
Translating a Dependently-Typed Logic to

First-Order Logic

Kristina Sojakova

May 20, 2008

Abstract

DFOL is a logic that extends first-order logic with dependent types.
We give a translation from DFOL to FOL formalized as an institution
comorphism and show that it admits the model expansion property. This
property together with the borrowing theorem implies the soundness of
borrowing — a result that enables us to reason about entailment in DFOL
by using automated tools for FOL. In addition, the translation permits
us to deduce properties of DFOL such as completeness, compactness, and
existence of free models from the corresponding properties of FOL, and
to regard DFOL as a fragment of FOL. Future work will focus on the
integration of the translation into the specification and translation tool
Hets.

1 Introduction and Related Work

Dependent type theory, DTT, ([ML75]) provides a very elegant language for
many applications ([HHP93, NPS90]). However, its definition is much more
involved than that of simple type theory because all well-formed terms, types,
and their equalities must be defined in a single joint induction. Several quite
complex model classes, mainly related to locally cartesian closed categories, have
been studied to provide a model theory for DTT (see [Pit00] for an overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (sim-
ple or dependent) function types. Such systems were investigated in [Mak97],
[Rab06], and [Bel08]. They provide very elegant axiomatizations of many im-
portant mathematical theories such as those of categories or linear algebra while
retaining completeness with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([CM93]).

1

In principle, there are two ways how to establish the soundness of borrowing:
proof-theoretically by translating the obtained proof back to the original logic,
or model-theoretically by exhibiting a model-translation between the two logics.
Proof-theoretical translations of languages with dependent types have been used
in [JM93] to translate parts of DTT to simple type theory, in [Urb03] to translate
Mizar ([TB85]) into FOL, and in Scunak [Bro06] to translate parts of DTT into
FOL. The Scunak translation, which among these is the one closest to our work,
is only partial as for example the translation of lambda expressions is omitted.
Moreover, while obtaining the FOL-proof for the proof-theoretical translation
is possible in practice albeit somewhat tricky, the back-translation of the proof
is much more difficult. In the cases of Mizar and Scunak, for instance, there
is no proof translation specified or implemented and hence the soundness of
borrowing is not established.

Here we take here the model-theoretic approach and formulate a transla-
tion from the system introduced in [Rab06] to FOL within the framework of
institutions ([GB92]). Mathematically our main results can be summarized as
follows. We use the institution DFOL as given in [Rab06] and give an insti-
tution comorphism from DFOL into FOL. Every DFOL-signature is translated
to a FOL-theory whose axioms are used to express the typing properties of the
translated symbols. The signature translation uses an n+ 1-ary FOL-predicate
Ps for every dependent type constructor s with n arguments. Then the for-
mulas quantifying over x of type s(t1, . . . , tn) can be translated by relativizing
(see [Obe62]) using the predicate Ps(t1, . . . , tn, x). Finally, we show that this
comorphism admits model expansion. Using the borrowing theorem ([CM93]),
this yields the soundness of the translation.

Thus, we provide a simple way to extend FOL theorem provers with de-
pendently typed input languages. It also becomes possible to integrate DFOL
seamlessly into existing institution-based algebraic specification languages such
as OBJ ([GWM+93]) and CASL ([ABK+02]). Finally, our result provides easier
proofs of the free model and completeness theorems given in [Rab06].

2 Definitions

We now present some definitions necessary for our work. We assume that the
reader is familiar with the basic concepts of category theory and logic. For in-
troduction to category theory, see [Lan98].
Using categories and functors we can define an institution, which is a formaliza-
tion of a logical system abstracting from notions such as formulas, models, and
satisfaction. Institutions structure the variety of different logics and allow us to
formulate institution-independent theorems for the general theory of logic. For
more on institutions, see [GB92].

Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen,Mod, |=)
where

• Sig is a category,

2

• Sen : Sig → Set is a functor,

• Mod : Sig → Catop is a functor,

• |= is a family of relations |=Σ for Σ ∈ |Sig|, |=Σ ⊆ Sen(Σ)× |Mod(Σ)|

such that for each morphism σ : Σ → Σ′, sentence F ∈ Sen(Σ), and model
M ′ ∈ |Mod(Σ′)| we have

Mod(σ)(M ′) |=Σ F iff M ′ |=Σ′ Sen(σ)(F)

The category Sig is called the category of signatures. The morphisms in Sig
are called signature morphisms and represent notation changes. The functor
Sen assigns to each signature Σ a set of sentences over Σ and to each morphism
σ : Σ→ Σ′ the induced sentence translation along σ. Similarly, the functor Mod
assigns to each signature Σ a category of models for Σ and to each morphism
σ : Σ→ Σ′ the induced model reduction along σ. For a signature Σ, the relation
|=Σ is called a satisfaction relation.
We now define what entailment and theory are in the context of institutions.

Definition 2 (Entailment). Let (Sig, Sen,Mod, |=) be an institution. For a
fixed Σ, let T ⊆ Sen(Σ) and F ∈ Sen(Σ). Then we say that T entails F ,
denoted T |=Σ F , if for any model M ∈ |Mod(Σ)| we have that

if M |=Σ G for all G ∈ T then M |=Σ F

Definition 3 (Category of theories). Let I = (Sig, Sen,Mod, |=) be an insti-
tution. We define the category of theories of I to be the category ThI where

• The objects are pairs (Σ, T), with Σ ∈ |Sig|, T ⊆ Sen(Σ)

• σ is a morphism from (Σ, T) to (Σ′, T ′) iff σ is a signature morphism from
Σ to Σ′ in I and for each F ∈ T we have that T ′ |=Σ Sen(σ)(F)

The objects in ThI are called theories of I, and for each theory Th = (Σ, T),
the set T is called the set of axioms of Th. The morphisms in ThI are called
theory morphisms. For a theory (Σ, T) and a sentence F over Σ, we say (Σ, T) |=
F in place of T |=Σ F .
For a given institution I, we sometimes need to construct another institution
ITh, whose signatures are the theories of I. We have the following lemma.

Lemma 1 (Institution of theories). Let I = (Sig, Sen,Mod, |=) be an institu-
tion. Denote by ITh the tuple (ThI , SenTh,ModTh, |=Th) where

• SenTh(Σ, T) = Sen(Σ) and SenTh(σ) = Sen(σ) for σ : (Σ, T)→ (Σ′, T ′).

• ModTh(Σ, T) is the full subcategory of Mod(Σ) whose objects are those
models M in |Mod(Σ)| for which we have M |=Σ G whenever G ∈ T . For
a theory morphism σ : (Σ, T) → (Σ′, T ′), ModTh(σ) is the restriction of
Mod(σ) to ModTh(Σ′, T ′).

3

• |=Th
(Σ,T) is the restriction of |=Σ to |ModTh(Σ, T)| × SenTh(Σ, T).

Then ITh is an institution, called the institution of theories of I.

We are now ready to define a certain kind of translation between two insti-
tutions.

Definition 4 (Institution comorphism). Let I = (SigI , SenI ,ModI , |=I), J =
(SigJ , SenJ ,ModJ , |=J) be two institutions. An institution comorphism from I
to J is a triple (Φ, α, β) where

• Φ : SigI → SigJ is a functor,

• α : SenI → Φ;SenJ is a natural transformation,

• β : ModI → Φ;ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenI(Σ), and M ′ ∈ |ModJ(Φ(Σ))| we have

βΣ(M ′) |=I
Σ F iff M ′ |=J

Φ(Σ) αΣ(F)

where βΣ is regarded as a morphism from ModJ(Φ(Σ) to ModI(Σ) in the cate-
gory Cat.

Institution comorphisms are particularly useful if they have the following
property.

Definition 5 (Model expansion property). Let (Φ, α, β) be an institution co-
morphism from I to J . We say that the comorphism has the model expansion
property if each functor βΣ for Σ ∈ SigI is surjective on objects.

The following lemma is then applicable.

Lemma 2 (Borrowing). Let (Φ, α, β) be an institution comorphism from ITh

to JTh having the model expansion property. Then for any theory (Σ, T) in I
and a sentence F over Σ), we have that

(Σ, T) |=I F iff Φ(Σ, T) |=J αΣ(F)

In other words, we can use the institution J to reason about theories in I.
For more on borrowing, see [CM93].

3 DFOL and FOL as Institutions

DFOL was formally introduced as an institution in [Rab06]. The definition
relies heavily on the logical framework LF [HHP93], an intuitionistic predicative
dependent-type theory related to Martin-Löf type theory, and is rather involved.
We present here a rough outline.

4

3.1 Signatures

In DFOL, we have three base types, defined as follows:

S : type Univ : S→ type o : type

Here S is the type of sorts, which are simply names for universes. The type
Univ is an operator assigning to each sort a universe of individuals. The type
o holds the formulas semantically and stands for either true or false.
A DFOL signature consists of a finite sequence of declarations of the form

c : Πx1 : Univ(T1), . . . ,Πxn : Univ(Tn). Univ(Tn+1)

meaning that c is a function taking n arguments of types T1, . . . , Tn respectively,
and returning an argument of type Tn+1. The notation Πxi : Univ(Ti) means
that xi may occur in Ti+1, . . . , Tn+1; hence the name ’dependent types’. We
abbreviate Πx : Univ(S) as Πx : S.
More formally, we define a DFOL signature Σ inductively on the number of
declarations.
Let Σk be a DFOL signature consisting of k declarations, k ≥ 0. We define a
function over Σk as follows:

• Any variable is a function over Σk

• If f in Σk is a function symbol of arity n and µ1, . . . , µn are functions over
Σk, then f(µ1, . . . , µn) is a function over Σk

If s in Σk is a sort symbol of arity n and µ1, . . . , µn are functions over Σk, then
s(µ1, . . . , µn) is a sort over Σk. Similarly, if p in Σk is a predicate symbol of
arity n and µ1, . . . , µn are functions over Σk, then p(µ1, . . . , µn) is a predicate
over Σk. The word term refers to either a function, a sort, or a predicate.
We remark here that not all terms are well-formed in DFOL. For a term to be
well-formed, it has to be well-typed in the LF type theory. For details we refer
the reader to [Rab06].
Now the (k + 1)-th declaration has one of the following forms:

• s : Πx1 : S1, . . . , Πxn : Sn. S
where S1, . . . , Sn are sort terms over Σk and Si contains no variables except
possibly x1, . . . , xi−1. We say that s is a sort symbol.

• f : Πx1 : S1, . . . , Πxn : Sn. S
where S1, . . . , S are sort terms over Σk and Si contains no variables except
possibly x1, . . . , xi−1. We say that f is a function symbol.

• p : Πx1 : S1, . . . , Πxn : Sn. o
where S1, . . . , Sn are sort terms over Σk and Si contains no variables except
possibly x1, . . . , xi−1. We say that p is a predicate symbol.

As with terms, the declaration must in addition be well-typed.

5

3.2 Sentences

The set of DFOL formulas over a signature Σ can be described as follows:

• If p is an n-ary predicate symbol in Σ and µ1, . . . , µn are functions over
Σ, then p(µ1, . . . , µn) is a Σ-formula

• If µ1, µ2 are function terms over Σ, then µ1
.= µ2 is a Σ-formula

• If F is a Σ-formula, then ¬F is a Σ-formula

• If F,G are Σ-formulas, then F ∧G, F ∨G, and F ⇒ G are Σ-formulas

• If F is a Σ-formula and S is a sort term over Σ, then ∀x : S. F is a
Σ-formula

• If F is a Σ-formula and S is a sort term over Σ, then ∃x : S. F is a
Σ-formula

Closed and atomic formulas are defined in the obvious way analogous to first-
order logic. As with terms, DFOL formulas are well-formed only if they are
well-typed in the LF type theory. For a precise definition, see [Rab06].

3.3 Models

A model of a DFOL signature Σ is an interpretation function I. Since the
declaration of a symbol may depend on symbols declared before, we define I
inductively on the number of declarations.
Suppose I is defined for the first k declarations, k ≥ 0. An assignment function
ϕ for I is a function mapping each variable to an element of any set defined by
I as an interpretation of a sort symbol.
Let µ be a term over Σ. We define the interpretation of µ induced by ϕ to be
Iϕ(µ), where Iϕ is given by:

• Iϕ(x) = ϕ(x) for any variable x

• Iϕ(d(µ1, . . . , µk)) = dI(Iϕ(µ1), . . . , Iϕ(µk)) for a sort, predicate, or func-
tion symbol d if

– each of the interpretations Iϕ(µ1), . . . , Iϕ(µn) exists and

– dI is defined for the tuple (Iϕ(µ1), . . . , Iϕ(µn))

Otherwise we say Iϕ(d(µ1, . . . , µk)) does not exist.

Now the k + 1-st declaration has one of the following forms:

• s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for I. If for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si), then

sI(ϕ(x1), . . . , ϕ(xn)) is a set

6

disjoint from any other set defined by I as an interpretation of a sort
symbol. Otherwise no definition is necessary.

• f : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for I. If for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si), then

f I(ϕ(x1), . . . , ϕ(xn)) ∈ Iϕ(S)

Otherwise no definition is necessary.

• p is a predicate symbol, p : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for I. If for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si), then

pI(ϕ(x1), . . . , ϕ(xn)) ∈ {true, false}

Otherwise no definition is necessary.

3.4 Satisfaction relation

To define the satisfaction relation, we first define the interpretation of formulas.
Let I be a DFOL model for the signature Σ, F be a well-formed DFOL formula
over Σ, and ϕ be an assignment function for I. Then we define Iϕ(F) recursively
on the structure of F :

• F is a predicate. If the interpretation Iϕ(F) exists then Iϕ(F) is true
if and only if pI(Iϕ(µ1), . . . , Iϕ(µn)) = true. Otherwise Iϕ(F) does not
exist.

• F is of the form µ1
.= µ2. If the interpretations Iϕ(µ1), Iϕ(µ2) exist, then

Iϕ(F) is true if and only if Iϕ(µ1) = Iϕ(µ2). Otherwise Iϕ(F) does not
exist.

• F is of the form ¬G. If the interpretation Iϕ(G) exists, then Iϕ(F) is true
if and only if Iϕ(G) is false. Otherwise Iϕ(F) does not exist.

• F is of the form F1 ∧ F2. If the interpretations Iϕ(F1), Iϕ(F2) exist, then
Iϕ(F) is true if and only if both Iϕ(F1) and Iϕ(F2) are true. Otherwise
Iϕ(F) does not exist.

• F is of the form F1 ∨ F2. If the interpretations Iϕ(F1), Iϕ(F2) exist, then
Iϕ(F) is true if and only if Iϕ(F1) is true or Iϕ(F2) is true. Otherwise
Iϕ(F) does not exist.

• F is of the form F1 =⇒ F2. If the interpretations Iϕ(F1), Iϕ(F2) exist,
then Iϕ(F) is true if and only if Iϕ(F1) is false or Iϕ(F2) is true. Otherwise
Iϕ(F) does not exist.

7

• F is of the form ∃x : S. G. If the interpretation Iϕ(S) exists then Iϕ(F)
is true if and only if Iϕ[x/a](G) exists and is true for some a ∈ Iϕ(S).
Otherwise Iϕ(F) does not exist.

• F is of the form ∀x : S. G. If the interpretation Iϕ(S) exists then Iϕ(F)
is true if and only if Iϕ[x/a](G) exists and is true for any a ∈ Iϕ(S).
Otherwise Iϕ(F) does not exist.

Now if F is in fact a closed formula, its interpretation is independent of ϕ.
Hence, we define that I satisfies F if and only if Iϕ(F) is true for some ϕ.

For simplicity, we declare the signature and model morphisms in DFOL to
just be the identity morphisms. Putting our previous definitions together, we
have the following lemma.

Lemma 3. DFOL = (Sig, Sen,Mod, |=) is an institution.

The FOL institution is then obtained from DFOL by restricting the signa-
tures to contain a unique sort symbol, having arity 0. Any other symbols are
either function or predicate symbols.

4 Translation of DFOL to FOL

The main idea of the translation is to associate with each n-ary sort symbol in
DFOL an n+1-ary predicate in FOL and relativize the universal and existential
quantifiers (the technique of relativization was first introduced by Oberschelp
in [Obe62]).
Formally, the translation will be given as an institution comorphism fromDFOL
to FOLTh. We specify a functor Φ, mapping DFOL signatures to FOL theories
and DFOL signature morphisms to FOL theory morphisms. For each DFOL
signature Σ, we give a function αΣ mapping DFOL sentences over Σ to FOL
sentences over the translated signature Φ(Σ), and show that the family of func-
tions αΣ defines a natural transformation. Similarly, for each DFOL signature Σ
we give a functor βΣ mapping FOL models for the translated signature Φ(Σ) to
DFOL models for Σ, and show that the family of functors βΣ defines a natural
transformation. Finally, we prove the satisfaction condition for (Φ, α, β) and
show that the comorphism has the model expansion property.

Definition 6 (Signature translation). Let Σ be a DFOL signature. We define
Φ(Σ) to be the FOL theory (Σ′, T ′), where Σ′ and T ′ are specified as follows.
Σ′ contains:

• an n-ary function symbol f for each n-ary function symbol f in Σ,

• an n-ary predicate symbol p for each n-ary predicate symbol p in Σ,

• an (n+ 1)-ary predicate symbol s for each n-ary sort symbol s in Σ,

• a special constant symbol ⊥, different from any of the above symbols,

8

• no other symbols besides the above

T ′ contains:

S1. Axioms ensuring that no element can belong to the universe of more than
one sort. For any two sort symbols s1, s2 with s1 different from s2, we
have the axiom

∀x1, . . . , xn, y. (s1(x1, . . . , xn, y) =⇒
(
(∀z1, . . . , zn. s1(z1, . . . , zn, y)

=⇒ z1
.= x1 ∧ . . . ∧ zn

.= xn) ∧ ∀w1, . . . , wm. ¬s2(w1, . . . , wm, y))
)

S2. An axiom ensuring that each element different from ⊥ belongs to the uni-
verse of at least one sort. If s1, . . . , sk are the sort symbols, then we have
the axiom

∀y.
(
¬y .= ⊥ =⇒ ∃x1, . . . , xn1 . s1(x1, . . . , xn1 , y) ∨ . . . ∨

∃x1, . . . , xnk
. sk(x1, . . . , xnk

, y)
)

S3. Axioms ensuring that the special symbol ⊥ is not contained in the universe
of any sort. For each sort symbol s, we have the axiom

∀x1, . . . , xn, y. ¬s(x1, . . . , xn,⊥)

S4. Axioms ensuring that if the arguments to a sort constructor are not of
the correct types, the resulting sort has an empty universe. For each sort
symbol s : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn
1 , . . . , µ

n
kn

). S, we have
the axiom

∀x1, . . . , xn.
(
(¬s1(µ1

1, . . . , µ
1
k1
, x1) ∨ . . . ∨ ¬sn(µn

1 , . . . , µ
n
kn
, xn))

=⇒ ∀y. ¬s(x1, . . . , xn, y)
)

F1. Axioms ensuring that if the arguments to a function are of the correct
types, the function returns a value of the correct type. For each function
symbol f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn
1 , . . . , µ

n
kn

). s(µ1, . . . , µk),
we have the axiom

∀x1, . . . , xn.
(
s1(µ1

1, . . . , µ
1
k1
, x1) ∧ . . . ∧ sn(µn

1 , . . . , µ
n
kn
, xn) =⇒

s(µ1, . . . , µk, f(x1, . . . , xn))
)

F2. Axioms ensuring that if the arguments to a function are not of the correct
types, the function returns the special symbol ⊥. For each function symbol
f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn
1 , . . . , µ

n
kn

). s(µ1, . . . , µk), we
have the axiom

∀x1, . . . , xn.
(
(¬s1(µ1

1, . . . , µ
1
k1
, x1) ∨ . . . ∨ ¬sn(µn

1 , . . . , µ
n
kn
, xn))

=⇒ f(x1, . . . , xn) .= ⊥
)

9

P1. Axioms ensuring that if the arguments to a predicate are not of the cor-
rect types, the predicate is false. For each predicate symbol p : Πx1 :
s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn
1 , . . . , µ

n
kn

). o, we have the axiom

∀x1, . . . , xn.
(
(¬s1(µ1

1, . . . , µ
1
k1
, x1) ∨ . . . ∨ ¬sn(µn

1 , . . . , µ
n
kn
, xn))

=⇒ ¬p(x1, . . . , xn)
)

N. No other axioms besides the above

Defining Φ on signature morphisms is trivial since by our definition the only
signature morphisms in DFOL are the idenity morphisms. From this it follows
immediately that Φ is a functor.

Definition 7 (Sentence translation). Let Σ be a DFOL signature. We define
the function αΣ on the set of all DFOL formulas over Σ. We do this recursively
on the structure of the formula F :

• If F is of the form p(µ1, . . . , µn), we set αΣ(F) = F

• If F is of the form µ1
.= µ2, we set αΣ(F) = F

• If F is of the form ¬G, we set αΣ(F) = ¬αΣ(G)

• If F is of the form F1 ∧ F2, we set αΣ(F) = αΣ(F1) ∧ αΣ(F2)

• If F is of the form F1 ∨ F2, we set αΣ(F) = αΣ(F1) ∨ αΣ(F2)

• If F is of the form F1 =⇒ F2, we set αΣ(F) to be the formula

αΣ(F1) =⇒ αΣ(F2)

• If F is of the form ∀x : s(µ1, . . . , µn). G, we set αΣ(F) to be the formula

∀x. s(µ1, . . . , µn, x) =⇒ αΣ(G)

• If F is of the form ∃x : s(µ1, . . . , µn). G, we set αΣ(F) to be the formula

∃x. s(µ1, . . . , µn, x) ∧ αΣ(G)

It is easy to see that αΣ maps closed formulas to closed formulas. Hence, we
can restrict αΣ to the set of DFOL sentences over Σ to obtain our desired trans-
lation map. The naturality of αΣ follows immediately since the only signature
morphisms in DFOL are the identity morphisms.

Definition 8 (Model reduction). Let Σ be a DFOL signature and M = (U, I) be
a FOL model for Φ(Σ). We define the translated DFOL model βΣ(M) for Σ to be
the interpretation function J , defined inductively on the number of declarations
in Σ.
Suppose J is defined for the first k symbols in Σ, k ≥ 0. Then the k + 1-st
declaration has one of the following forms:

10

• s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for J . If for each i we have that Jϕ(Si)
exists and ϕ(xi) ∈ Jϕ(Si), then we set

sJ(ϕ(x1), . . . , ϕ(xn)) = {u ∈ U | sI(ϕ(x1), . . . , ϕ(xn), u)}

Otherwise, no definition is necessary.

• f : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for J . If for each i we have that Jϕ(Si)
exists and ϕ(xi) ∈ Jϕ(Si), then we set

fJ(ϕ(x1), . . . , ϕ(xn)) = f I(ϕ(x1), . . . , ϕ(xn))

Otherwise, no definition is necessary.

• p is a predicate symbol, c : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for J . If for each i we have that Jϕ(Si)
exists and ϕ(xi) ∈ Jϕ(Si), then we set

pJ(ϕ(x1), . . . , ϕ(xn)) iff pI(ϕ(x1), . . . , ϕ(xn))

Otherwise, no definition is necessary.

We note here how the axioms introduced earlier are needed to ensure that
J is indeed a DFOL model for Σ. We now turn to the proof of the satisfaction
condition.

Theorem 1 (Satisfaction condition). (Φ, α, β) is an institution comorphism.

Proof. We have already shown that Φ is a functor and α, β are natural trans-
formations. It remains to show that the satisfaction condition holds.
Let Σ be a DFOL signature, F be a DFOL sentence over Σ, M = (U, I) be a
FOL model for the translated signature Φ(Σ), and J be the translated model
βΣ(M). We first observe the following two facts:

• Any assignment function ϕ for J is an assignment function for U

• If µ is a well-formed function term over Σ and ϕ is an assignment function
for J such that Jϕ(µ) exists, then Jϕ(µ) = Iϕ(µ)

Both of these facts follow directly from the construction of J . We now show
that if Jϕ(F) exists, then we in fact have

Jϕ(F) iff Iϕ(αΣ(F))

To prove the claim, we proceed recursively on the structure of F :

• F is of the form p(µ1, . . . , µn). Then Jϕ(F) is true if and only if
pJ(Jϕ(µ1), . . . , Jϕ(µn)). By the construction of J , we have

11

pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Jϕ(µ1), . . . , Jϕ(µn))

As noted above, Jϕ(µi) = Iϕ(µi) for each i, hence

pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Iϕ(µ1), . . . , Iϕ(µn))

Thus we have Jϕ(F) if and only if Iϕ(F). Since F = αΣ(F), this proves
the claim.

• F is of the form µ1
.= µ2. Then Jϕ(F) is true if and only if Jϕ(µ1) =

Jϕ(µ2). As noted above, Jϕ(µ1) = Iϕ(µ1) and Jϕ(µ2) = Iϕ(µ2), hence

Jϕ(µ1) = Jϕ(µ2) iff Iϕ(µ1) = Iϕ(µ2)

Thus we have Jϕ(F) if and only if Iϕ(F). Since F = αΣ(F), this proves
the claim.

• F is of the form ¬G. Then Jϕ(F) is true if and only if Jϕ(G) is false.
By the induction hypothesis, we have Jϕ(G) iff Iϕ(αΣ(G)). Thus Jϕ(F)
is true if and only if Iϕ(αΣ(G)) is false, or equivalently

Jϕ(F) iff Iϕ(¬αΣ(G))

Since ¬αΣ(G) = αΣ(F), this proves the claim.

• F is of the form F1 ∧ F2. Then Jϕ(F) is true if and only if both Jϕ(F1)
and Jϕ(F2) are true. By the induction hypothesis, we have Jϕ(F1) iff
Iϕ(αΣ(F1)) and Jϕ(F2) iff Iϕ(αΣ(F2)). Hence, Jϕ(F) is true if and only
if both Iϕ(αΣ(F1)) and Iϕ(αΣ(F2)) are true. Equivalently,

Jϕ(F) iff Iϕ(αΣ(F1) ∧ αΣ(F2))

Since αΣ(F1) ∧ αΣ(F2) = αΣ(F), this proves the claim.

• F is of the form F1∨F2. Since F is equivalent to the formula ¬(¬F1∧¬F2),
the claim follows from the previous steps.

• F is of the form F1 =⇒ F2. Since F is equivalent to the formula ¬F1∨F2,
the claim follows from the previous steps.

• F is of the form ∃x : s(µ1, . . . , µn). G. By definition, Jϕ(F) is true if and
only if there exists an a ∈ Jϕ(s(µ1, . . . , µn)) such that Jϕ[x/a](G) is true.
Again by definition,

Jϕ(s(µ1, . . . , µn)) = sJ(Jϕ(µ1), . . . , Jϕ(µn))

Since Jϕ(µi) = Iϕ(µi) for each i, we have

sJ(Jϕ(µ1), . . . , Jϕ(µn)) = sJ(Iϕ(µ1), . . . , Iϕ(µn))

12

By the construction of J , we have that a belongs to sJ(Iϕ(µ1), . . . , Iϕ(µn))
if and only if a belongs to U and sI(Iϕ(µ1), . . . , Iϕ(µn), a) = true. Now
since µi does not contain x for any i, we have that

sI(Iϕ(µ1), . . . , Iϕ(µn), a) = Iϕ[x/a](s(µ1, . . . , µn, x))

Now by the induction hypothesis we have that

Jϕ[x/a](G) iff Iϕ[x/a](αΣ(G))

Combining this, we get precisely that

Jϕ(F) iff Iϕ(∃x. s(µ1, . . . , µn, x) ∧ αΣ(G))

Since ∃x. s(µ1, . . . , µn, x) ∧ αΣ(G) = αΣ(F), this proves the claim.

• F is of the form ∀x : s(µ1, . . . , µn). G. Since F is equivalent to the formula
¬∃x : s(µ1, . . . , µn). ¬G, the claim follows from the previous steps.

At last, we prove the model expansion property.

Theorem 2 (Model expansion property). The institution comorphism (Φ, α, β)
has the model expansion property.

Proof. Let Σ be a DFOL signature and J be a DFOL model for Σ. We construct
a FOL model M = (U, I) for the translated signature Φ(Σ) such that J =
βΣ(M).
To define U , let s1, . . . , sk be the sort symbols of Σ. For si of arity ni, set

Ui =
⋃

(x1,...,xni
)

si(x1, . . . , xni
)

where (x1, . . . , xni
) ranges through all ni-tuples for which si is defined. Set

U = {⊥} ∪ U1 ∪ . . . ∪ Un

We notice that by the construction of U , any assignment function ϕ for U \{⊥}
is also an assignment function for J and vice versa. We now define I as follows:

• Let p be a predicate symbol in Σ, p : Πx1 : S1, . . . , Πxn : Sn. o. Let ϕ
be an assignment function for U \ {⊥}. If for each i we have that Jϕ(Si)
exists and ϕ(xi) ∈ Jϕ(Si), we set

pI(ϕ(x1), . . . , ϕ(xn)) iff pJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set pI(ϕ(x1), . . . , ϕ(xn)) to be false.

13

• Let f be a function symbol in Σ, f : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ
be an assignment function for U \ {⊥}. If for each i we have that Jϕ(Si)
exists and ϕ(xi) ∈ Jϕ(Si), we set

f I(ϕ(x1), . . . , ϕ(xn)) = fJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set f I(ϕ(x1), . . . , ϕ(xn)) = ⊥.

• Let s be a sort symbol in Σ, s : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be an
assignment function for U \ {⊥}. If for each i we have that Jϕ(Si) exists
and ϕ(xi) ∈ Jϕ(Si), we set

sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) iff ϕ(y) ∈ sJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) = false.

It is easy to see that M = (U, I) satisfies all the axioms in the translated
signature Φ(Σ) and that we have J = βΣ(M).

Hence, the institution comorphism (Φ, α, β) permits borrowing and we have
that a DFOL theory entails a sentence if and only if the translated FOL theory
entails the translated sentence.

5 Conclusion and Future Work

We have given an institution comorphism from a dependently-typed logic to
FOL and have shown that it admits model expansion. Together with the bor-
rowing theorem [CM93] this implies the soundness of borrowing.

This result is important for several reasons. The need for dependent types
arises in several areas of mathematics such as linear algebra and category theory.
DFOL provides a more natural way of formulating mathematical problems while
staying close to FOL formally and intuitively. On the other hand, for FOL we
have machine support in the form of automated theorem-provers and model-
finders. The translation enables us to formulate a DFOL problem, translate
it to FOL, and then use the known automated methods (e.g. theorem-provers
such as Vampire [RV02] or SPASS [WAB+99], and model finders such as Paradox
[CS03]) to find a solution.

On the theoretical side, the translation shows that DFOL can be regarded
as a fragment of FOL, what generalizes the well-known results for many-sorted
first-order logic. In particular, we are able to derive properties of DFOL such
as completeness, compactness, and the existence of free models from the corre-
spoding properties of FOL.

In the future we will integrate our translation into Hets ([MML07]), a CASL-
based application that provides a framework for the implementation of institu-
tions and institution translations. Since DFOL is defined within the Edinburgh
Logical Framework (LF, [HHP93]), we will also investigate how arbitrary insti-
tution and institution translation specifications in LF can be incorporated into
Hets.

14

References

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses,
D. Sannella, and A. Tarlecki. CASL: The Common Algebraic Spec-
ification Language. Theoretical Computer Science, 2002.

[Bel08] J. Belo. Dependently Sorted Logic. In M. Miculan, I. Scagnetto,
and F. Honsell, editors, TYPES 2008, pages 33–50. Springer, 2008.

[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In
N. Shankar and U. Furbach, editors, Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning, pages 205–219.
Springer, 2006.

[CM93] M. Cerioli and J. Meseguer. May I Borrow Your Logic? In
A. Borzyszkowski and S. Sokolowski, editors, Mathematical Foun-
dations of Computer Science, pages 342–351. Springer, 1993.

[CS03] K. Claessen and N. Sorensson. New techniques that improve
MACE-style finite model finding. In 19th International Conference
on Automated Deduction (CADE-19) Workshop on Model Compu-
tation - Principles, Algorithms, Applications, 2003.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory
for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95–146, 1992.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Appli-
cations of Algebraic Specification using OBJ. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery,
40(1):143–184, 1993.

[JM93] B. Jacobs and T. Melham. Translating dependent type theory into
higher order logic. In M. Bezem and J. Groote, editors, Typed
Lambda Calculi and Applications, pages 209–29, 1993.

[Lan98] S. Mac Lane. Categories for the Working Mathematician. Springer,
1998.

[Mak97] M. Makkai. First order logic with dependent sorts (FOLDS), 1997.
Unpublished.

[ML75] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part.
In Proceedings of the Logic Colloquium 1973, pages 73–118, 1975.

15

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous
Tool Set. In O. Grumberg and M. Huth, editor, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 519–522,
2007.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. Oxford University Press,
1990.

[Obe62] A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik.
Mathematische Annalen, 145:297–333, 1962.

[Pit00] A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Vol-
ume 5. Algebraic and Logical Structures, chapter 2, pages 39–128.
Oxford University Press, 2000.

[Rab06] F. Rabe. First-Order Logic with Dependent Types. In N. Shankar
and U. Furbach, editors, Proceedings of the 3rd International Joint
Conference on Automated Reasoning, volume 4130 of Lecture Notes
in Computer Science, pages 377–391. Springer, 2006.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of
Vampire. AI Communications, 15:91–110, 2002.

[TB85] A. Trybulec and H. Blair. Computer assisted reasoning with Mizar.
In Proceedings of the 9th International Joint Conference on Artifi-
cial Intelligence, pages 26–28, Los Angeles, CA, 1985.

[Urb03] J. Urban. Translating Mizar for first-order theorem provers. In
MKM, pages 203–215, 2003.

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel,
E. Keen, C. Theobalt, and D. Topić. System description: SPASS
version 1.0.0. In Harald Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-
16), volume 1632 of Lecture Notes in Artificial Intelligence, pages
314–318, Trento, Italy, 1999. Springer.

16

