModel FOLModel
sider the well-known translation of modal logic to \ /
first-order logic, which makes worlds explicit. We will ZFC
sketch its formalization and verification in DTT focusing
on where in the proof a logical relation is used crucially.

All details are reported in [Sojakova 2010].

The formalization in LF yields the diagram of LF signatures above. Here FOL' extends
FOL from Ex. 4.3 with a binary predicate symbol p : i — ¢ — 0; and ML extends PL with
the declaration [0 : 0 — o. FOLModel and KripkeModel extend ZFC from Ex. 4.4 with
declarations that represent models of the respective logic. In particular, the former declares
a set univ to interpret ¢ and a binary relation on wuniv to interpret p; the latter declares a
set world representing Kripke worlds and the binary accessibility relation acc on it.

The vertical morphisms formalize the interpretation functions of the respective logics.
In particular, FOL**™ maps o to the ZFC-type representing the set {0,1} of booleans;
and ML*“™ maps o to the ZFC-type representing the set-theoretical functions from world
to {0,1}. The horizontal morphisms formalize the respective translations of syntax and
models. In particular, 4*¥™ maps o to @ — o; and p**™ maps world to univ and acc to p.

[Rabe 2012] shows that commutativity of the upper rectangle guarantees soundness of the
translation. But this requirement is very strong and does not apply in many examples. Now
we can improve upon this result by observing that: A model theoretical logic translation is
sound iff the morphisms FOL*™ o %™ and p®¢"™ o ML are observationally equivalent at
f.
Indeed, we have been able to apply Thm. 4.15 and given a logical relation to formalize
and mechanically verify the soundness argument. The equivalence type E simply states the
equality of the truth values (FOL**™ o pu*¥")(F) and (u*¢™ o ML**™)(F’) for any formula F
and the cases in the logical relation correspond exactly to the cases of the induction in the
usual informal soundness proof.
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Module context | M == -] M, osig S = {Z} M, %viewm : S — 5 ={u}
| M, %relr :mx...xm:S8—=S ={p}

Signatures ¥ o= |5 %1nc1ude S| E i:U

Morphisms po o= | u, %include m | p, i:=U

Relations p u= -|p, %includer | p, i:=U

Expressions U == typeli|laz|He:U.U|Xx:U.U|UU

Fig. 4. Grammar of the Module System

5. IMPLEMENTATION AND MODULE SYSTEM

Twelf [Pfenning and Schiirmann 1999] is an implementation of the LF incarnation of DTT
that comes with a simple and scalable module system [Rabe and Schiirmann 2009]. The
latter permits structured modules, i.e., large signatures and morphisms are composed from
smaller ones through instantiation and inheritance. We have extended both the module
system and the implementation to provide a module system for logical relations.

For the full account of the Twelf module system, we refer the reader to [Rabe and Schiir-
mann 2009]. Here we only consider a fragment that conveys the general idea; in particular,
we omit the instantiation of parametric signatures, morphisms, and logical relations. The
resulting grammar is given in Fig. 4, where we unify constants ¢ and type family symbols
a into identifiers ¢, and terms M, type families C, and kinds K into expressions U.

Here a module context is a list of named modules, and the %include declarations import
all declarations of another module into the current one. A structured morphism or logical
relation follows the structure of its domain signature: if a signature S includes S’, then
a morphism m : S — T includes a morphism m’ : S — T and a logical relation r :
m1 X ... X my, S — T includes a logical relation r' : mj x ... xm} : 8" = T.

Example 5.1. We add product types to our running example of the Church-Curry trans-
lation and reformulate it in a modular way in Fig. 5, 6, 7. Then we leverage that structure
to give a modular logical relation in Fig. 8.

As our examples are already very close to Twelf’s concrete input syntax, they can be
mechanically verified by Twelf directly. Modular Twelf and the sources of all examples used
in this paper are available at [Rabe and Sojakova 2012].

We omit the formal semantics of the module system and only state two important the-
orems for composition and summation that permit building the semantics of structured
modules from the semantics of their components:

THEOREM 5.2 (COMPOSITION). We have the following closure properties under compo-
sition:

(1) Given morphisms : R — S and v : S — T, there exists a morphism pv: R — T.

(2) Given relation v : puy X ... Xy : R — S and morphism v : S — T, there exists a logical
relation rv : (u v) X ... X (g, v) : R — T.

(3) Given morphism p: R — S and relation s : vy X ... X v, : S — T, there exists a logical
relation ps: (1) X ... X (pvy): R—T.

ProoF. We put:

— (u)(U) = v(u(U)) and (4 1)(T) = v(u(T))

= ) = D), () (€)= #r(C), (rv)°(K) = v(rC(K)), and (rv)(T) =

(0 = (), (15)(€) = #(:(C)), (1s)C(K) = sC(u(K)), and (us)(T) =
s(p
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%sig Church = {
tp : type
tm : tp — type

}

%sig Church_, = {
Y%include Church

= T o tp—=tp—=ip
lam : IIAIB. (tm A — tm B) — tm (A= B)
app : HAIB.tm (A= B)—>tmA—tmB

}

%sig Churchy = {
%include Church

X c tp—>tp—tp

pair : ITAIB.tm A— tm B — tm (A X B)
™ : HAIB.tm (Ax B) —»tm A

D) : HAIB.tm (Ax B) = tm B

}

%sig Church_,» = {
%include Church_,
%include Churchy

}

Fig. 5. Modular Church Encoding of STT

The inductive and preservation properties follow directly from the corresponding proper-
ties for the morphisms and relations involved. O

Note that, as is usual for logical relations (see, e.g., [Plotkin et al. 2000]), binary logical
relations 71 : g1 X po and ro @ uo X pz do not compose, i.e., if ¢ is the relation arising
by index-wise composition of the binary relations r; and ro, we do not in general have
C: X Us.

Definition 5.3. We say that two signatures S and S’ are compatible if for every i : E in
Sand i: E' in S’, we have E = F’. We say that two morphisms p and u’ are compatible
if for every 7 := F in p and 7 := E’ in y/, we have F = FE’. We define compatibility of two
logical relations accordingly.

Definition 5.4 (Sum). For two compatible signatures, morphisms, or relations L and L',
we write L + L’ for the signature, morphism, or relation, respectively, arising from the
concatenation L, L’ by removing all duplicates of previous declarations.

THEOREM 5.5 (SuM). We have the following closure properties of summation:

(1) If = Sy sig and F Sy sig and Sy and Sy are compatible, then - S; + Ss sig.

(2) If - p; : S; = T fori=1,2 and if S1 and Ss as well as p1 and po are compatible, then
Foug+p2: S+ S —T.

(3) Iftp;:Si =T andr; : p; : S; = T fori=1,2, and if S1 and So as well as py and
e as well as r1 and ro are compatible, then r1 + 1y 1y + pg : S1+ 52 — T.

ProOF. The proofs are straightforward. 0O
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%sig Curry = {

tp 1 type
tm 1 type
# : tm— tp — type

}

%sig Curry_, = {
%include Curry

= Do tp—=tp—tp

lam  : (tm— tm) — tm

app : tm—1tm— tm

Higm  HANBIf Hx.x# A— (fz) # B) — (lam f) # (A= B)
H#Haopp < HANBIIfIlx. f# (A=B)—>ax# A— (appfz)# B

}

%sig Curry,, = {
%include Curry

X r tp—>tp—tp

pair : tm— tm— tm

T . tm— tm

o . tm— tm

#Hpair  HAIBIImIIn.m # A — n# B — (pairmn) # (A x B)
Hr : HAIOBIIm.m# (AXx B)— (mpm) # A

Hro : MAIB.IIm.m# (A x B) — (mam) # B

}

%sig Curry_,, = {
%include Curry_,
%include Curry,

}

Fig. 6. Modular Curry Encoding of STT

Y%oview TypeErasy : Churchy — Curry = {
%include TypeEras
X = MNAMB.AxB
AAANB.Am.\n. pairmn
AMANB. ) m. 1 m
ANAANB.m. mam

%view TypeEras : Church — Curry ={

tp = 1Ip
tm = MA.tm .
pair
} ™
Uy

Y%view TypeEras_, : Church_, — Curry ={ }
%include TypeFEras

l:> — iﬁig;}c:; Bf Y%view TypeEras_sx : Church_ — Curry ={
aam _ /\A.)\B.)\f.)\zma fa %include TypeFEras_,
} pr = AZASAG PP %include TypeFrasy
}

Fig. 7. Modular Type Erasure Translation
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%trel TypePres: TypeEras = {
tp = AA: tp. unit
tm = ANA:tp. A _.x#A
}

%rel TypePres_, : TypeEras_, ={
%include TypePres

= = AM:ip. A _ AB:tp. A%
app = MA:ip. A _.AB:ip. ) .

A tm)\f* f#A=B)  z:tm  \a* :x# A #app AB f o f* 2
lam = MA:ip. A _.AB:tp. A

Nt tm A (T tmw # A — (f 2) # B) #iam A B f f*
}

%rel TypePresy : TypeErasy = {
%include TypePres

X = A:ip. A _ AB:tp. A%
pair = MNA:tp.A_.AB:tp. A_.
Amotm. Am* tm# A An i tm. An® i n # B #p0r A Bmnm® nt
m = A:ip. A _.AB:ip. X\ _.
Am : tm. Am* :m# (AX B). #., ABmm*
To = M:tp. A . AB:tp. A

Am : tm. Am* m#(A_ B). #., ABmm*
}

Y%rel TypePres_ « : TypeEras_, = {
%include TypePres_,
%include TypePressy

}

Fig. 8. Modular Type Preservation Proof

For simplicity, we have stated Thm. 5.5 only for binary unions of unary logical relations.
The according result holds for m-ary unions of n-ary logical relations.

In particular, Thm. 5.5 permits composing logical relations from separately verified com-
ponents, as we did when forming TypePres_,, without having to reverify the composed
relation.

6. CONCLUSION

We have presented a definition of logical relations for dependent type theory (DTT) with
Bn-equality. The definition is reflective in the sense that a relation at a given type is itself
represented in DTT as a type family. Our central theorem states that all valid logical
relations satisfy the Basic Lemma.

The validity of a logical relation is decidable and we have extended the Twelf system
with a new primitive declaration for logical relations. We have used this implementation
to represent and mechanically verify a number of meta-theorems in DTT. Since the imple-
mentation is modular, our approach is well-suited for the integration with the LATIN logic
atlas [Codescu et al. 2011], which already uses Twelf to formalize the syntax and semantics
of a wide variety of formal systems and translation theorems in a systematically modular
way.
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By choosing the appropriate DTT-signatures and morphisms, our definition attempts to
unify syntactic and semantic logical relations and permit representing logical relations of
object logics as DTT logical relations. Because it is possible to represent DTT in itself,
an interesting further application would be to represent our proof of the Basic Lemma in
DTT along the lines of our Ex. 4.7. This would yield a mechanical verification of our Basic
Lemma for DTT in DTT itself.

While our focus here has been on DTT, we believe our approach can be transferred
to other logical frameworks. In particular, the notions of signatures and morphisms can
be defined routinely for most declarative languages; the other requirement is a framework’s
ability to express judgements about terms of arbitrary types. Besides DTT and type theories
subsuming it, the most interesting example of such a logical framework is higher-order logic,
where one would use logical predicates instead of type families.

Another way to transfer our results is to use the well-known correspondence between
signatures and record (or dependent sum) types. In extensions of DTT with record types
that can contain type declarations, our signatures S and 7' can be represented as record
types S and T, and our morphisms p : .S — T as functions i : T — S. Consequently, logical

relations  : 1 : S — T can be represented as terms 7 : T — F# where §# arises from S by
replacing the type of every field according to Def. 3.5.
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