Examen - Introduction au calcul scientifique et à l'analyse numérique- Année 2020-2021

Justify EACH answer.

Exercise 1. Finite elements

We consider the elliptic problem on $\Omega=(0,1)$.

$$
\begin{aligned}
-u^{\prime \prime} & =f \text { on }(0,1) \\
u(0) & =0 \\
u^{\prime}(1) & =1
\end{aligned}
$$

Part 1 : functional analysis

1. To which boudary conditions correspond this problem?
2. Explain how to get a weak formulation, and give this weak formulation.
3. Which functional space fits with the weak formulation?

Part 2 : finite elements In order to solve this system numerically, we use the finite element described as follows

- we choose as a mesh the points $x_{i}=\frac{i}{N}$ for $i=0, \cdots, N$,
- on an element $\left[x_{i}, x_{i+1}\right]$, we choose the nodal points x_{i}, x_{i+1},
- we choose as a fintie element space P_{1}, i.e. piecewise affine functions,

1. Give a variational formulation of the problem.
2. Give an example of basis obtained when using P_{1} (Give an explicit formula to define an arbitrary element of this basis).
3. Describe a linear system obtained with this method (Write the coefficient with integral, that will not be computed at this step).

Exercise 2. Optimal Control

Given $t \mapsto y(t)$ a real valued function $\forall t \in[0, T], y(t) \in \mathbb{R}$, consider the optimal control problem :

Find $c \in L^{2}(0, T)$ minimizing

$$
J(c)=\frac{1}{2}\left|y(T)-y_{c i b l e}\right|^{2}+\frac{\alpha}{2} \int_{0}^{T} c^{2}(t) d t,
$$

under te constraint

$$
\begin{aligned}
y^{\prime}(t)-c(t) \exp (-y(t)) & =0, \\
y(t=0) & =0 .
\end{aligned}
$$

wher the parameters T, α and $y_{\text {cible }}$ are supposed to be known. We assume that $y_{\text {cible }}>0$.

1. Give the Lagrangian $\mathcal{L}(y, c, p)$ of the system.
2. Give the optimality conditions, i.e. the equation corresponding to :
(a) $\partial_{p} \mathcal{L}(y, c, p)=0, \forall t \in[0, T]$.
(b) $\partial_{y} \mathcal{L}(y, c, p)=0, \forall t \in[0, T]$.
(c) $\partial_{y(T)} \mathcal{L}(y, c, p)=0$
(d) $\partial_{c} \mathcal{L}(y, c, p)=0, \forall t \in[0, T]$.
3. Suppose that the optimality system has a solution that we denote by (y, p, c). The following questions aims at solving explictely the solution of our problem. We denote by \log the natural logarithm, i.e., the function such that $\exp (\log (x))=x$ for all $x \in \mathbb{R}$.
(a) Denote by d the primitive ${ }^{1}$ function c which cancels in $t=0$. Explain why $d>-1$ and show that

$$
y(t)=\ln (1+d(t))
$$

where
(b) Show that there exists a constant $\kappa \in \mathbb{R}$ such that

$$
p(t)=\kappa(d(t)+1), \forall t \in[0, T] .
$$

(c) Deduce from the previous results that the optimal control c is constant.
(d) Which equation satisfies κ ?
(e) Discuss the number of solutions of this equation.

Exercise 3. Reduced basis

Given an Hilbert space H, consider a variational problem :
find $u^{\star} \in H$ such that

$$
a\left(u^{\star}, v\right)=f(v), \forall v \in H .
$$

We assume that a and f statisfy the assumption of the Lax-Milgram Theorem. We denote by α and γ the coercivity constants associated with a.
Consider goal-oriented application, where only a scalar function $\ell\left(u^{\star}\right)$, is actually important. We assume linear dependence between u^{\star} and this quantity of interest, i.e. ℓ is assumed to be linear. Consider now $u \in H$ and introduce the residual

$$
\begin{equation*}
r(v)=a(u, v)-f(v), \forall v \in H \tag{1}
\end{equation*}
$$

We want to investigate approximations of $\ell\left(u^{\star}\right)$ by introducing a mapping $\varphi(r)=\ell(u)$, where u and r are connected by (1), seen as a constraint equation.

Part 1 : results on φ

1. Show that φ is well-defined as a function of r, i.e., prove that if r is fixed, then, $\ell(u)$ is uniquely defined.
2. Show that

$$
\begin{equation*}
\varphi(r)=\varphi(0)+\varphi^{\prime}(0) \cdot r \tag{2}
\end{equation*}
$$

3. Show that $\varphi(0)=\ell\left(u^{\star}\right)$.
[^0]
Part 2: Lagrangian

Since $\varphi(r)=\ell(u)$ and $\varphi(0)=\ell\left(u^{\star}\right)$, it remains to compute $\varphi^{\prime}(0)$ by standard adjoint methods. Introduce the Lagrangian

$$
\mathcal{L}(r, u, p)=\ell(u)-(\langle p, r\rangle-a(u, p)+f(p)) .
$$

1. Show that $\partial_{u} \mathcal{L}(r, u, p)=0$ can be writen in the variational form :

$$
\ell(v)=-a(v, p) \quad \forall v \in H .
$$

2. Show that $\varphi^{\prime}(0)=\partial_{r} \mathcal{L}\left(r, u, p_{0}\right)=-p_{0}$, where u, p_{0} are such that $\partial_{u} \mathcal{L}\left(r, u, p_{0}\right)=0$ and $\partial_{p_{0}} \mathcal{L}\left(r, u, p_{0}\right)=0$.
3. Using Eq. (2) show that:

$$
\ell(u)=\ell\left(u^{\star}\right)+r\left(p_{0}\right) .
$$

4. Given now an arbitrary $p \in H$, show that :

$$
\ell\left(u^{\star}\right)=\ell(u)-r(p)+r\left(p-p_{0}\right) .
$$

Part 3: Duality

The quantity $p-p_{0}$ can be expressed (or at least, estimated) in an a posteriori way, that is without using p_{0}. In this way, we introduce the dual residual

$$
r^{\text {dual }}(v):=\ell(v)-a(v, p)
$$

1. Show that

$$
r^{\text {dual }}(v)=a\left(v, p_{0}-p\right)
$$

2. Deduce that

$$
\alpha\left\|p_{0}-p\right\| \leqslant\left\|r^{\text {dual }}\right\| \leqslant \gamma\left\|p_{0}-p\right\|
$$

where α and γ are the coercivity and continuity constants associated with a.
3. Show that

$$
\left\|\ell\left(u^{\star}\right)-(\ell(u)-r(p))\right\| \leqslant \frac{\|r\| \cdot\left\|r^{d u a l}\right\|}{\alpha} .
$$

4. What is the interest of this result?

[^0]: 1. meaning that the derivative of d is c
