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Abstract: The numerical simulation of laser control of molecular systems has made
an important step forward by the introduction of algorithms that are guaranteed
to improve at each step the cost functional that describes the required control
objectives. Nevertheless, after discretization in time, the users may have to deal
with instabilities that lead them to stop the simulation indeed with an improved
cost functional but before convergence may be reached. In this paper we explain
the reasons for such instabilities and propose discrete algorithms that avoid this
problem.
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1. INTRODUCTION

The numerical simulation of the control of molecu-
lar systems by a laser has made an important step
forward by the introduction by Zhu & Rabitz (Zhu
and Rabitz, 1998) and by Tannor (following Kro-
tov) (Tannor et al., 1992) of monotonically conver-
gent algorithms. These algorithms are guaran-

teed to improve at each step a cost functional that
describes the required control objectives. This has
permitted to reduce the overall cost of the nu-
merical simulation. Even though this approach is
still limited to systems of very small size with
respect to other approaches (among which lies the
successful implementation of the closed loop labo-

ratory learning techniques (Levis et al., 2001; As-
sion et al., 1998; Bergt et al., 1999; Weinacht et

al., 1999; Bardeen et al., 1998)) the discovery of
this class of algorithms impulsionned much the
early simulations on quantum control that were
formerly dependent on the nonlinear conjugate
gradient algorithm that displayed poor conver-
gence properties for this highly nonlinear non-
convex cost functional.

In a recent paper two of us have presented a uni-
fied framework that comprises both approaches
of Krotov and Zhu & Rabitz as particular cases
and allows to propose a larger class of mono-
tonically convergent algorithms. Nevertheless, the



actual implementation of these algorithms may
exhibit nonconverging sequences. The monotonic-
ity of these algorithms is indeed proved on the
continuous in time and space system but the dis-
cretization required for real implementations has
not been analyzed yet. The combination of the
algorithm and the discretization actually can (and
indeed does) affect the nice feature that is valid on
the continuous optimization problem and is also
noticed during the first few iterations.

This note aims at explaining the reasons of the
instabilities and also proposes ways to cure them
by defining appropriate discrete versions of the
algorithm.

2. QUANTUM CONTROL SETTING AND
OPTIMAL CONTROL EQUATIONS

Consider a quantum system whose evolution is de-
scribed by the time-dependent Schrödinger equa-
tion (with h̄ = 1)

{

i
∂

∂t
Ψ(x, t) = H0Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x)
(1)

where H0 is the internal Hamiltonian and Ψ0(x)
the initial state (x denotes the relevant spatial co-
ordinates). The interaction that allows to control
the system will be described by a dipol moment
operator µ(x) and a time-varying external field
amplitude ε(t) ∈ IR giving thus rise to the follow-
ing equations

{

i
∂

∂t
Ψ(x, t) = (H0 − ε(t)µ)Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x)
(2)

We will denote the new Hamiltonian by H = H0−
ε(t)µ.

In the absence of constructive information about
the structure of ε(t) that realize the control goals
at the final time t = T it is standard to recast the
problem as a maximization of a cost functional
J(ε) :

J(ε) = 〈Ψ(T )|O|Ψ(T )〉 − α

T
∫

0

ε2(s)ds (3)

where O is an observable operator that describes
the target (larger the value 〈Ψ(T )|O|Ψ(T )〉 better
the objectives have been met; we have introduced
the notation < Ψ|O|χ >=

∫

IRN Ψ̄O(χ)). Note

the presence of the penalization term −α
∫ T

0
ε2(s)

that forbids too large values of the fluence (α >

0 is a parameter but it may also depend on
time (Hornung et al., 2001)). Of course, in gen-
eral attaining the maximal possible value of

〈Ψ(T )|O|Ψ(T )〉 is at the price of a large laser

fluence
∫ T

0
ε2(s)ds ; The maximization of the cost

functional J(ε) is realized by solving the Euler-
Lagrange critical point equations; a standard way
to write these equations is to introduce an ad-
joint state χ(x, t) (used as a Lagrange multiplier).
The following critical point equations are thus
obtained (Zhu and Rabitz, 1998):

{

i
∂

∂t
Ψ(x, t) = (H0 − ε(t)µ)Ψ(x, t)

Ψ(x, t = 0) = Ψ0(x)
(4)

where the control field satisfies

αε = −Im〈χ|µ|Ψ〉(t) (5)

and χ is the adjoint state defined by the backward
scheme

{

i
∂

∂t
χ(x, t) = (H0 − ε(t)µ)χ(x, t)

χ(x, t = T ) = OΨ(x, T )
(6)

3. DEFINITION OF A CLASS OF
MONOTONICALLY CONVERGENT

ALGORITHMS

Krotov’s and Zhu & Rabitz’ scheme enter in the
more general class of iterative schemes that are
built from (4), (5), (6) and read:







i
∂Ψk

∂t
= (H0 + V − εkµ)Ψk

Ψk(x, t = 0) = Ψ0(x)
(7)

with :

εk = (1− δ)ε̃k−1 −
δ

α
Im < χk−1|µ|Ψk > (8)

and






i
∂χk

∂t
= (H0 + V − ε̃kµ)χk

χk(x, t = T ) = OΨk(x, T )
(9)

with :

ε̃k = (1− η)εk −
η

α
Im < χk|µ|Ψk > . (10)

They have been introduced and analyzed in
(Maday and Turinici, 2002). Krotov’s scheme is
obtained with δ = 1 and η = 0 while Zhu &
Rabitz’ scheme corresponds to δ = 1 and η = 1.
These algorithms are monotonically convergent
provided that δ and η are chosen in [0, 2] as is
precised in the following

Theorem 1. Suppose O is a self-adjoint semi-
positive definite observable. Then for any η, δ ∈
[0, 2] the algorithm given in Eqn. (7, 9) converges
monotonically in the sense that J(εk+1) ≥ J(εk)



4. DEFINITION OF A CLASS OF
SEMI-DISCRETE MONOTONICALLY

CONVERGENT ALGORITHMS

4.1 Norm preserving schemes

Our interest now is to propose a proper definition
for the discretization in time of the previous
algorithm. There are many ways for defining such
discretizations but the first thing that has to
be in mind is that the final scheme has to be
norm preserving. Indeed it is well known that the
solution of equation (2) satisfies

∫

IR
|Ψ|2(x, t)dx =

∫

IR
|Ψ0|2(x)dx

In order to satisfy this norm conservation, clas-
sically one uses exponential evolution schemes.
These schemes start from the definition of discrete
time steps tj = j∆T , j = 1, .., N and proceed by
proposing a second order approximations for the
solution of (2) : Ψj ' Ψ(tj) iteratively defined by











Ψj+1 = e
H0∆T

2i e
V−µεj

i
∆T e

H0∆T

2i Ψj

Ψ0 = Ψ0

where εj is (or an approximation of) the value of
ε at time tj .

4.2 A first definition of the fields

Here εj is not known and have to be defined
iteratively. Following (8, 10) we propose to set εk

j

and ε̃k
j−1 by

εk
j = (1− δ)ε̃k−1

j

−
δ

α
Im < e

H0∆T

2i χk−1
j |µk

j |e
−
H0∆T

2i Ψk
j+1 >(11)

where

µk
j =

i
(

e
−V+µε̃

k−1
j

i
∆T − e

−V+µεk
j

i
∆T

)

∆T (ε̃k−1
j − εk

j )

and

ε̃k
j−1 = (1− η)εk

j−1

−
η

α
Im < e

H0∆T

2i χk
j−1|µ̃

k
j |e

−
H0∆T

2i Ψk
j >(12)

where

µ̃k
j =

i
(

e
−V+µε̃k

j−1
i

∆T − e
−V+µεk

j−1
i

∆T
)

∆T (ε̃k
j−1 − εk

j−1)

The associated discrete evolution equations for
the states (direct and adjoint) are











Ψk
j+1 = e

H0∆T

2i e
V−µεj

i
∆T e

H0∆T

2i Ψk
j

Ψk
0 = Ψ0

(13)

and










χk
j−1 = e−

H0∆T

2i e
−V+µε̃j−1

i
∆T e−

H0∆T

2i χk
j

χk
N = OΨk

N

(14)

We are now able to state, on this semi-discrete
scheme that, under the same hypothesis as in the
Theorem, the discrete quantity

J∆T (ε) = 〈ΨN |O|ΨN 〉 − α

N−1
∑

j=0

ε2j (15)

verifies J∆T (ε
k+1) ≥ J∆T (ε

k)

4.3 A remark on the solution procedure

It has to be noticed that the previous scheme is of
implicit type. Currently we have not found any
explicit scheme that is monotonic. For implicit
schemes, in particular, it has to be verified that
there exists at least (and preferably also at most)
one solution εk

j to (11) and similarly for (12). In
order to do so we use a fixed point theorem, either
of Brower 1 type of more simply of Picard type.
Actually this latter approach is constructive and
allows to propose at least one iterative procedure
to compute εk

j . It is indeed the fixed point of the
function f defined by

f(x) = (1− δ)ε̃k−1
j

−
δ

α
Im < e

H0∆T

2i χk−1
j |µ(x)|e

H0∆T

2i Ψk
j > .(16)

where

µ(x) =
i
(

e
µ(ε̃

k−1
j

−x)

i
∆T − 1

)

∆T (ε̃k−1
j − x)

It can be proved that this function is a contraction
provided that

δ

α
‖O‖∞‖µ‖

2
∞∆T < 1

Note also that a Newton procedure can be pro-
posed the convergence of which is faster than the
Picard iterations.

5. ABOUT THE FULL DISCRETIZATION

The actual implementation of the monotonic al-
gorithm involves a last step : the spacial dis-
cretization. The easiest way consists in working
in Fourier frame and use the F.F.T. algorithm

1 It is important to note that the fields ε are thus,

proved to be bounded for any k and j. In addition to the

monotonic character of the algorithm, this allows to prove

the convergence of the algorithm



to travel between the Fourier coefficient space
(coefficients with indices between −M and M)
known as the spectral space and the physical space
(values of the functions at 2M + 1 equidistant
points) with a M log(M) complexity. The interest
of this approach is first its important accuracy
and also the simplification to evaluate the effect of

the 3 operators e
H0∆T

2i , e
V−µεj

i
∆T and e

H0∆T

2i that
appear in (13). Indeed the first and last operators
have a trivial expression in the Fourier space,
while the second is trivial in the physical space.

The difficulty with this approach is that the use
of the Fourier transformation from the physical
space into the spectral space assumes that the

result of e
V−µεj

i
∆T e

H0∆T

2i Ψk
j is a trigonometric

series with indices between −M and M . This is
false and thus the use of the Fourier transform is
done on the interpolation of the function onto the
2M + 1 equidistant points. This approximation
has to be taken into account and we were not
able to prove the monotonicity of the algorithm
if such an interpolation procedure is employed
due to the unboundedness of the interpolation
operator in the L2– norm. On the contrary, the
use of the projection operator, that consists in
using the truncated series (between −M and M)
is coherent with the other steps in the algorithm
and maintains the monotonicity. The projection
is slightly more expensive than the interpolation
but can be adequately approximated by high
order interpolation, i.e. the use of an interpolation
operator but on 5 (say) time the number of points.
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