
CHAPITRE 2: OTHER OPTIMIZATION METHODS, EXAMPLE

OF MONOTONIC ALGORITHM

1. Introduction

In this chapter, we present other approaches to solve the optimization problem
associated to an optimal control problem, i.e., its optimality system. We briefly
describe the shooting method and detail a specific method, namely, the monotonic
algorithms, for which we prove the convergence.

2. Shooting method

In this section, we briefly present another approach to solve optimality systems.
Recall that in the case of the optimal control considered in Chapter 1, this ones
reads 

ẏ(t) = A(y(t), c(t))
y(t = 0) = yinit

ṗ(t) + ∂yA(y(t), c(t))T p(t) = 0
p(t = T ) = 2(y(T )− ycible)

2αc(t) + ∂cA(y(t), c(t))T p(t) = 0.

In the gradient methods considered in Chapter 1, the first two equations are solved
exactly forward and backward, respectively (in a discretized version), whereas a
fixed point iteration is applied on the last one. In shooting methods, one proceeds
in a very different way. One consider as an unknown p(t = 0), solve forward the
equations on y and p using c(t) = − 1

2α∂cA(y(t), c(t))T p(t) and iterate to solve
p(t = T ) = 2(y(T ) − ycible). The Newton method is generally used to design the
iteration.

3. Monotonic Algorithms

3.1. Idea of the Monotonic algorithms. Let us briefly present the monotonic
schemes in the simple case of ordinary differential equations (ODE). Let M,K be
three square matrices in Mm(R), α > 0 and T > 0. Consider the optimal control
problem corresponding to the minimization of the functional J defined by:

J(c) = −y(T ) · ytarget +
α

2

∫ T

0

c2(t)dt,

where ” · ” denotes the usual scalar product of Rm. Here, the state y : [0, T ]→ Rm
and the control c : [0, T ]→ R are linked by the ODE:{

ẏ(t) =
(
M + c(t)K

)
y(t), ∀t ∈ (0, T )

y(0) = yinit,

where the initial condition yinit being fixed.
Given two controls c and c′ and the corresponding states y and y′, we first note
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that:

J(c′)− J(c) = −
(
y′(T )− y(T )

)
· ytarget

+
α

2

∫ T

0

(
c′(t)− c(t)

)
(c(t) + c(t)

)
dt.

We then introduce an auxiliary function p : [0, T ]→ Rm associated to y and c by{
p′(t) = −

(
M∗ + c(t)K∗

)
p(t),

p(T ) = −ytarget,
where M∗ and K∗ are the transposed matrices of M and K.
Focusing on the first term of the right hand side of this equation, we get:

−
(
y′(T )− y(T )

)
· ytarget =

∫ T

0

(
c′(t)− c(t)

)
Ky′(t) · p(t)dt.

Thus, we finally obtain:

J(c′)− J(c) =
α

2

∫ T

0

(
c′(t)− c(t)

)( 2

α
Ky′(t) · p(t) + c′(t) + c(t)

)
dt.

A simple way to guarantee that c′ gives a functional value lower than c, consists in
imposing that:

(1)
(
c′(t)− c(t)

)( 2

α
Ky′(t) · p(t) + c′(t) + c(t)

)
≤ 0.

Following this approach, the sequence (ck)k∈N defined iteratively by the implicit
equation

ck+1(t)− ck(t) = −λ
(

2

α
Kyk+1(t) · pk(t) + (ck+1(t) + ck(t))

)
where yk+1 and pk correspond to ck+1 and ck respectively, optimizes J monotoni-
cally since

J(ck+1)− J(ck) = −α
λ

∫ T

0

(
ck+1(t)− ck(t)

)2
dt ≤ 0.

3.2. Discretized monotonic schemes. We now focus on a finite dimensional
Schrödinger equation which reads:

(2)

{
ẏ(t) = i

(
A+ c(t)B

)
y(t), ∀t ∈ (0, T )

y(0) = yinit

the initial condition yinit being fixed. It can easily been shown that if the solution
exists, it satisfies ‖y(t)‖2 = ‖yinit‖2.

Remarque 1. In infinite dimensional setting, the Schrödinger equation is given
by

i∂ty(x, t)− [H − µ(x)c(t)]y(x, t) = 0,

for which we also have ‖y(t)‖2 = ‖yinit‖2. This equation governs the evolution of a
quantum system, described by its wave function y, that interacts with a laser pulse
of amplitude c, the control variable. The factor µ is the dipole moment operator of
the system. In what follows, H = −∆ + V where ∆ is the Laplacian operator and
V = V (x) the electrostatic potential in which the system evolves.



In this part, for any prescribed sequences c, c′, the approximations of the state
y and the adjoint state p are thus defined by the semi-discretized propagation
equations:

 yn+1 = eiA∆T eicnB∆T yn

y0 = yinit,
(3)

Recall that this discretization of (2) preserves the L2-norm of the propagated vec-
tors, which means:

(4) ∀n = 0, . . . , N, ‖yn‖2 = ‖yinit‖2 = 1.

We consider the following time discretization of the discrete cost functional:

J∆T (c) = −Re < yN , ytarget > +α∆T

N−1∑
n=0

|cn|2.

Let us also introduce norms on RN corresponding to the time discretization:

‖c‖1 = ∆T

N−1∑
n=0

|cn|, ‖c‖2 =
(

∆T

N−1∑
n=0

|cn|2
) 1

2

.

Note that the inner product associated with the norm ‖.‖2 is defined by :

c.c′ = ∆T

N−1∑
n=0

cn c
′
n.

3.3. Definition of the schemes. A computation of the variation in the cost func-
tional values similar to the one done in Section 3.1 leads to:

J∆T (ck+1)−J∆T (ck) =
α

2
∆T

N−1∑
n=0

(ck+1
n −ckn)

(
ck+1
n + ckn +

2

α
Re(< iB̃(ck+1

n , ckn)yk+1
n , pkn >)

)
,

where

B̃(ck+1
n , ckn) =

exp(i(ck+1
n − ckn)B∆T )− Id
i(ck+1

n − ckn)∆T
.

Remarque 2. At this step, we can already use this equation to debug our code:
one can indeed compute independently both sides of the identity and check that they
gives the same result.

This function is an approximation of µ inasmuch as:

(5) ‖B̃(h)−B‖∗ ≤ ∆T‖B‖2∗|h|,

which can be obtained by the mean value inequality.Given initial control fields c0

and the associated state y0 and adjoint state p0, suppose that for some k ≥ 1, yk−1,
pk−1, ck−1 are known. The computation of yk, pk, ck is achieved as follows:





ykn+1 = eiA∆T eic
k
nB∆T ykn

ckn = (1− δ)ck−1
n + δ

(
− 1
αRe < iB̃(ckn, c

k−1
n )ykn, p

k−1
n >

)
yk0 = yinit,

(6)

 pkn = e−ic
k
nB∆T e−iA∆T pkn+1

pkN = −ytarget.
(7)

This scheme is design in such a way that

ck+1
n − ckn = −λ

(
ck+1
n + ckn +

2

α
Re(< iB̃(ck+1

n , ckn)yk+1
n , pkn >)

)
meaning that

(8) J∆T (ck+1)− J∆T (ck) = − α

2λ
∆T

N−1∑
n=0

(ck+1
n − ckn)2,

with λ = δ
2−δ , i.e., δ = 2λ

1+λ . Subsequently, the initial value c0 of the monotonic

schemes is considered fixed. A first property of (ck)k∈N defined in (6) is that this
sequences is bounded. Indeed, the following result can be proved by induction.

Lemme 1. Assume that ‖B‖ < +∞. Given an initial field c0, let us defined M
by:

(9) M = max(‖c0‖∞,max(1,
δ

2− δ
)
‖B‖∗
α

).

The sequence (ck)k∈N are well defined and match the following conditions:

(10) ∀k ∈ N, ∀n = 0, . . . , N − 1, |ckn| ≤M.

Proof. Suppose that (6) and (7) admit solution ck+1
n ; let us prove (10). First, the

mean value inequality yields:

(11) ∀x, y ∈ R,
‖eB(x−y)i∆T − Id‖∗

|x− y|∆T
≤ ‖B‖,

from which we deduce that ‖B?‖∗ ≤ ‖B‖ from the definition (13). Secondly,
because of (6) and (7), we have

‖ykn+1‖2 = ‖yinit‖2 = 1, ‖pk−1
n ‖2 = ‖ytarget‖2 = 1.

Thanks to the Cauchy-Schwartz inequality, Inequality (11) and the definition of B̃
give:

∀y, p ∈ Rm, ‖y‖2 = ‖p‖2 = 1, c, c′ ∈ R| < iB̃(c, c′)y, p > | ≤ ‖B‖
α

.

Assume |ckn| ≤M has been obtained, then:

(12) |ck+1
n | ≤ |1− δ|M + δ

‖B‖
α

.



If δ ≤ 1, then M = ‖B‖
α and |ckn| ≤ |1 − δ|M + δM = M , otherwise M = δ

2−δ
‖B‖
α

and in this case |ckn| ≤ |1− δ|M + δ 2−δ
δ M = (δ− 1)M + (2− δ)M = M , which ends

the proof of (10) by induction.

Given a field ck, (10)implies that f : x 7→ (1−δ)ckn+δ 2
αRe(− < iB̃(x, ckn)yk+1

n , pkn >
) maps the interval [−M,M ]. The intermediate value theorem states that there ex-
ists a fixed-point for f in [−M,M ]. �

Identity (8), combined with (10) leads to the following result.

Theorem 1. The implicit schemes (6)–(7) ensure the monotonic convergence of
the cost functional J∆T insofar as there exists lc0 such that:

lim
k→+∞

J∆T (ck) = `c0 .

Proof. Because of (8), the sequence (J∆T (εk))k∈N is monotonically decreasing. By
means of (10), we know that:

∀k ∈ N, J∆T (ck) ≥ −1,

hence the existence of `c0 . �

We keep the notation `c0 in the sequel.

3.4. Cauchy property of the monotonic sequences. We will now prove the
convergence of sequence (ck)k∈N.

Theorem 2. Sequence (ck)k∈N defined by (6)–(7) converges towards a critical point
of J∆T .

In order to prove this result, let us define the shifted cost functional:

J̃∆T (c) = J∆T (c)− `c0 .

In case there exists k1 such that J̃∆T (ck1) = 0, the monotonicity of the algorithm
implies that J∆T (ck1) = J∆T (ck1+1) = J∆T (ck1+2) = . . . and according to (8) the

sequence (ck)k∈N is constant for k ≥ k1. We then assume that J̃∆T (ck) 6= 0 for all
k ∈ N.
The proof follows from the next sequence of inequalities, that holds for all k ≥ k0,

for some k0 ∈ N, θ̃ ∈ (0, 1/2], κ̃ > 0, ν > 0:

(J̃∆T (ck))θ̃ − (J̃∆T (ck+1))θ̃ ≥ θ̃

(J̃∆T (ck))1−θ̃

(
J∆T (ck)− J∆T (ck+1)

)
≥ θ̃α

2λ(J̃∆T (ck))1−θ̃
‖ck+1 − ck‖22(13)

≥ κ̃θ̃α

λ‖∇J∆T (ck)‖1
‖ck+1 − ck‖22(14)

≥ κ̃θ̃α

λν
‖ck+1 − ck‖2.(15)



Given q ∈ N, Inequality (15) leads to:

(J̃∆T (ck))θ̃ − (J̃∆T (ck+q))θ̃ ≥ κ̃θ̃α

λ

k+q−1∑
l=k

‖cl+1 − cl‖2

≥ κ̃θ̃α

λν
‖ck+q − ck‖2.

Since
(
(J̃∆T (ck))θ̃

)
k∈N is a Cauchy sequence, we conclude that the sequence (ck)k∈N

is also Cauchy.
Let us explain each of the previous inequalities. The first one just follows from the

concavity of x 7→ xθ̃. Inequality (13) follows from (8). Inequality (14) follows from
the so-called  Lojasiewicz inequality which in our case reads

(16) d(c, Cc0) < σ̃, ‖∇J∆T (c)‖1 ≥ κ̃|J̃∆T (c)|1−θ̃,
where Cc0 is the limit points set of the sequence (ck)k∈N. The proof that d(ck, Cc0)→
0 and of (16) is given in Appendix. Finally, Inequality (15) follows from the next
lemma:

Lemme 2. The gradient of J∆T is then given by:

(17) ∇J∆T (c) · δc = ∆T

N−1∑
n=0

(Re < iByn, pn > +αcn)δcn,

where y and p are associated with c. Moreover, there exists ν ≥ 0 such that:

(18) ‖∇J∆T (ck)‖1 ≤ ν(‖ck+ − ck‖2).

Proof. Equation (17) follows from the results of Chapter 1. Let us focus on one
coefficient of ∇J∆T (ck), we find:

Re < iBykn, p
k
n > +αckn = Re < iB̃(ck+1

n − ckn)yk+1
n , pkn > +αckn

+Re < i(B − B̃(ck+1
n − ckn))yk+1

n , pkn >

−Re < iB(yk+1
n − ykn), pkn > .(19)

Let us estimate each term of this decomposition. Definition (6) of the algorithm
implies that:

(20) Re < iB̃(ck+1
n − ckn)ykn, p

k−1
n > +αckn = −α

δ
(ck+1
n − ckn).

Then, thanks to (5), we obtain:

(21) Re < i(B − B̃(ck+1
n − ckn))yk+1

n , pkn >≤ ∆T‖B‖2∗|ck+1
n − ckn|.

The last term is estimated by a discrete Gronwall inequality as follows:

yk+1
n+1 − ykn+1 =eiA∆T

(
ei(c

k+1
n −ckn)B∆T − Id

)
eic

k
nB∆T yk+1

n

+ eiA∆T eic
k
nB∆T (yk+1

n − ykn),

which gives, thanks to (11) and the fact that the matrices involved are unitary:

‖yk+1
n+1 − ykn+1‖2 ≤ |ck+1

n − ckn|‖B‖∗∆T + ‖yk+1
n − ykn‖2.

Using that ‖pkN − p
k−1
N ‖2 = 0, we get

‖yk+1
n − ykn‖2 ≤ ‖ck+1 − ck‖1‖B‖∗.



We then obtain (18) with

ν =
α

δ
+ (T + ∆T )‖B‖2∗.

�

4. To go further

The greater part of this lecture is inspired from

J. Salomon, ”Convergence of the time-discretized monotonic schemes”, ESAIM
Math. Model. Numer. Anal., pp. 77–93 (2007).

To see other convergence analysis based on the  Lojasiewicz inequality, we refer
to:

• J. Bolte and H. Attouch, ”On the convergence of the proximal point
algorithm for nonsmooth functions involving analytic features”, Mathemat-
ical Programming volume 116, pp. 516(2009).
• A. Levitt, ”Convergence of gradient-based algorithms for the Hartree-Fock

equations”, ESAIM Math. Model. Numer. Anal. 46.06 (2012).
• M. Lewin and S. Paul, ”A numerical perspective on Hartree-Fock-Bogoliubov

theory”, ESAIM: M2AN, 48(1):53–86, (2014).
• E. Cancès, V. Ehrlacher and T. Lelièvre, ”Greedy algorithms for

highdimensional eigenvalue problems”, Constr. Approx. 40, pp. 387–423
(2014).

Appendix

The previous computations allows us to define set C of the critical points of J∆T :

(22) C =
{
c/ ∀n = 0, . . . , N − 1, Re < iByn, pn > +αcn = 0

}
,

4.1. Critical points and limit points. We first establish a relation between C
and Cc0 .

Lemme 3. Keeping the previous notations:

Cc0 ⊂ C,

where C is the set of critical points, defined by (22).

Proof. : Consider a convergent subsequence (ck`)`∈N of (ck)k∈N and its limit c∞.
Denote by yc

∞
and pc

∞
the corresponding state and adjoint state. By means of

continuity and since ‖ck` − ck`−1‖2 → 0 (see (8)), we find the following limits:

ck`−1 → c∞,

B∗(ck`n − ck`−1
n ) → B,

yk` → yc
∞
,

pk`−1 → pc
∞
.

When n tends to +∞, Equation (6) becomes:

∀j = 0, . . . , N − 1, c∞n = − 1

α
Re < iByn, pn >,

which is the desired conclusion. �



Thanks to (10), a standard argument of compactness shows that:

(23) d(ck, Cc0)→ 0,

where d(ck, Cc0) is the distance associated to ‖.‖2 between ck and set Cc0 . Further-
more, Equation (8) then implies:

(24) J∆T (Cc0) = `c0 .

Finally, note that since C is compact (see (22)), Cc0 is also compact.

4.2.  Lojasiewicz inequality. The  Lojasiewicz inequality enables us to estimate
the variation in an analytic function by its gradient. This result is detailed in the
next theorem.

Theorem 3 ( Lojasiewicz inequality). Let Γ : RN → R be an analytic function in
a neighborhood of a point a in RN . Then there exists σ > 0 and 0 < θ ≤ 1

2 such
that:

∀x ∈ RN , x ∈ B(a, σ) ‖∇Γ(x)‖ ≥ |Γ(x)− Γ(a)|1−θ,
where B(a, σ) denotes the ball centered in a with a radius equal to σ, ‖.‖ is a norm
on RN .

The real number θ is called a  Lojasiewicz exponent of a. A more precise result
can be obtained if the Hessian matrix of Γ, denoted by HΓ(a), is invertible.

Lemme 4. Suppose that HΓ(a) is invertible, then there exists σ > 0 and κ > 0
such that:

∀x ∈ RN , x ∈ B(a, σ) ‖∇Γ(x)‖ ≥ κ|Γ(x)− Γ(a)| 12 .

It is easy to check that J̃∆T is analytic. Now, consider a in Cc0 . By means of

(24), we find that J̃∆T (a) = 0. Consequently, Theorem 3 ensures that there exist
0 < θa ≤ 1/2 and σa > 0 such that:

∀c ∈ RN , ‖c− a‖1 < σa ‖∇J∆T (c)‖1 ≥ |J̃∆T (c)|1−θa .

The compactness of Cc0 enables us to extract from the set {B(a, σa

2 ), a ∈ Cc0} a

set Fc0 = ∪i∈IB(ai,
σai

2 ), where I is a finite set of indexes such that:

Cc0 ⊂ Fc0 .

Let us denote by θ′ ∈]0, 1/2], the lower bound of {θai}i∈I and by σ′, the lower
bound of {σai

2 }i∈I . Given c such that d(c, Cc0) < σ′, there exists ic such that
c ∈ B(aic , σaic ) and we come to the following version of Theorem 3:

Lemme 5. Keeping the above notations:

∀c ∈ RN , d(c, Cc0) < σ′, ‖∇J∆T (c)‖1 ≥ |J̃∆T (c)|1−θ
′
.

In case HJ∆T
is invertible on Cc0 , a similar analysis can be led to obtain the

corresponding version of Lemma 4.

Lemme 6. Suppose that HJ∆T
(c) is invertible for all c ∈ Cc0 ,

∃σ′′ > 0,∃κ′ > 0,∀c ∈ RN , d(c, Cc0) < σ′′, ‖∇J∆T (c)‖1 ≥ κ′|J̃∆T (c)| 12 .



Summarizing the above mentioned results, we have obtained that there exist

σ̃ > 0, κ̃ > 0 and θ̃ ∈]0, 1
2 ] such that:

d(c, Cc0) < σ̃, ‖∇J∆T (c)‖1 ≥ κ̃|J̃∆T (c)|1−θ̃,

with θ̃ = 1/2 when HJ∆T
(c) is invertible.


