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Motivated by a mean ¯eld games stylized model for the choice of technologies (with externalities

and economy of scale), we consider the associated optimization problem and prove an existence

result. To complement the theoretical result, we introduce a monotonic algorithm to ¯nd the
mean ¯eld equilibria. We close with some numerical results, including the multiplicity of equi-

libria describing the possibility of a technological transition.
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1. Introduction

The mean ¯eld games (hereafter MFG), introduced recently by Jean-Michel Lasry

and Pierre-Louis Lions (Refs. 12�14), appear to be well adapted to economic

modeling.

While in standard game theory there are a ¯nite number of players, MFG studies

the behavior of a continuum of agents.

Over a ¯nite time horizon T, each rational player minimizes a criterion:

E

Z T

0

LðXt; �tÞ þ V ½m�ðXtÞdt
� �

;

over all eligible controls �t. The state of a generic player is XðtÞ (also denoted Xt),

which is a di®usion process governed by the controlled stochastic di®erential equation

dXt ¼ �dWt þ �tdt, starting at X0 ¼ x0. Here Wt is a Brownian motion, L is a cost
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for changing states, and V relates to the state cost. All players solve the same sto-

chastic control problem but di®er in their initial characteristic x0 distributed under a

given probability measure m0.

The criterion depends on the population density m and this dependence models

the interactions between players but re°ects the insigni¯cance of the individual

in°uence (the agent is atomized in the economy). This aspect will also be used to

introduce a scale e®ect and externalities. Each player chooses a rational strategy taking

into account its ownparameters butmore especially the global distribution of agentsm.

Mathematically, a mean ¯eld equilibrium (i.e. Nash point for an in¯nite number of

players), leads to a PDE system coupling an Hamilton�Jacobi�Bellman equation

and a Kolmogorov equation (see Ref. 14):

@tm� �2

2
�mþ divð�@pHðx;rvÞmÞ ¼ 0;

@tvþ
�2

2
�v�Hðx;rvÞ ¼ �V ½m�;

8>><
>>: ð1:1Þ

where H is the Legendre transform of L (see more details in Sec. 2.5). The MFG are

suitable to describe large systems e.g. population dynamics (Ref. 11), group inter-

actions, etc., in a stylized mathematical way amenable to numerical studies.

In this paper we focus on an application of MFG. The model enables us to design

and test an e±cient algorithm that ¯nds the corresponding optimal points. The

origins of the algorithm are in the ¯eld of quantum chemistry (see Refs. 16, 17 and 23).

We will proceed as follows: in Sec. 2 we present a model for the choice of insulation

technology of households. We de¯ne the optimization problem and prove an exist-

ence result using a penalized problem. Then we introduce Eq. (1.1) using the optimal

control framework. Section 3 is devoted to numerical setting and to the description of

the algorithm. Finally, in Sec. 4, we show the e±ciency of our method on some

simulations. In particular, we obtain a result showing the bundling due to the positive

externality, and explore numerically the multiplicity of equilibria.

2. The Model

As mentioned before, our aim is not to give an exhaustive economic model, but to

document qualitative behaviors related to the MFG model and propose an adapted

numerical method. We choose to work in a continuous time setting, i.e. on the time

interval ½0;T � where the MFG gives a very convenient characterization of a dynamic

equilibrium. We look at a large economy and consider a continuum of consumer

agents. Each agent is a household arbitrating between heating or better insulating

their home. We next describe the modeling of the agents and their action.

2.1. The agents

Two important characteristics are assumed. First, any agent (household) owns

exactly one house and cannot move to another before the horizon T. Secondly, we
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consider that the households are anonymous (i.e. they have similar accommodations

and preferences) but possibly di®erent insulation levels. One of our goals is to ¯nd a

dynamic equilibrium when there is the possibility of a technological transition (from

energy consumption to insulation). Introducing externalities and economy of scale

impacts the strategy of the households. Intuitively, we deal with a model where two

particular behaviors are expected: either all agents continue heating their home or

they all decide to insulate it.

Thus, each agent is associated to an insulation level, denoted by x 2 ½0; 1�, which
fully characterizes her state. The null insulation level x ¼ 0 corresponds to a house

with only thin walls, whereas in the maximal insulation level x ¼ 1 all existing

technologies of insulation are used. The dynamics of the agent corresponds to the

following controlled process:

dXt ¼ �dWt þ �tdtþ dNtðXtÞ: ð2:1Þ
In this expression, the control variable is �t, which can be interpreted as the e®ort

required to insulate. The agent optimizes its cost (described in the next section) with

respect to �t. The term Wt is a standard real-valued Brownian motion centered in

zero. The multiplicative factor corresponding to Wt is the noise �, which is related to

the technological innovations and the climate (change of temperatures, storm, etc.);

� is assumed to be a datum of the model.

The variable Xt is a di®usion process with re°exion. In the above formula, the

re°exion part has been denoted by NtðXtÞ. In our model, this guarantees that

the process stays in ½0; 1�. We refer to Ref. 7 for additional details about this for-

mulation. The initial density of agents, denoted by m0, is given; it describes agents'

ownership of insulation material at t ¼ 0, and corresponds to the density of the initial

variable X0.

Remark 2.1. In what follows, we consider the evolution of the density of agents

mðt; :Þ for t 2 ½0;T �. We recall that for the di®usion process dYt ¼ �dWt þ �tdt in R,

with initial distribution m0, the evolution of the law of Yt follows the forward

Kolmogorov equation (see Ref. 9 for a proof):

@tm� �2

2
�mþ divð�mÞ ¼ 0 in R� ð0;T �; mð0; :Þ ¼ m0ð:Þ: ð2:2Þ

or, equivalently, for every test-function  :Z
R

 ðyÞmðt; yÞ dy ¼
Z
R

Eð ðY y
t ÞÞm0ðyÞ dy:

The re°exive part of process Xt leads to the same equation in ½0; 1� � ð0;T � with
homogeneous Neumann boundary conditionsm 0ðt; 0Þ ¼ m 0ðt; 1Þ ¼ 0 for all t 2 ð0;T Þ.
In other contexts this equation is also called the controlled Fokker�Planck equation.

We next model, through a cost functional to be minimized, how the agents control

their insulation level.
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2.2. The costs

In our model, any agent is assumed to minimize a cost functional composed of three

terms: the cost of acquiring insulation, the insulation maintenance cost and the

heating cost.

The cost of acquiring insulation is modeled as the cost to change the state that we

take quadratic in the control variable:

hð�tÞ :¼
�2

t

2
:

The second term is a state cost, namely the insulation maintenance cost:

gðt;x;mÞ :¼ c0x

c1 þ c2mðt;xÞ ;

with c0, c1 and c2 are some positive constants. In this setting, this term is increasing

with respect to x which means that the higher the insulation level, the higher is the

maintenance cost. On the other hand, it is decreasing with respect to the global

density of agents m. This property is related to two economical concepts: economy of

scale and positive externality. Basically, this term encourages the agents to do similar

choices: higher the number of players having chosen the same insulation level, lower

its cost.

Finally, the heating cost is taken into account by introducing the third term:

fðt;xÞ :¼ pðtÞð1� �xÞ:
In this de¯nition, � 2 ½0; 1� is given, and pðtÞ stands for the unit price of energy

(electricity, gas,…) that may depend on time; by unit we mean the price of energy for

a quantity needed to heat a not insulated house. Various forms of this price are

studied in the last section (simulations). The factor ð1� �xÞ is introduced to take

into account the discount rate of the heating price with respect to the insulation level.

Let us introduce the notation:

�ðmÞðtÞ :¼
Z 1

0
fðt;xÞ þ gðt;x;mÞ
� �

mðt;xÞdx:

The addition of these three costs will constitute the functional to be minimized, as

we will see in the next paragraph.

2.3. Minimization problem and MFG

We are now in the position to write the minimization problem we consider in this

paper. A ¯rst formulation is:

inf
�
E

Z T

0

hð�ðt;Xx
t ÞÞ þ V ½m�ðXx

t Þdt
� �

;

dXx
t ¼ �tdtþ �dWt þ dNtðXx

t Þ;
Xx

0 ¼ x;

8>>><
>>>:

ð2:3Þ
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V ¼ � 0 (see Ref. 13). For the sake of simplicity, we consider that there is no other

constraint on the control variable. This system corresponds to a Lagrangian for-

mulation, dealing with the microscopic scale (the agent). As mentioned in

Remark 2.1, it is standard to write the Eulerian formulation of the problem:

inf
�

Z T

0

Z 1

0

�ðt;xÞ2
2

mðt;xÞdxþ �ðmÞðtÞ
" #

dt;

@tm� �2

2
�mþ divð�mÞ ¼ 0; mð0; :Þ ¼ m0ð:Þ;

8>>>><
>>>>:

ð2:4Þ

with boundary conditions: m 0ð:; 0Þ ¼ m 0ð:; 1Þ ¼ 0; �ð:; 0Þ ¼ �ð:; 1Þ ¼ 0. Our work is

related to the optimal control of the forward Kolmogorov equation. In this model, the

agents are rational and they have rational expectations: in the minimization problem,

the households see mðt; :Þ as given for every t in ½0;T �. A solution of this problem will

present many similarities with an equilibrium with rational expectations.

Writing our problem as a MFG problem with a ¯nite horizon (as in Ref. 14) means

that the critical points of problem (2.4) correspond to mean ¯eld equilibria. As

recalled in the Introduction, these are approximations of Nash equilibria of a

N-player game, for large values of N. This tool enables one to handle a continuum of

agents, hence atomized in the economy. Consequently, there is no need to build a

representative agent. We consider all the agents, from the macroscopic point of view.

Before writing the critical point equations, we investigate the existence of a minimizer

for a penalized problem.

2.4. Existence

Let � be the space domain; we will consider as important cases ð0; 1Þ with Neumann

boundary conditions and the d-dimensional torus Td.

Let us de¯ne the time-space domain Q :¼ ½0;T � � �, a non-negative continuous

function � : Q� R ! Rþ, and the function:

� : Mac
b ðRþÞ � ½0;T � ! R

ðm; tÞ 7! �ðmÞðtÞ :¼
Z
�

�ðt;x;mðxÞÞdx;

where Mac
b ðRþÞ denotes the space of Borel measures supported on �, which are

absolutely continuous with respect to the Lebesgue measure. Note that � introduced

in Sec. 2.2 is a particular case of � above.

We refer the reader to Ref. 4 (Chap. XVIII, Sec. 4.4) for the precise functional

space setting. When � ¼ ð0; 1Þ with homogeneous Neumann boundary conditions

or when � ¼ Td we take V ¼ H 1ð�Þ. For mixed Dirichlet�Neumann or more

general boundary conditions the natural space V satis¯es H 1
0ð�Þ � V � H 1ð�Þ. In

all cases existence of a solution of the evolution problem is ensured for � 2
L1ð0;T ;W 1;1ð�ÞÞ. Denote W ð0;T Þ :¼ fu : u 2 L2ð0;T ;V Þ; dudt 2 L2ð0;T ;V 0Þg. One

can prove thatW ð0;T Þ is continuously included in C 0ð0;T ;L2ð�ÞÞ. We refer to Ref. 5

(Chap. 2, Sec. 5.5) for additional discussions on alternative functional settings.
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We are interested in the following minimization problem:

inf
�

Z T

0

Z
�

j�ðt;xÞj2mðt;xÞdxþ �ðmtÞðtÞ
� �

dt;

@tm� �2

2
�m ¼ �divð�mÞ;mð0; :Þ ¼ m0ð:Þ þ boundary conditions:

8>>>><
>>>>:

ð2:5Þ

For notational convenience we consider in what follows the case �2

2 ¼ 1. We intro-

duce, as in Refs. 1 and 2, the transformation q ¼ �m, i.e. the functions

 ða; bÞ :¼
jaj2
b

if ða; bÞ 2 Rd � R
�þ

þ1 otherwise;

8<
:

and

Kðq;mÞ :¼
Z
Q

 ðq;mÞ þ
Z T

0

�ðmtÞðtÞdt:

Following Ref. 2, we can write K in a simpler form:

Kðq;mÞ ¼

Z T

0

Z
�

jqj2
m

� �
þ �ðmtÞðtÞ

� �
dt

:¼
Z T

0

Z
�

j�ðt;xÞj2mðt;xÞdxþ �ðmtÞðtÞ
� �

dt if q ¼ �m

þ1 otherwise:

8>>>>>><
>>>>>>:

Then (2.5) can be rewritten:

inf
ðq;mÞ2B

Kðq;mÞ
B :¼ fðq;mÞ : q 2 L2ðQÞ;m weak solution of @tm��m ¼ �divðqÞ;

mð0; :Þ ¼ m0ð:Þ 2 L2ð�Þ;m 2 W ð0;T Þg:

8><
>: ð2:6Þ

Since we have no information about the convexity of �, we introduce the penalized

problem:

inf
ðq;mÞ2B

K"ðq;mÞ :¼ Kðq;mÞ þ "jjqjj22; ð2:7Þ

where jj:jj2 denotes the L2ðQÞ-norm.

Theorem 2.1. Ifm0 2 L2ð�Þ, then the minimization problem (2.7) admits a solution

ðq";m"Þ 2 B with q" 2 L2ðQÞ, moreover :

lim
"!0

min
ðq;mÞ2B

K"ðq;mÞ
� �

¼ inf
ðq;mÞ2B

Kðq;mÞ:

Proof. The proof proceeds in several steps that we describe below. Let ðqn;mnÞ be a
minimizing sequence of problem (2.7).
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Step 1. Bounds and convergence of qn. Obviously ðqn;mnÞ is in the domain of K.

There exists a positive constant ~C such that ~C � K"ðqn;mnÞ � "jjqnjj 22. The sequence
qn is bounded in L2ðQÞ, consequently there exists a subsequence (denoted again by

qn) which converges weakly to a limit q 2 L2ðQÞ. Note also that for all n, divðqnÞ is
bounded in L2ð0;T ;V 0Þ.
Step 2. Convergence of mn. As shown in Ref. 15, since divðqnÞ 2 L2ð0;T ;V 0Þ and

m0 2 L2ð�Þ, then mn 2 W ð0;T Þ. Moreover, divðqnÞ is bounded in L2ð0;T ;V 0Þ thus
mn is bounded in Wð0;T Þ. We want to prove that up to the extraction of a sub-

sequence, mn converges strongly to a limit m in L2ðQÞ. The key properties are the

injections:

V � L2ð�Þ � V 0; ð2:8Þ
where both injections are continuous and the ¯rst one is compact. Since the injection

V � L2ð�Þ is compact one ¯nds thatW ð0;T Þ � L2ðQÞ is also compact, cf. Ref. 22 for

a rigorous proof. Then there exist m 2 W ð0;T Þ and subsequence mn such that mn

converges to m weakly in W ð0;T Þ and strongly in L2ðQÞ. Finally, there is another

subsequence (again denoted by mn) converging a.e. to m.

Note that since qn * q in L2ðQÞ andmn * m inW ð0;T Þ, thenm veri¯es the weak

form of the equation @tm��m ¼ �divðqÞ thus ðq;mÞ 2 B.

Step 3. Taking limits. The last remaining point is the limit of the functional. Thanks

to the lower semicontinuity of the L2ðQÞ-norm and the left-hand side of K (see

Ref. 2), the convergence a.e. of mn to m, the continuity of � and Fatou's lemma, we

have:

K"ðq;mÞ ¼ lim
n!1K"ðqn;mnÞ

¼ lim inf
n!1 K"ðqn;mnÞ

�
Z
Q

jqj2
m

þ
Z T

0

�ðmÞ þ "jjqjj22 ¼ K"ðq;mÞ;

which shows that ðq;mÞ is a minimizer of problem (2.6).

Finally, let us prove the last assertion of the theorem.

Step 4. Limit of the penalized problems. Let ðq";m"Þ be a minimizer of problem (2.7),

then

inf
ðq;mÞ2B

Kðq;mÞ � Kðq";m"Þ þ "jjq"jj 22 � Kðq;mÞ þ "jjqjj22; 8 ðq;mÞ 2 B:

Let us take the limit when " converges to 0:

inf
ðq;mÞ2B

Kðq;mÞ � lim inf
"!0

K"ðq";m"Þ � lim sup
"!0

K"ðq";m"Þ � Kðq;mÞ; 8 ðq;mÞ 2 B:

Take the in¯mum on the right-hand side of these inequalities and obtain:

inf
ðq;mÞ2B

Kðq;mÞ � lim inf
"!0

K"ðq";m"Þ � lim sup
"!0

K"ðq";m"Þ � inf
ðq;mÞ2B

Kðq;mÞ;

hence the conclusion.
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Remark 2.2. Note that for all " > 0, if ðq";m"Þ is a minimizer of problem (2.7), the

following assertions are equivalent:

(1) problem (2.6) admits a solution ðq;mÞ 2 B with q 2 L2ðQÞ,
(2) 9M > 0 such that 8 " > 0, jjq"jj2 <M .

To see that ð1Þ ) ð2Þ let q be optimal in (2.6); from the optimality of q and q" one

obtains that for all " > 0, jjq"jj2 � jjqjj2. Let us now prove ð2Þ ) ð1Þ. Since ðq"Þ">0 is

uniformly bounded in L2ðQÞ, we have:

lim
"!0

"jjq"jj2 ¼ 0:

Then, using Theorem 2.1 we conclude that ðq";m"Þ is a minimizing sequence for K.

Proceeding analogously to the proof of the previous theorem, we obtain that there

exists a subsequence ðq"n ;m"nÞ such that q"n converges weakly to a limit w 2 L2ðQÞ
and m"n converges strongly to mw 2 L2ðQÞ. Furthermore, ðw;mwÞ is a solution of

problem (2.6) and:

jjq"n jj2 � jjwjj2:

The weak convergence of q"n and the previous inequality successively yield:

lim
n!1

Z
Q

ðq"n � wÞ2 ¼ lim
n!1

Z
Q

q 2"n � w2 � 0;

so that q"n converges strongly in L2ðQÞ.

2.5. Optimality conditions

In this section, we describe in a formal way how to obtain optimality conditions for

problem (2.4). A rigorous mathematical derivation is sketched in Refs. 12�14. Let us

start by introducing the notation:

Jðm; �Þ :¼
Z T

0

Z 1

0

�ðt;xÞ2
2

mðt;xÞdxþ �ðmÞðtÞ
� �

dt: ð2:9Þ

Let us now note that (2.2) can be written in the weak form as:Z 1

0

ðvðT ; :ÞmðT ; :Þ � vð0; :Þm0ðxÞÞ ¼
Z T

0

�ðmÞ þ
Z 1

0

@tvþ
�2

2
�vþ � � rv

� �
m

� �

for every v 2 C1
c ð½0; 1� � ½0;T �Þ. We de¯ne the Lagrangian of problem (2.4):

Lðm; �; vÞ :¼ Jðm; �Þ þ
Z T

0

�ðmÞ þ
Z 1

0

@tvþ
�2

2
�vþ � � rv

� �
m

� �

�
Z 1

0

vðT ; :ÞmðT ; :Þ þ
Z 1

0

vð0; :Þm0:
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The minimization problem (2.4) can be rewritten as a saddle-point problem:

inf
ðm;�Þ

sup
v

Lðm; �; vÞ;

and the conditions characterizing the saddle-point of L read as (2.2) together with:

� ¼ �rv; m-a:e:; ð2:10Þ

@tvþ
1

2
�2 þ � � rvþ �2

2
�v ¼ �� 0ðmÞ; ð2:11Þ

vðT ; :Þ ¼ 0: ð2:12Þ
We obtain the critical point equations that include, in addition to the equa-

tion for m, the formula for the optimal control � :¼ �rv and the backward

Hamilton�Jacobi�Bellman equation for v

@tvþ
�2

2
�v� 1

2
jrvj2 ¼ �� 0ðmÞ;
vðT ; :Þ ¼ 0:

ð2:13Þ

Remark 2.3. By introducing the Hamiltonian of the system, de¯ned as the

Legendre transform of the changing state cost: Hðx; pÞ ¼ sup��p� �2

2 ¼ p 2

2 , it is easy

to see that the optimality system of critical points equations reads:

@tm� �2

2
�mþ divð�mÞ ¼ 0; mð0; :Þ ¼ m0;

� ¼ �@pHðx;rvÞ;
@tvþ

�2

2
�v�Hðx;rvÞ ¼ �� 0ðmÞ; vðT ; :Þ ¼ 0:

Finally, we introduce a mean ¯eld equilibrium as the solution of the mean ¯eld

system:

@tm� �2

2
�mþ divð�mÞ ¼ 0; mð0; :Þ ¼ m0; m 0ð:; 0Þ ¼ m 0ð:; 1Þ ¼ 0:

�rv ¼ �

@tvþ
�2

2
�vþ �2

2
þ � � rv ¼ �� 0ðmÞ; vðT ; :Þ ¼ 0

8>>>><
>>>>:

ð2:14Þ

consisting in two coupled Partial Di®erential Equations (PDEs), one being backward

(the Hamilton�Jacobi�Bellman equation) and the other one being forward (the

Kolmogorov equation). This coupling will be important for the choice of the

numerical method.

2.6. Some remarks

We conclude this section with some observations about the modeling with the \tool"

MFG. The MFG seem to be particularly adapted to describe a situation that
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combines two economical ideas, positive externality and scale e®ect. In our model, we

introduced a positive externality (if one insulates better her home, her neighbor has a

better insulation of her apartment). We saw that there is a clear incentive on any

agent to choose some insulation level.

This can be understood considering the form of the insulation maintenance cost,

which is decreasing in the global distribution of agents m. In addition, the negative

slope in mmeans that there is also an economy of scale in terms of savings that a ¯rm

obtains due to expansion (think of the maintenance costs). We will see in the last

section (using some numerical simulations) that people indeed stay together, i.e. tend

to agglomerate.

Let us add some comments about the characteristics of the model. First of all, recall

that the model is in continuous time and space. This is adapted to the study of tran-

sition e®ects (in particular the possibility for the population to change the consumed

technology).Moreover themodeling of an in¯nite number of agents is strongly linked to

the atomization of the agents in the economy. The MFG enables one to handle such a

situation. On the one hand, every household is atomized (she takes into account that

her action has no in°uence on the global density) and on the other hand she has rational

expectations (thus she sees the global density as a datum), and the Nash point

approximation leads consequently to a non-cooperative equilibria.

To conclude our remarks, we emphasize that our model is a stylized model from the

industrial point of view. It is not completely realistic (heating price, maintenance cost)

nor a simpli¯cation of statistical data. Awork of calibration can be done, but is beyond

the scope of the present paper. Before some comments on the behavior of a population

of agents with this modeling, let us give the algorithm that will be used for simulations.

3. Numerical Simulations

In this section, we describe the algorithm that we use to solve our problem. This

algorithm is an adaptation of a procedure initially developed in the ¯eld of quantum

chemistry in Refs. 21 and 23 (see also Refs. 16 and 17) following an approach introduced

byKrotov.10 It has recently been extended to some transport problems inRef. 3 (see also

Ref. 11). For a general presentation of this algorithm, see Ref. 20. This approach shows

excellent results onnon-convexproblems,where usual gradientmethods fail to converge.

Before presenting the optimization algorithm, we introduce a relevant dis-

cretization of the problem. Even if what follows easily generalizes to 2D and 3D

situations, in the rest of the paper we focus on the 1D-case for its simplicity and the

consistency with the initial dimension of the problem. Given a matrix C, we denote

by C � its transpose.

Let us consider two positive integers M ;N . We consider here the case of the

bounded space domain ½0; 1� for (2.2). We de¯ne the time and space steps by dt ¼ 1
N

and dx ¼ 1
M and denote for j ¼ 0; . . . ;M , i ¼ 0; . . . ;N by mi

j the numerical

approximations of mði:dt; j:dxÞ. For reasons that will appear later, the discrete

control is de¯ned at the points ði:dt; ðjþ 1=2Þ:dxÞ, and is therefore denoted by � i
jþ1=2.
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We shall also use the notations � i ¼ ð� i
jþ1=2Þj¼1;...;M�1 and mi ¼ ðmi

jÞj¼1;...;M�1.

Finally, we denote by �jðmiÞ the approximation of the maintenance cost �ðm; t;xÞ at
the point ðmði:dt; j:dxÞ; i:dt; j:dxÞ. Remember that the total mass of ½0; 1� is constant
in time, so that at the discrete level, we impose the homogeneous Neumann boundary

condition expressed by � i
1=2 ¼ � i

M�1=2 ¼ 0, for i ¼ 0; . . . ;N � 1.

3.1. Discretized cost functional

From now on, � stands for the discrete control ð� i
jþ1=2Þi;j and gðmiÞ is the real

number de¯ned by gðmiÞ ¼ dx
PM�1

j¼1 �jðmiÞ where �jðmiÞ ¼ �jðmiÞmi
j.

We consider the following discrete version of the cost functional J :

Jdt;dxð�Þ :¼ dt:dx
XN�1

i¼0

XM�1

j¼1

1

2
rjð� iÞmi

j þ �jðmiÞ
� �

¼ dt
XN�1

i¼0

1

2
hmi; rð� iÞi þ gðmiÞ

� �
;

where h:; :i is the scalar product on RM�1 de¯ned by:

hu; vi ¼ dx
XM�1

j¼1

ujvj:

The vector rð� iÞ ¼ ðrjð� iÞÞj¼1;...;M�1 is de¯ned from � i by:

rjð� iÞ ¼ ð� i
j�1=2Þ2 þ ð� i

jþ1=2Þ2
2

and corresponds to using a trapezoid rule to approximate j�j2 in the integral of (2.9).

3.2. Numerical scheme for the controlled Kolmogorov equation

The preservation of the positivity of m at the discrete level appears in numerical

simulation as a crucial issue, especially for small values of �. Indeed, the concavity of

J with respect to m leads to numerical instabilities when using schemes which do not

possess this property, independently of their order of accuracy. This fact motivates

the use of a low order Godunov scheme for the advective part of (2.2) which ensures

both small computational cost and positivity of the numerical solutions.

Remark 3.1. In addition, this framework enables us to avoid the introduction of

Lagrange multipliers corresponding to the constraint m � 0.

We are now in the position to de¯ne the numerical solver of (2.2). Starting from

m0
j ¼ m0ðj:dxÞ, mi

j is computed iteratively for j ¼ 1; . . . ;M � 1 by:

miþ1
j ¼ mi

j þ
�2

2

dt

dx2
ðmi

jþ1 � 2mi
j þmi

j�1Þ

� dt

dx
ðmi

jþ1=2�
i
jþ1=2 �mi

j�1=2�
i
j�1=2Þ: ð3:1Þ
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In this equation, the terms mi
jþ1=2 and mi

j�1=2 of the advective part are de¯ned

according to a Godunov scheme, i.e. using up-winding:

mi
jþ1=2 ¼

mi
jþ1 if � i

jþ1=2 < 0;

mi
j if � i

jþ1=2 � 0:

(

For more details about this type of schemes, we refer to Refs. 18 and 8.

To simplify our notations, we rewrite (3.1) as:

miþ1 ¼ ðAþ Bð� iÞÞmi: ð3:2Þ
Here A corresponds to the identity matrix plus the discrete Laplace operator, i.e. the

¯rst two terms of the right-hand side of (3.1) and B is associated to the advective

part, i.e. the last term of the right-hand side of (3.1). The choice of such a scheme

ensures the positivity of the density at the discrete level, under the condition of the

following lemma:

Lemma 3.1. For i ¼ 1; . . . ;N , if for every j ¼ 1; . . . ;M � 1, mi � 0 and

j� i
jþ1=2j � � :¼ dx

2dt
� �2

2

1

dx
; ð3:3Þ

then miþ1 � 0.

Proof. Let us ¯x i; 1 � i � N, and j; 1 � j � M � 1. Suppose that (3.3) holds,

� i
jþ1=2 � 0 and � i

j�1=2 � 0. Thanks to (3.1), miþ1
j reads as a linear combination of

mi
jþ1;m

i
j and mi

j�1, with coe±cients � 2

2
dt
dx2 , 1� �2 dt

dx2 � � i
jþ1=2

dt
dx and � 2

2
dt
dx2 þ

� i
j�1=2

dt
dx. Condition (3.3) then guarantees that these coe±cients are positive, so that

the linear combination is indeed a convex combination. Other cases shall be dealt

similarly.

3.3. Adjoint state

In the approach we follow, a crucial role is played by the adjoint state vi ¼
ðvi

jÞj¼1;...;M�1 that is de¯ned iteratively for i ¼ 0; . . . ;N, by the backward propa-

gation (Hamilton�Jacobi�Bellman PDE):

vN ¼ 0;

vi ¼ ðA� þB�ð� iÞÞviþ1 þ dt

2
rð� iÞ þ dt� 0ðmiÞ; ð3:4Þ

where � 0ðmiÞ is the vector with components � 0
jðmiÞ. This variable is the discrete

version of the Lagrange multiplier de¯ned by (2.10)�(2.12).

3.4. Variations in Jdt,dx

We present now the algebraic manipulations at the heart of the monotonic schemes.

Let us consider two controls � and � 0 and the corresponding solutions ðmiÞi¼0;...;N
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and ðm 0iÞi¼0;...;N of (3.1). In what follows, the adjoint v ¼ ðviÞi¼0;...;N corresponds to �.

One has:

Jdt;dxð� 0Þ � Jdt;dxð�Þ ¼
dt

2

XN�1

i¼0

hm 0i; rð� 0iÞ � rð� iÞi þ dt

2

XN�1

i¼0

hm 0i �mi; rð� iÞi

þ
XN�1

i¼0

hm 0iþ1 �miþ1; viþ1i � hm 0i �mi; vii

þ dt
XN�1

i¼0

gðm 0iÞ � gðmiÞ: ð3:5Þ

A crucial fact is that, for j ¼ 1; . . . ;M � 1, functions �j are concave in m. Conse-

quently, we get:

XN�1

i¼0

gðm 0iÞ � gðmiÞ �
XN�1

i¼0

� 0ðmiÞ;m 0i �mi
	 


; ð3:6Þ

where � 0 is de¯ned in Sec. 3.3. Combining (3.5) with (3.6) we can write:

Jdt;dxð� 0Þ � Jdt;dxð�Þ �
dt

2

XN�1

i¼0

hm 0i; rð� 0iÞ � rð� iÞi

þ
XN�1

i¼0

hðAþ Bð� 0iÞÞm 0i � ðAþBð� iÞÞmi; viþ1i

þ
XN�1

i¼0

hm 0i �mi;�vi þ dt

2
rð� iÞ þ dt� 0ðmiÞi:

We ¯nally obtain:

Jdt;dxð� 0Þ � Jdt;dxð�Þ �
dt

2

XN�1

i¼0

hm 0i; rð� 0iÞ � rð� iÞi

þ
XN�1

i¼0

hðBð� 0iÞ � Bð� iÞÞm 0i; viþ1i: ð3:7Þ

This inequality can also be expressed through the formula:

Jdt;dxð� 0Þ � Jdt;dxð�Þ � dt:dx
XN�1

i¼0

XM�2

j¼1

� i
jð� 0; �Þ; ð3:8Þ

where

� i
jð� 0; �Þ ¼ m 0i

j þm 0i
jþ1

2

ð� 0i
jþ1=2Þ2 � ð� i

jþ1=2Þ2
2

 !

þðm 0i
jþ1=2�

0i
jþ1=2 � ~m 0i

jþ1=2�
i
jþ1=2Þ

viþ1
jþ1 � viþ1

j

dx

 !
: ð3:9Þ
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In this equation we introduced

~m 0 i
�jþ1=2 ¼

m 0i
jþ1 if � i

jþ1=2 < 0;

m 0i
j if � i

jþ1=2 � 0:

(

Note that inequality (3.8) disintegrates the variables of J into a sum of local

growth elements. This inequality that reads as a factorization enables one to build a

monotonic optimization method for functional J.

Remark 3.2. Given �, note that the value of m 0i
jþ1=2 depends on the sign of � 0i

j ,

so that � 0i
j 7! � i

jð� 0; �Þ is a continuous, piecewise polynomial function.

Remark 3.3. Note that the strategy followed to obtain (3.8) applies for more

general situations. Indeed, the two necessary requirements to make use of our method

are the linearity of the dynamic and the concavity of the functional with respect to

the state variable. We refer to Ref. 20 for more details. In particular, other types of

dependence of the cost with respect to � could be treated.

3.5. Optimization procedure

3.5.1. The method

This section provides a brief summary of the optimization strategy we follow to solve

our problem.

Given � and a positive real number �, we de¯ne � 0i
jþ1=2 as a solution of

� i
jð� 0; �Þ ¼ ��m

0i
j þm 0i

jþ1

2
ð� 0i

jþ1=2 � � i
jþ1=2Þ2: ð3:10Þ

According to Remark 3.2, this equation may have one, two or four roots, including

the trivial one � 0i
jþ1=2 ¼ � i

jþ1=2. When possible, we de¯ne � 0i
jþ1=2 as the root of (3.10)

that is closer to � i
jþ1=2; otherwise we set �

0i
jþ1=2 ¼ � i

jþ1=2. Thus, the monotonicity of

our algorithm is guaranteed.

Let us give the explicit formula corresponding to this procedure. We assume that
m 0i

j þm 0i
jþ1

2 > 0, otherwise the contribution of this term is zero for all choice of � 0i
jþ1=2.

We introduce

� ¼ 2

�þ 1
; 	 i

jþ1=2 ¼
2m̂ 0i

jþ1=2

m 0i
j þm 0i

jþ1

; ~	 i
jþ1=2 ¼

2 ~m 0i
jþ1=2

m 0i
j þm 0i

jþ1

;

m̂ 0i
jþ1=2 ¼

m 0i
jþ1 if ~m 0i

jþ1=2 ¼ m 0i
j ;

m 0i
j if ~m 0i

jþ1=2 ¼ m 0i
jþ1:

(

Consider now:


 ijþ1=2 ¼ ð1� �Þ� i
jþ1=2 þ �~	 i

jþ1=2

viþ1
jþ1 � viþ1

j

dx
;

� i
jþ1=2 ¼

�b ijþ1=2 � signð� i
jþ1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb ijþ1=2Þ2 � 4ai

jþ1=2:c
i
jþ1=2

q
2ai

jþ1=2

;

ð3:11Þ
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where sign is the function

signðxÞ ¼ 1 if x � 0;

�1 if x < 0;

�

and

ai
jþ1=2 ¼ 1þ �;

b ijþ1=2 ¼ �2 �� i
jþ1=2 þ 	 i

jþ1=2

viþ1
jþ1 � viþ1

j

dx

 !
;

c ijþ1=2 ¼ ð�� 1Þð� i
jþ1=2Þ2 þ 2� i

jþ1=2~	
i
jþ1=2

viþ1
jþ1 � viþ1

j

dx
:

The control � 0i
j can be expressed by:

� 0i
jþ1=2 ¼


 ijþ1=2 if � i
jþ1=2:


i
jþ1=2 � 0;

� i
jþ1=2 if � i

jþ1=2:

i
jþ1=2 < 0:

(
ð3:12Þ

Proposition 3.1. Under the condition (3.3), the scheme (3.12) ensures

Jdt;dxð� 0Þ � Jdt;dxð�Þ, i.e. the functional Jdt;dx decreases.

Proof. The monotonicity is a trivial consequence of inequality (3.8) and

Lemma 3.1.

We recall that the bound (3.1) on the control � is very important for the

positivity of the density. As the stability of our optimization scheme is based on the

positivity of the variablem, the strategy presented in the next section has to include a

slope-limiter such that (3.3) prevails. Instead of de¯ning � 0i
jþ1=2 through (3.12), we

alternatively denote by �� i
jþ1=2 the value obtained in (3.12) and consider the de¯-

nition:

� 0i
jþ1=2 ¼ signð �� i

jþ1=2Þ:minð�; j �� i
jþ1=2jÞ: ð3:13Þ

It is easy to check that this modi¯cation does not spoil the monotonicity of our

procedure, as soon as � satis¯es (3.3).

3.5.2. The algorithm

We can now de¯ne precisely our optimization algorithm. Suppose that �k is given.

The computation of �kþ1 is achieved as follows.

. De¯ne vk by (3.4) with � ¼ �k.

. De¯ne m0 ¼ m0 and compute iteratively mi from mi�1 according to the substeps:

– de¯ne ð�kþ1Þ i�1 by (3.13) where �� i
jþ1=2 is computed with v ¼ vk,

– de¯ne ðmkþ1Þ i by (3.1) with � i�1 ¼ ð�kþ1Þ i.
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A possible termination criterion is obtained by checking the discrete optimality

conditions, i.e. given a tolerance threshold Tol > 0:

sup
1�i�N�1;1�j�M�1

ðmkÞ ij þ ðmkÞ ijþ1

2
ð�kÞ ijþ1=2 þ ðmkÞ ijþ1=2

ðvkÞ iþ1
jþ1 � ðvkÞ iþ1

j

dx

�����
����� � Tol:

ð3:14Þ
The choice of a monotonic algorithm comes from speci¯c properties of the MFG

model such as the bi-linearity of the state evolution and special concavity in the cost

functional (cf. work in Ref. 20 for a detailed description of the required properties).

Let us mention that the algorithm converges numerically very quickly.

4. Simulations, Some Results for Our Model

We present in this section some numerical results.

First, let us write the particular forms that we have chosen for the state costs. We

recall that the heating cost is: fðt;xÞ ¼ pðtÞð1� �xÞ. From now on, we take � ¼ 0:8

which means that it is ¯ve times cheaper to heat a home that is fully insulated (than a

non-insulated one). The choice that we did for the constants in the insulation

maintenance cost leads one to take: gðt;x;mÞ ¼ x
0:1þmðt;xÞ. In our algorithm, we choose

� ¼ 1. We present in what follows three results that exhibit three qualitatively

di®erent phenomena.

In the ¯rst one, the unit price of energy pðtÞ is a constant parameter. With this

example, we want to check some simple behaviors of agents. In the second example

we look at a non-constant unit price of electricity; more precisely, pðtÞ reaches a peak.
We exhibit in this simulation two numerical equilibria. Finally, in the third example,

we consider a more realistic case with irreversibility in the investment in insulation

material. In the following and for each example, we ¯xed the horizon T ¼ 1 and the

noise � 2

2 ¼ 0:07.

In the ¯gures, the horizontal axis is the level of insulation, the depth is the time

and the vertical line is the density of agents.

4.1. Positive externality : The households choose the same technology

We consider here a Gaussian distribution centered in x ¼ 0:5 as initial density of

players. In other words, the households started already to acquire insulation material,

but there are still new technologies that enable them to insulate the houses better.

In the next three ¯gures, we present the curve of the density for three di®erent

values of the unit price of energy pðtÞ. The energy will be successively free (pðtÞ ¼ 0),

then it will have an intermediate price (pðtÞ ¼ 3:2), and ¯nally it will be expensive

(pðtÞ ¼ 10).

In Fig. 1, we note that, as expected for very low prices of energy, all agents choose

to heat their home and they move to this choice together. In Fig. 2, for an inter-

mediate price of energy, the households stay more or less in the same con¯guration.
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Fig. 1. Evolution of m for pðtÞ ¼ 0.

Fig. 2. Evolution of m for pðtÞ ¼ 3:2.
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The important point here is that they are grouped around the same state. And in

the third case, we can see in Fig. 3 that when the cost related to energy is high, the

population wants to be better insulated. And once again, all the players have the

same behavior. These solutions involve pure bundling.

The economic reasons that explain the behavior observed in the three cases, which

consists in bundling (without dispersion), are the positive externality and the econ-

omy of scale. These two aspects make the households choose the same technology, the

same level of insulation.

4.2. Multiplicity of solutions : The possibility of a technological

transition

First, we look at a situation in which the agents are poorly equipped with insulation

material at time t ¼ 0. Thus, the initial density is an approximation of a Dirac mass

in x ¼ 0:1, piecewise linear on ½0; 0:1Þ, ½0:1; 0:3Þ, and ½0:3; 1Þ. Another di®erence with

the ¯rst example is the form of the unit price of energy pðtÞ. In the present case, it

starts from a low level, then reaches a peak and decreases until its initial level as

represented in Fig. 4.

With this data, we found numerically two MFG equilibria by taking di®erent

initializations for the control variable �0. These two numerical solutions are pre-

sented in Figs. 5 and 6.

Figure 5 shows the solution corresponding to the choice of high insulation levels.

In this case the optimum corresponds to an insulation equilibrium.

Fig. 3. Evolution of m for pðtÞ ¼ 10.
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The solution in which the households stay heating their apartment stands for a

sort of energy consumption equilibrium and is described in Fig. 6.

We can explain intuitively the behavior in the following way. If one expects that

everybody will still heat their apartment, then it is in her interest to do the same, and

Fig. 4. Evolution of the unit price of energy pðtÞ.

Fig. 5. Evolution of m, the \insulation equilibrium".
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we get the energy consumption equilibrium. However, if one expects that all the

households will improve their insulation, then it is better for her to choose a higher

insulation level. In this case we obtain an insulation equilibrium.

By adding a constraint, one can select an equilibrium (e.g. an ecologic equili-

brium). In brief, this simple model (based on the MFG) and these simulations (using

a monotonic algorithm), enable us to study quantitatively the way the technologies

can impact the culture. With this example, we can imagine the design of incentives or

policies, in order to change the habits of a population.

4.3. Dispersion in the case of irreversibility

Let us show in a last example how additional constraint on the control can be

introduced. We impose � � 0, so that an investment in insulation material is irre-

versible. Though it is possible to decide to insulate better the apartment, it is not

allowed to choose a lower level of insulation. The introduction of such a constraint

enables us to handle a more realistic situation. In order to make sense, we have chosen

as initial distribution a Gaussian centered in 0.25 ��� the households did not yet

choose a high insulation level. Every other parameter is de¯ned as in the second

example (unit price of energy reaching a peak, noise, horizon,…).

We observe in Fig. 7 a dispersion in the household choices. During the ¯rst part of

the period, the agents choose higher insulation levels, and then there is a spreading.

Actually some agents that have chosen to be well equipped with insulation material

cannot go back. Moreover, in this case, the risk has a more important in°uence. These

two reasons explain intuitively the dispersion that is observed in this example.

Fig. 6. Evolution of m, the \energy consumption equilibrium".
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