The equivalence of the torus and the product of two circles in
homotopy type theory

KRISTINA SOJAKOVA, Carnegie Mellon University

Homotopy type theory is a new branch of mathematics which merges insights from abstract homotopy the-
ory and higher category theory with those of logic and type theory. It allows us to represent a variety of
mathematical objects as basic type-theoretic constructions, higher inductive types. We present a proof that
in homotopy type theory, the torus is equivalent to the product of two circles. This result indicates that the
synthetic definition of torus as a higher inductive type is indeed correct.

CCS Concepts:*Theory of computation — Type theory;
Additional Key Words and Phrases: homotopy type theory, torus, unit circle, higher inductive type

ACM Reference Format:

Kristina Sojakova, 2015. The equivalence of the torus and the product of two circles in homotopy type theory.
ACM Trans. Comput. Logic V, N, Article A (January YYYY), 19 pages.

DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Homotopy type theory (HoTT) [The Univalent Foundations Program, Institute for Ad-
vanced Study 2013] is a new branch of mathematics which merges insights from ab-
stract homotopy theory and higher category theory with those of logic and type theory.
A number of well-known results in algebraic topology have been established within
HoTT and formally verified using the proof assistants Agda [Norell 2007] and Coq
[Team 2012]; these include the calculation of 7, (S™) ([Licata and Shulman 2013; Li-
cata and Brunerie 2013]); the Freudenthal Suspension Theorem [The Univalent Foun-
dations Program, Institute for Advanced Study 2013]; the Blakers-Massey Theorem
[The Univalent Foundations Program, Institute for Advanced Study 2013], the van
Kampen theorem [The Univalent Foundations Program, Institute for Advanced Study
2013], and the Mayer-Vietoris theorem [Cavallo 2014].

As a formal system, HoTT is an extension of Martin-Lof’s dependent type theory
with two new concepts: Voevodsky’s univalence axiom ([Kapulkin et al. 2012; Voevod-
sky 2011]) and higher inductive types ([Lumsdaine 2011; Shulman 2011]). The univa-
lence axiom can be paraphrased as stating that equivalent types are equal, and hence
we can reason about them using the identity elimination principle. While we do not
make an explicit use of the axiom in this paper, we use one of its most important conse-
quences - the function extensionality principle - which states that two pointwise equal
functions are in fact equal ([Gambino 2011], Ch. 4.9 of [The Univalent Foundations
Program, Institute for Advanced Study 2013]).

The second main feature of HoTT, higher inductive types, are a higher-dimensional
generalization of ordinary inductive types which allows us to declare constructors in-

I gratefully acknowledge the support of the Air Force Office of Scientific Research through MURI grant
FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the AFOSR.

Author’s address: K. Sojakova, Computer Science Department, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© YYYY ACM. 1529-3785/YYYY/01-ARTA $15.00

DOI: http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 K. Sojakova

volving the path spaces of the type X being defined, rather than just X itself. This
means that we can define the higher inductive type X e.g., by means of the construc-
tors base : X, loop : base =x base. While base is an ordinary nullary constructor, akin to
the constant 0 in the definition of natural numbers, loop is a term of an identity type
over X, not X itself. Intuitively, we can draw the type X as consisting of the point base
and a loop from base to base - also known as the circle:

loop

base

This is not an isolated occurrence: higher inductive types turn out to be well suited
for representing a wide variety of mathematical objects, and the definitions generally
require very little prior development. Most of the difficult work then lies in showing
that such a “synthetic” definition is indeed the “right” one, in the sense that the higher
inductive type representing, e.g., the circle or the torus does possess the expected math-
ematical properties. For instance, we would like to be able to show that in HoTT, the
fundamental group of the circle is the group of integers, and that the torus is the prod-
uct of two circles.

The former result was shown by Licata and Shulman [2013] and notably, the proof
they give is much more concise than its homotopy-theoretic counterpart. In this paper,
we present the full proof of the latter result that the torus 72 is equivalent, in a precise
sense, to the product S' x S! of two circles. This problem was brought to the author’s
attention during the Special Year on Univalent Foundations at the Institute for Ad-
vanced Study in 2012/2013. During that time, the author gave a sketch of the proof®
and a year later expanded it into a full writeup [Sojakova 2014], which was included in
the HoTT Book exercise solutions file but never published. Later, in summer of 2014,
Dan Licata and Guillaume Brunerie produced a similar, formalized proof of the re-
sult which builds upon their cubical library for the Agda proof assistant. This proof
later appeared in a published paper [Licata and Brunerie 2015]. Licata [2015c] later
presented a proof of the same result in cubical type theory. This proof is much sim-
pler since the cubical type theory seems better suited for arguments involving higher
paths; however, this new theory is itself still under development.

The main difference between our approach and the one of Licata and Brunerie [2015]
is that our proof is essentially self-contained and requires no knowledge of cubical
methods. It also provides an example of nontrivial higher path algebra, which might
serve as a template for similar future proofs. The proof by Licata and Brunerie uses
their cubical library developed for Agda. A number of the intermediate steps in our
proof have rough analogues in lemmas found in the cubical library, but here we present
them in a form tailored to our specific case. In the conclusion we provide a more de-
tailed comparison of how the proof presented here compares to the one by Licata and
Brunerie.

2. PRELIMINARIES

Summarizing from The Univalent Foundations Program, Institute for Advanced Study
[2013], HOTT is a dependent type theory with

1In personal correspondence, P. Lumsdaine stated he also had a sketch of a proof, which has not been made
public.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A:3

— dependent pair types ¥,.4B(z) and dependent function types II,.4 B(z). The non-
dependent versions are denoted by A x B and A — B.

— intensional identity types x =4 y. We have the usual formation and introduction
rules, where the identity path on z : A will be denoted by 1,. The elimination and
computation rules are recalled below:

E 1, yaz =4 y — type d:MpaE(x,2,1,)
J(E7 d) : Hz,y:AHp:z:AyE(xa y7p)

E: 1, .4 =4 Yy — type d:paE(x,2,1,) a: A
J(E,d)(a,a,1,) =d(a) : E(a,a,1,)

As usual, these rules are applicable in any context I', which we generally omit. If
the type + =4 vy is inhabited, we call z and y equal. If we do not care about the
specific equality witness, we often simply say that z =4 y. A term p : © =4 y will be
often called a path and the process of applying the identity elimination rule will be
referred to as path induction. Definitional equality between z,y : A will be denoted
asr=y: A.

Proofs of identity behave much like paths in topological spaces: they can be reversed,
concatenated, mapped along functions, etc. Below we summarize a few of these prop-
erties:

— For any path p: 2 =4 y thereis a path p~! : y =4 2, and we have (1,)"! = 1,.

—For any pathsp: x =4 yand ¢ : y =4 z thereis a path p-¢: x =4 z, and we have
1,71, =1,.

— Associativity of composition: for any paths p: x =4 y,q:y =4 2,7 : 2 =4 u we have
(prq)r=p(qrr).

—Wehavel,*p=pandp-1l,=pforanyp:z=4y.

1 —1

—Foranyp:x=4y,q:y=4zwehavepp ! =1,plp=1,and (p7!) =p,

(prq) =g tph

—For any P : A — type and p : * =4 y there is a function trans?(p) : P(z) — P(y)
called the transport. We furthermore have trans(1,) = \,. P(z)T-

— We have trans”(p+q) = trans”(q) o trans”(p) forany P: A — type and p: x =4 y,
q:yY=a=%

— For any function f : A — B and path p: z =4 y, there is a path ap;(p) : f(z) =5 f(v)
and we have ap;(1;) = 1(,)-

— We have apf(p‘l) = apf(p)_1 and ap;(p+q) = ap;(p) apy(q) for any f : A — B and
PT=AY,q:Y=AZz

— Given a dependent function f : 1.4 B(z) and path p : x =, y, there is a path apd;(p) :
trans®(p, f(x)) =p(y) f(y) and we have apd;(1,) = 15(,).

— All constructs respect propositional equality.

Definition 2.1. For f,g:1I,.4B(x), we define the type

f~g=T1aua(f(a) =B(a) 9(a))
and call it the type of homotopies between f and g.
Definition 2.2. For f,g: X —Y,p:x=xy,a: f ~ g, thereis a path
nata(p) : apy(p) * a(y) = a(z) = ap,(p)

defined in the obvious way by induction on p and referred to as the naturality of the
homotopy «. Pictorially, we have

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 K. Sojakova

fo) —
ap;(p) nata(p) ap,(p)
f(y) @) 9(y)

A crucial concept in HoTT is that of an equivalence between types.

Definition 2.3. Amap f: A — B is called an equivalence if it has both a left and a
right inverse (not necessarily identical):

iseq(f) = (Sg:p—algo f ~ida)) x (Sh:p—a(foh~idp))
We define
(A~ B) =X, piseq(f)
and call A and B equivalent if the above type is inhabited.

A much weaker notion is that of logical equivalence: we call A and B logically equiv-
alent if there are functions f : A — B, g : B — A. Obviously, we can prove that A and
B are equivalent by showing that they are logically equivalent and that the functions
f and ¢ in fact compose to identity on both sides; in this case we say that f and g¢
form a quasi-equivalence between A and B and call them quasi-inverses of each other.
This is also a necessary condition: given an equivalence f : A — B with a left inverse
g : B — A and a right inverse h : B — A, it is not hard to show that g ~ h. Thus, f
and g (as well as f and h) are quasi-inverses. These observations are summarized in
the following lemma:

LEMMA 2.4. Two types A and B are equivalent if and only if there exist functions
f:A—= Bandg: B— Asuchthat go f ~idgand fog~ idg.

It is important to note, however, that the type of quasi-equivalences between A and B
is in general not equal to A ~ B (see chapter 4 of The Univalent Foundations Program,
Institute for Advanced Study [2013]), hence the word “quasi”. From this we can easily
show:

LEMMA 2.5. Equivalence of types is an equivalence relation.

Many “diagram-like” operations on paths turn out to be equivalences. For instance:

—Foranyu:a=4b,v:b=ad,w:a=4c,z:c=4 d,asin the diagram

we have functions

T:(urv=w+2)— (u !

T (utrwrz=0) = (urv =wr2)

Twez =)

defined by path induction on u and z, which form a quasi-equivalence.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A5

Finally, we show how to construct paths in pair and function types. Given two pairs
c,d : A x B, we can easily construct a function

projcq : (¢ = d) = (mi(c) = mi(d)) x (m2(c) = ma(d)).
We can show:
LEMMA 2.6. The map proj_ , is an equivalence for any c,d : A x B.

We will denote the quasi-inverse of proj,, by pair, ;. For brevity we will often omit the
subscripts.
Analogously, given two functions f, g : I1,. 4 B(x), we can construct a function

haps,: (f=9) = (f~g)

Showing that this map is an equivalence (or even constructing a map in the opposite
direction) is much harder, and is in fact among the chief consequences of the univalence
axiom:

LEMMA 2.7. The map hap; , is an equivalence for any f, g : Il,;.4 B(x).

PROOF. See Ch. 4.9 of The Univalent Foundations Program, Institute for Advanced
Study [2013]. O

We will denote the quasi-inverse of hap; , by funext; ,.

3. THE CIRCLE S' AND THE TORUS T2
The circle S! is a higher inductive type generated by the constructors
base : S!,
loop : base = base.
The recursion principle says that given a type C' : type and terms
b:C,
l:b=b
there exists a function f : S — C for which f(base) = b and ap(loop) = I. We note
that the latter “computation rule” is propositional rather than definitional. This is
mostly a matter of historical convention, which arose from the fact that the map ap is
a defined notion rather than a primitive one, and as such could have several different

(but propositionally equal) acceptable forms.
The induction principle says that given a family F : S! — type and terms

b: E(base),
I : trans”(loop, b) = b
there exists a function f : II,.g1 () for which f(base) = b and apd;(loop) = 1.

The torus T2 is a higher inductive type generated by the constructors

b: T2,
p:b=b,
q:b=h,
t:prq=q-p

as pictured below:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A6 K. Sojakova

The recursion principle says that given a type C : type and terms

b C,
p/:b/:b/7
q v =V,

tip' g =4,

there exists a function f : T2 — C for which f(b) = ¢’ and for which there exist paths
B :ap;(p) = p' and 7 : ap;(q) = ¢’ making the following diagram commute:

via t

aps(p*q) ————— aps(q-p)
3Pf(P) '3Pf(Q) apf(CI) 'apf(P)
via 3, vy via v, 3
ped " q-p

The paths 5 and v witness the “computational rules” for the constructors p and q, and
the commutativity of the above diagram corresponds to a similar “computation rule”
for the constructor t. Here, each edge represents an equality between its vertices. Un-
labeled edges stand for the “obvious” equalities which follow from the basic properties
of identity types, such as the path from ap;(p*q) to ap;(p) *ap;(q). Edges labeled with,
e.g., “via 3,7” stand for an application of congruence: here 3 is a path from ap(p) to p’
and v is a path from ap;(q) to ¢. Since path concatenation respects equality, combining
B and v in a straightforward fashion yields a path from ap;(p) *ap(q) to p" - ¢

We note that there may be several natural ways how to implement, e.g., the con-
gruence of path concatenation with respect to path equality: we can perform path in-
duction on the first argument, on the second, or on both. For our purposes the exact
definition is immaterial as they are all equal up to a higher path, which is why we only
specify the arguments (in this case 5 and ~). From now on, all paths and diagrams will
be annotated in this style.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A7

The induction principle for T2 is quite a bit more complicated; it says that given a
family E : T? — type, in order to get a function f : II,.7» F(x) we require terms

v : E(b)

p' :trans®(p,v') = 1/

q :transP(q, b)) =V

' TH(E, 2, a,b) * aPiraner (@) (') " €' = aPaustrans? (o) (8) * TF(E, @, P, 0') * aPirans () (@) * '

where for any family E : T? — type, paths a : 2 =72 y, @’ : y =72 2 and point u : E(z),
the path
B

Tr(E,a,a,u) : trans® (a+ o/, u) = trans® (o, trans” (o, u))

is obtained by path induction on « and «’. The function f then has the property that
f(b) = b" and there exist paths 3 : apd;(p) = p’ and 7 : apd¢(q) = ¢'. Formally, there
is an additional higher coherence law representing the “computation rule” on the con-
structor t. However, this law is not needed to establish the equivalence of 72 with
S! x 82 and, more importantly, becomes redundant once we show this equivalence,
since it will automatically follow from the fact that 72 is a 1-type. That result will in
turn follow from the fact that the circle S', and hence the product S' x S, is a 1-type
(Licata and Shulman [2013]).

The term ¢’ can be understood as a dependent counterpart to t, which intends to
relate the “composition” of p’ and ¢’ with the “composition” of ¢’ with p’. Of course, such
compositions only make sense after we insert the necessary transports, as shown in
the diagram below; ¢’ then witnesses its commutativity.

via t
trans®(p+q,) trans®(q+p,v')
trans®(q, trans” (p, b')) trans® (p, trans®(q, b))
via p' via q'
trans®(q, b") trans® (p, b')
/ /
\ /
b/

4. LOGICAL EQUIVALENCE BETWEEN S' x S' AND 7%

Left-to-right. We define a map f : S' — T2 by circle recursion, mapping base — b and
loop > p. Thus, we have a definitional equality f(base) = b and a path ¢ : apg(loop) = p.
We define a map 7 : S! — S! — T2 again by circle recursion, mapping base — f and
loop — funext(#), where H : I1,.s: (f(z) = f(z)) is defined by circle induction as follows.
We map base — q and loop to the path

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 K. Sojakova

z—f(2)=Ff(z) (

trans loop, q)

Ti(£, £, loop, q)
apg(loop) ™"+ q - ap; (loop)

()

q

where for any f,g: A - B,a:x =4 yandu: f(x) = g(x), the path
Ti(f.g: cv,u) : trans™ /=93 (@, 1) = ap () ™"+ u v apy(a)

is obtained by a straightforward path induction on «, the equivalence 7 is as defined
on page 4, and ~ is the path

apg(loop) * q
via [
P q
t
q'p

via ;!

q* apg(loop)

Having defined a function 7~ : S' — S' — 772, it is now straightforward to define its
uncurried version F : S! x S! — T2, We note that F~(base) = f, and in particular
F(base, base) = b. Furthermore, we have a path Sz~ : apz- (loop) = funext(H). Since
hap and funext form a quasi-equivalence, we have a path

Br- : hap(apz- (loop)) = H

By definition, the function # is a homotopy between f and f such that #(base) = q.
Furthermore, the diagram in figure 1 commutes. To show this, we note that for any
f,g: A= B,a:x=4,yand H : f ~ g, applying Z~! to the path

apy(0) L+ H(z) - apy () L HE im0 (0, B () 2L ()

yields naty («): this follows by a path induction on « and a subsequent generalization
and path induction on H(z). The second computation rule for # tells us that

ade(Ioop) = ﬂ(fv f7 |00p7 q) ' I(’Y)
Thus
naty (loop) = Z~* (Ti(£,£,loop,q) " * apdy, (loop)) = 7

which proves the commutativity of the diagram in figure 1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A:9

naty (loop)
apg(loop) *q q* ap¢(loop)
via f¢ via f3¢
P - q°p

Fig. 1. Commuting diagram for the homotopy H

via t
apg(p*a) apg(q-p)
apg(p) * apg(a) apg(q) * apg (p)
via 8%, B3 via 8%, B
pair~ (1, loop) * pair~ (loop, 1) - pair~ (loop, 1) = pair= (1, loop)
loop,loop

Fig. 2. Commuting diagram for the map G

Finally, we note that for any o : x =g1 2’ and o’ : y =g1 3/, we have path families

p1a() ap £ (pair™ (L., a')) = ap - () (@)
vy() :apg(pair~(a,1y)) = hap(apz- (), y)
defined by path induction on o’ and « respectively.
Right-to-left. We define a function G : T2 — S' x S! by torus recursion as follows.
We map b — (base, base), p > pair™ (1pase, loop), g — pair~ (loop, lpase), and t — Pigop ioops
where for any o : x =4 2/, o : y =p 7/, the path

D ot (pair:(lm,o/) * pair—(a, ly/)> = (pair:(a, 1,) * pair—(1,, o/))

is defined by induction on a and «'.
Then we have a definitional equality G(b) = (base, base) and paths
Bg : apg(p) = pair™ (1pase, loop)
B + apg(q) = pair~(loop, Lpsse)

which make the diagram in figure 2 commute.

5. EQUIVALENCE BETWEEN S* x S' AND 7?

Left-to-right. We need to show that for any z,y : S we have G(F(z,y)) = (z,y). We
do this by circle induction on z. We need a path family ¢ : II,.q:1 (G(f(y)) = (base,y)).
The definition of ¢ itself proceeds by circle induction: we map base > 1(pase base) @and loop
to the path

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 K. Sojakova

transyHg(f(y)):(base,y) (loop7 1)
T3 (F,G, base, loop,1)
apg(ap(pair=(1,loop))) ™" + 1+ pair=(1, loop)

7(5)

1

where for anymaps f : Ax B —+C,g:C - Ax Bandpathsa:x =42, :y =Y,
u: g(f(z,y)) = (x,y), the paths

TS, g 2, o) « trans® 90 (@2)=(@:2) (o) = apg(apf(pair:(lz,a')))_l supair (1,,a)
T3 (£, 9.y, 0, u) : trans™ 9= (o, u) = ap (ap(pair=(a, 1,))) "+ u* pair=(a, 1,)

are defined by path induction on o’ and « respectively, and § is the path

apg(apx(pair=(1,loop))) * 1

apg (apx(pair~(1,loop)))
Via ipase (100p)
apg (apg (loop))

via B¢

apg(p)

Bg

pair~ (1, loop)

1+ pair~ (1, loop)

This finishes the definition of ¢; we note that in particular, e(base) = 1(pase base)- We now
need to prove that

transtH(y:SI)(Q(f(%y)):(m,y))(|Oop)5) —c
By function extensionality, it suffices to show that for any v : S' we have
trans?~ T1(=8)(G(F (@:2)=(.2)) (|o0p, £) y = &(y)
Using the characterization of transports in II-types, we get the goal

trans” 9 (S @)=(@9) (Joop, £(y)) = (y)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A:11

trans® 7 (9(2))=2(p 1) trans® 7 (9(@))=2(q 1)
T3(G, F,p,1) 73(G,F,q,1)
ap;(apg(p))_l *1:p aPF(an(Q))_l *l:q
Z(rp) I(kq)
1 1
a)p' b) ¢

Fig. 3. The paths p’ and ¢’

By 75 (F, G, y,loop,e(y)) it suffices to show
apg(apx(pair~(loop, ly)))_1 *£(y) = pair— (loop, 1,) = e(y)

By v, (loop) and hap(5%-,y), we have ap z(pair—(loop, 1,)) = hap(ap - (loop),y) = H(y).
It thus suffices to show

apg(H(y)) = e(y) = (y) - pair~(loop, 1)
We proceed again by circle induction, this time on y. We map base to the path 7, below:

apg(q)*1

apg (a)
Bg

pair~ (loop, 1)

1+ pair~ (loop, 1)

All that now remains to show is

trans?—apg (H(¥)) -E(y)ZE(y)-pair:(loop,ly)“oop’ n)=n
However, this follows at once from the fact that the circle S', and hence the product
S! x 8!, is a 1-type (as shown by Licata and Shulman [2013]): this means that for
any two points x,y : S' x S!, any two paths o,/ : £ = y, and any two higher paths
7,7 : @ = o', we necessarily have v = +'.

Right-to-left. We need to show that for any = : 7% we have F(G(z)) = z. We use torus
induction with b’ := 1,. We let p’ and ¢’ be the paths in figure 3, where for any maps
f:A—=B,g:B— Candpathsa:x =4y, u: g(f(z)) =z, the path

Ts(f, 9, 0 u) : trans™ 9 EN=2(q u) = ap (ap,(a)) ™" rura

is defined by path induction on «, and &, x4 are the paths in figure 4.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 K. Sojakova

apr(apg(p)) 1 apr(apg(q)) 1
an(an(P)) apf(apg(Q))
via 8 via 8¢
ap = (pair~ (1, loop)) ap £ (pair~ (loop, 1pase))
,ubase(loop) Vbase(loop)
apg(loop) hap(apz- (loop), base)
B hap(8%- , base)
1% q
I-p l-q
a) kp b) «,

Fig. 4. The paths x, and kg

All that remains to show now is that the following diagram commutes:

via t

trans® 7 (9@)=2 (5. g 1) trans® 7 (9@)=2(q. 5 1)
transz»—ﬂ:(g(z)):z (q7 transxn—ﬁ:(g(z)):z (P7 1)) transt}-(g(z))ZI (P, transz»—»]"(g(ac)):a: (q7 1))
via p’ via ¢/
trans® 7 (G@)=2(q 1) trans® 7 (9@)=2 (5 1)
q P
1

We proceed in four steps.

Step 1. The goal of the first step is to get rid of all but the uppermost two transports
in the above diagram. We will do this by introducing and proving a generalization of
our current situation. Let (¢ r(aq, a2, 0], o, Uy, uy, uz, M1, 12) be the path in figure 5.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory

app(apg(ar = a2)) " u.
(apr(apa(an) - apr(apglaz))) .

apr(apc (1) - (app(apc(a2) - u.)
via 72

apr(apg(ai)) * (uy = a2)

(apr(@pan)) -uy) a2
via 1

(ug ") o

Uy * (Ol1 ' 062)

Fig. 5. The path (g, r(a1, a2, o), af, ue, uy, uz,m1,m2)
Here

—G:A—Band F: B — A,
—ar:z=pyandas:y=4zand o) :a=sband of: b =4 ¢,

—uy : F(G(z)) =z and u, : F(G(y)) =y and u, : F(G(2)) =,

it 3D (PG (1)) * ty = 1ty 0 and 1 : app(apea(2)) - s = 1y * .

We claim that the path
trans“’HF(G(w)):’w(al " (g, Uy)

tra nsu;HF(G(w)):w (a2’ transw»—)F(G(w)):w (al \ um))

via T3(G, F, a1, uz) *Z(m)

transV > F(Gw)=w (g, Uy)

%(G7 Fv az, uy) - I(”]Q)

Uz

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 K. Sojakova
is equal to the path

wHF(G(w)):w(

trans 1 " Qg Uy)

T3(G, F, a1 * a2, uz)
—1
app(apg(arra2)) ug s (a1 ra)

I(CG«F(ahanuzauyauzanth))

Uz

for any

—G:A—Band F:B — A,

—aj:r=pyand as :y =4 z,

—uy : F(G(z)) =z and uy, : F(G(y)) =y and u, : F(G(2)) = ¢,

—m :app(apg(@1)) *uy = uy *ar and s @ app(apg(ae)) = u, = uy * as.

To show this, we proceed by path induction on a; and «s. Hence we have to establish
the claim for a; := 1, ap == 1,, Ug, Uy, u. : F(G(x)) =z, and 01 : 1pg)) " Uy = Uz * 1o,
N2t 1p(Ga)) " Uz = Uy * 1y,

We note, however, that the types of 7,7, are equivalent to v, = u, and uy, = u,
respectively. Hence it suffices to show that given u,, u,, u, : F(G(z)) = z, 7] : uy = uy,
ny : uy = u., we can establish the claim for the special case when 7, =7, 1 ((n{) ') and
n2 = Ty,1((ny)~"), where for any u,v: a =x b,themap T, ; : (u=v) = (loru=1v+1p)
is the obvious equivalence.

We can now perform path induction on #; and #}, giving us u, : F(G(z)) = = and
Ny = 1, , nh = 1, . At this point, all terms involving a transport or an ap construct
have reduced to reflexivities. Furthermore, the paths 7,7, have reduced to the path
Z:1.1(1,,) and the paths 73(G, F, o1, ug), T3(G, F, az,uy), Ts(G, F, a1 * as,u,) have all re-
duced to the path I(Ilyl(luz))fl from u, to 1p(G () * Uz * 1. It is thus possible to gen-
eralize the left endpoint of u, and perform a final path induction, finishing the proof.

By what we have just shown, it suffices to prove that the following diagram com-
mutes:

via t
trans® 7 (G@)=2 (5. q 1) trans® 7 (9(@)=2(q.p 1)
T3(G,F,p*q,1) T3(G, F,a*p,1)
apy(apg(p+q)) "1+ (p+q) apy(apg(q+p)) "' "1+ (q*p)
I(CQ,I(P7 9P, 9 17 17 17":?7 K"q)) I(Cg,f(q7p7q7p7 17 17 17HQ7KP))
1

Step 2. The goal of the second step is to get rid of the remaining transports as well
as the applications of Z. We first prove the following generalization: given terms

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A:15

—G:A—>Band F: B — A,
—a,d:r=pyandf:a=d,
— Uy : F(G(z)) =z and u, : F(G(y)) =,

— 1 2 (AP (@) * ty = e+ 0 and 1)+ 3P (PG () -y =

the commutativity of the diagram

via 6

transw»—)F(G(w)):w(a’ u:c) transun—>F(G(w))=w (al7 'U«m)
Ts(G, F, o, uq) T5(G, F,d ua)
apr(apg(c apr(ap(a)) s val

)t
k %

is equivalent to the commutativity of the diagram

via 6
app(apg(a)) *uy app(apg(a’)) * uy
n 77'
!
Uy * Uy *
‘ via 0

To show this, we proceed by path induction on # and a subsequent path induction
on «. After simplifying, it remains to prove that for u,,u, : F(G(z)) = « and 0,7’ :
Lp(G) * Uy = Ug * 1., we have (Z(n) = Z(1')) ~ (n = 7’). But this follows since 7 is an
equivalence.

By what we have just shown, it suffices to prove that the following diagram com-
mutes:

via t

apr(apg(p+q)) -1 apr(apg(q-p)) -1
Cg,}—(P7 4P 9, 1,1, 17""107 "fq) CQ,I(CLPaq,E 17 1, 17’{/!17 KP)
1-(prq) : 1-(q-p)
via t

Step 3. The goal of the third step is to transform the vertical paths in the above dia-
gram into a more suitable form. As before, we proceed by introducing a generalization.
For k € {1, 2}, let the following terms be given:

—G:A—>Band F: B — A,
_Ilazan:}:A)
—a} xp =241 and of : G(zy) = G(z41) and o, af : F(G(zg)) = F(G(zk11)),
—ut rapg(al) = a2 and i} : app(al) = o} and 4} : o} = af.
kAPl k k- applo k ko k

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 K. Sojakova

Then the path (g (a{,a%,a‘f,a%, 1,1, 1,171,772), where 7, is the path in a) below, is

equal to the path in b). This follows right away by a one-sided path induction on

1,2 3 ; ; 1
t1, ti, p and a subsequent path induction on «.

app(apg (o * 3)) * 1

app(apg(af * a3))
a (ap al) apqs(al)
aPF(aPG(O‘}i))' 1 Pr G(1) G(2)
via o}, 03
2., .2
app(apc(a})) app(ai)
via ¢},
app(a3) app(ai) *app(a3)
A3 via 2, 2
ai a:f . a‘;’
3 via 3,43
o ajraj
1-af 1+ (afraj)
a) b)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory

A:17

By what we have just shown, it suffices to prove that the outer rectangle in the

following diagram commutes:

via t

apx(apg(prq)) -1

via t

apx(apg(q-p))*1

apr(apg(p*q))

apr (apg(p) : apg(q))

via 8§, B

via q)loop,loop

apr(apg(a*p))

apr (apg (9) * apg (p))

via 8§, B

apr (pair:(l, loop) * pair=(loop, 1))

ap.-(pair=(1, loop)) - ap - (pair(loop, 1))

via fipase (100p), Vbase (loop)

apr (pair:(loop, 1) » pair=(1, Ioop))

apz(pair~(loop,1)) - ap z(pair~ (1, loop))

via Vbase(IOOP) > Mbase (lOOP)

apg (loop) * hap(ap - (loop), base)

Nathap(ap .z (loop)) (100P)

hap(apz- (loop), base) * ap¢(loop)

via B¢, hap(8%— , base) D via hap(8%—, base), B¢
prq © q*p
E
1-(prq) - 1-(a*p)
via t

Step 4. 1t suffices to prove that each of the inner rectangles commutes. Rectangles A
and E commute obviously. Rectangle B is just the diagram from figure 2 transported
along ap -, and hence commutes. Rectangle C commutes by the following generaliza-
tion: for any « : © =g1 y, the diagram below commutes by path induction on a:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 K. Sojakova

ia a0 _ -
apf(pair:(lz7 a) = pair~ («, ly)) b apr (pair*(a, 1;) * pair=(1y, a))
apz(pair™(1z, @) = apx(pair~(a, 1,)) apx(pair™(a, 12)) * apz(pair~ (1y, @)
via pa (), vy (@) via vz (), py (@)
apr— (2 () ~hap(apz- (a),y) hap(apz— (a),z) *apr—) (@)

nathap(ap}—a (a)) ((1)

It remains to show that rectangle D commutes. Consider the following diagram:

apg (loop) = hap(ap - (loop), base) o doom (00P) hap(ap z— (loop), base) - ap¢(loop)
via hap(B%— , base) D, via hap(8%- , base)
ap¢(loop) = q vatre(100p) q " apy (loop)
via B¢ D, via B¢
Prq q°p

t

Commutativity of the outer rectangle clearly implies the commutativity of D. It thus
remains to show that D; and D, commute. The rectangle D, is precisely the diagram
in figure 1, which commutes. Rectangle D; commutes by the following generalization:
let f,g: A— B, hi,ho: f~g,v:h1 =hyand a: x =4 y be given. Then the following
diagram commutes by path induction on v and a:

apf(a) *hi(y) nats, (@) hi(z)+ ap, (o)
via hap(v,y) via hap(y, x)
aps(a@) * ha(y) —— ha2(z) *apy(a)

This finishes the proof.

6. CONCLUSION

We have presented a homotopy-type theoretic proof that the torus 7?2 is equivalent to
the product of two circles S! x S!. To compare the proof described here to the one given
by Licata and Brunerie [2015], we first note that the definitions of the back-and-forth
functions between T2 and S' x S! are exactly the same. When proving that the func-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The equivalence of the torus and the product of two circles in homotopy type theory A:19

tions compose to the identity on S' x S! we used the fact that the circle S! is a 1-type.
This simplification is not used by Licata and Brunerie; the lines 75-76, 82-86 in [Licata
2015a] comprise the path algebra which would be avoided by the aforementioned sim-
plification. On the other hand, in this fashion Agda is able to automatically infer the
terms loopl-case and loop2-case, which in our notation correspond to the paths n and ¢
respectively (of course a paper proof offers no such opportunity).

Similarly, when proving that the functions compose to the identity on 72, the terms
p-case and g-case, which in our proof correspond to the paths «, and «,, are inferred
automatically. Steps 1 and 2 of our proof roughly correspond to lines 403-441 in [Licata
2015b] and 51-57 in [Licata 2015a]; in both proofs, the purpose of these steps is to
mediate between a diagram involving transports (a “square-over”) and an equivalent
diagram which does not (a “cube”). Steps 3 and 4 then roughly correspond to lines 60-
67 in [Licata 2015a]; the commuting diagrams (or “cubes”) established in Step 4 are
composed together, using a reordering of operations that is justified by Step 3.

ACKNOWLEDGMENT
The author would like to thank her advisors, Profs. Steve Awodey and Frank Pfenning, for their help.

REFERENCES

E. Cavallo. 2014. The Mayer-Vietoris sequence in homotopy type theory. (2014). Talk at the Oxford Workshop
on Homotopy Type Theory.

N. Gambino. 2011. The univalence axiom and function extensionality. (2011). Talk at the Oberwolfach Mini-
Workshop on the Homotopy Interpretation of Constructive Type Theory. Proof due to V. Voevodsky;
notes by K. Kapulkin and P. Lumsdaine available at http:/www.pitt.edu/~krk56/UA _implies_FE.pdf.

C. Kapulkin, P. Lumsdaine, and V. Voevodsky. 2012. The Simplicial Model of Univalent Foundations. (2012).
Available at arxiv.org as arXiv:1211.2851v1.

D. Licata. 2015a. Agda repository. (2015). Available at https:/github.com/dlicata335/hott-agda/blob/master/
homotopy/TS1S1.agda.

D. Licata. 2015b. Agda repository. (2015). Available at https:/github.com/dlicata335/hott-agda/blob/master/
lib/cubical/Cube.agda.

D. Licata. 2015c¢. Cubical type theory. (2015). Talk at the homotopy type theory seminar, Carnegie Mellon
University. Slides available from the author’s website.

D. Licata and G. Brunerie. 2013. I1,,(S™) in Homotopy Type Theory. In Certified Programs and Proofs
(LNCS), Vol. 8307. Springer, 1-16.

D. Licata and G. Brunerie. 2015. A Cubical Approach to Synthetic Homotopy Theory. In Logic in Computer
Science (LICS 2015). IEEE, 92-103.

D. Licata and M. Shulman. 2013. Calculating the Fundamental Group of the Circle in Homotopy Type
Theory. In Logic in Computer Science (LICS 2013). IEEE Computer Society, 223—-232.

P. Lumsdaine. 2011. Higher inductive types: a tour of the menagerie. (2011). Post on the Homotopy Type
Theory blog.

U. Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Disser-
tation. Chalmers University of Technology.

M. Shulman. 2011. Homotopy Type Theory, VI. (2011). Post on the n-category cafe blog.

K. Sojakova. 2014. The torus 72 is equivalent to the product S' x S! of two circles. (2014). Available at
http://ncatlab.org/homotopytypetheory/files/torus.pdf.

Coq Development Team. 2012. The Coq Proof Assistant Reference Manual, version 8.4pl3. INRIA. Available
at coq.inria.fr.

The Univalent Foundations Program, Institute for Advanced Study. 2013. Homotopy Type Theory - Univa-
lent Foundations of Mathematics. Univalent Foundations Project.

V. Voevodsky. 2011. Univalent foundations of mathematics. (2011). Invited talk at the Workshop on Logic,
Language, Information and Computation (WoLLIC 2011).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

