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We propose a new strategy for solving by the parareal algorithm highly oscillatory ordinary 
differential equations which are characteristics of a six-dimensional Vlasov equation. For 
the coarse solvers we use reduced models, obtained from the two-scale asymptotic 
expansions in [4]. Such reduced models have a low computational cost since they are 
free of high oscillations. The parareal method allows to improve their accuracy in a few 
iterations through corrections by fine solvers of the full model. We demonstrate the 
accuracy and the efficiency of the strategy in numerical experiments of short time and long 
time simulations of charged particles submitted to a large magnetic field. In addition, the 
convergence of the parareal method is obtained uniformly with respect to the vanishing 
stiff parameter.
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1. Introduction

In this paper we propose a new coupling strategy in the parareal framework [14,15] to efficiently solve the following six 
dimensional dynamical system for 0 < ε � 1⎧⎪⎪⎨

⎪⎪⎩
dxε

dt
= vε, xε(s) = x,

dvε

dt
= 1

ε

(
vε × Bε(xε)

) + E(t,xε), vε(s) = v,

(1)

where (x, v) is an initial condition given at the initial time t = s. The system in (1) models the dynamics of a charged particle 
under the influence of an external electro-magnetic field. This is a typical characteristic curve of the Vlasov equation. In this 
context, xε : R → R3 stands for the position unknown, vε : R → R3 for the velocity unknown, and E : R × R3 → R3

and 1
ε Bε : R3 → R3 for a given electro-magnetic field. We assume |Bε | = 1 and that the mass and the charge particle are 

both equal to 1. The parameter 1/ε in front of the vε × Bε(xε) term means that the magnetic field is assumed high with 
respect to the electric term, in view of plasma confinement considerations [10]. More precisely, 1/ε denotes the strength 
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of the magnetic field and thus, since the charge-to-mass ratio is assumed to be 1, the cyclotron frequency is also equal to 
1/ε. The difficulty of the problem is that the large magnetic field introduces a rapid time scale, the rotation of particles 
around the magnetic field line, which is much smaller than the one driven by the electric field. We are thus faced with a 
multi-scale problem whose numerical solution by standard methods requires high computational cost, since a standard but 
accurate enough numerical integrator requires time steps that are of the order of the fastest oscillation. This is an issue to 
be avoided in applications, and therefore, in this paper we are interested in solving equations in (1) with a time step which 
is not constraint by ε.

The parareal algorithm is an efficient method performing real time simulations with the help of parallel computing, for 
the numerical solving of a very large class of time dependent equations. The literature is huge, we cite only [14,15,3,7]. 
The method involves a fine expensive solver that is only applied in parallel, and a coarse but cheap solver which is used 
in sequential. A basic way to apply parareal in practice consists in taking large time steps �t for a coarse solver and 
in refining the solutions in parallel using smaller time steps δt . This can reduce the computational time if the parareal 
iterations converge rapidly and if the ratio �t/δt is large.

However, when solving stiff equations like (1), regardless of the numerical scheme used for the coarse solver, the time 
step should satisfy �t ∼ ε to achieve enough accuracy leading to a rapid convergence of the parareal scheme [8]. This is due 
to the high oscillations in time (with period of order ε) in the solution. Therefore, it can be interesting to use a different 
model to define the coarse solver in such a way that it remains computationally cheap but with a time step satisfying 
�t � ε. Eventually, it is also important that the coarse solver be accurate enough so that the parareal iterations converge 
rapidly. In the case of equation (1), it is crucial for the coarse solver to provide an accurate approximation of the high 
oscillations, since otherwise the solver accumulates large errors, parareal requires a large number of iterations and thus the 
computational speed-up deteriorates. The purpose of our work is to obtain a convergent parareal algorithm with a large 
ratio �t/δt and a small number of iterations (k � N , see section 2 for notation).

In this paper, we use the parareal algorithm to efficiently integrate equation (1), by using a reduced model to define the 
coarse solver. Roughly speaking, such a reduced model reads⎧⎪⎪⎨

⎪⎪⎩
dY

dt
= f (Y,U), Y(s) = x,

dU

dt
= g(Y,U), U(s) = v,

(2)

where Y, U are used to approximate xε , vε thanks to(
xε(t),vε(t)

) ∼ Z
(
(t − s)/ε,

(
Y(t),U(t)

))
whenε → 0,

and where Z is an operator for which an explicit form is to be derived in practice.
Specifically, we illustrate the idea above with an example in a similar context, as detailed in [9]. Thus, if instead of 

equation (1) we consider

duε

dt
+ 1

ε
Luε = N(uε), uε(0) = u0,

where L is a linear operator and N(uε) is a specific nonlinear term, then it is well-known that under suitable assumptions, 
the solution uε(t) has the asymptotic approximation uε(t) = exp(− t

ε L)u(t) +O(ε), where the slowly varying function u is 
the solution to the reduced model

du

dt
= N(u), u(0) = u0, (3)

where the N(u) term is obtained by time averaging

N(u(t)) = lim
T →∞

1

T

T∫
0

eθ L N(e−θ Lu(t))dθ.

It is important to note that u(t) and its derivatives are formally bounded independently of ε and therefore, large time steps 
�t � ε can be taken to solve (3) (see [9]).

In our approach, the reduced model is obtained through a two-scale asymptotic expansion and is proved to provide an 
accurate approximation of the initial equation when the small parameter ε vanishes [4]. More precisely, we use either a 
zero-th order or a first order two-scale model, depending on the availability of practical equations. Indeed, it is possible 
that the first order model is too complex to be solved, analytically or numerically and in this case, only the zero-th order 
model will be considered. These models have two advantages: the low computational cost and the capability to give a good 
approximation of the high frequency oscillations through the operator Z enclosing the smallest scale, under the assumption 
that these oscillations are periodic and can be analytically computed [4].
2
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The idea of using a different model for the coarse solver is not new. As an example, a similar approach has been 
used in chemical kinetics [15], where a reduction of a linear kinetic system with multiple scales was applied for the coarse 
solving. In [13], a slow manifold projector is used as coarse solver for solving ordinary differential equations with dissipative 
stiffness. We also mention two contributions closely related to our work. First, a parareal method for PDEs with linear high 
oscillating term is proposed in [9]. On the basis of a classical averaged model, the method needs exact knowledge of the 
fast variable to obtain a convergent parareal algorithm. Though our strategy also assumes the period of the fastest motion to 
be known, the high oscillating term is not necessarily linear in our case (see section 5). Additionally, we consider first-order 
asymptotic terms which provide a more accurate averaged model and can accelerate the convergence of the parareal method. 
Second, in the frame of models similar to (1), a multi-scale method for solving the slow evolution was successfully used 
as coarse solver in [1], without requiring explicit knowledge of the fast and slow variables. However a tedious alignment 
algorithm is required to achieve convergence of parareal. Specifically, the method needs to make the alignment of the fast 
phases of the coarse and fine solvers with sufficient efficiency and accuracy. On the contrary, our reduced model accurately 
synchronizes phase with the fine solution, which allows us to avoid such an alignment algorithm to get the numerical 
convergence of the parareal method. The drawback of our approach is that the small period of the fast oscillation must be 
known. However, this particular framework covers several models which solve interesting problems in plasma physics, as 
illustrated in section 6.

The paper is organized as follows. In section 2, we briefly present the parareal method and describe our strategy as 
applied in the context of stiff ordinary differential equations. In section 3, we introduce the two-scale asymptotic expansion 
at the base of the reduced models and we justify their use as coarse solvers of our parareal algorithm. In sections 4 and 
5, we present three ODE models which enter into the general form (1) and derive their first order and zero-th order 
reduced equations following [4]. The full equations under consideration apply to different models in plasma physics: isotope 
separation by ion cyclotron resonance, storing of charged particles in a Penning trap, and an example of charged particle 
confinement by strong variable magnetic field. For these models, we present in section 6 numerical experiments that show 
that the parareal strategy provides accurate results together with computational efficiency through parallelism.

2. The parareal algorithm

Introduced in 2001 [14], the parareal (parallel in real time) algorithm displays its advantage by covering various fields 
of applications where it exploits very efficiently parallel computing over a large number of processors to solve problems in 
real time constraint context. Since its conception, the algorithm has been intensively analyzed [2,8,16,6]. Let us briefly recall 
this approach. Consider the simple time dependent problem

du

dt
= f (u) in (0, T ), u(0) = u0. (4)

The time interval [0, T ] is decomposed into N uniform time slices [Tn, Tn+1], for n ∈ {0, . . . , N − 1}. Let F(Tn+1, Tn, Un)

denote the fine solver, which gives a very accurate approximation of the solution at time Tn+1 with the initial solution Un

at time Tn and let G(Tn+1, Tn, Un) denote the coarse solver, which gives a coarse approximation of the solution at time 
Tn+1 also with the initial solution Un at time Tn . The coarse solver is to be chosen in such a way that, its cost is much 
lower than the one of the fine solver. A popular strategy consists in using the approximation method considered in the fine 
solver but with a larger time step [8]. Alternatively, one can use an approximation method with lower accuracy, or even 
use a different model from the original problem as long as it can give a reasonable coarse and fast approximation of the 
solution of the original problem [15].

In this paper, we follow the latter approach and focus on the idea of using a reduced model of the original problem for 
the coarse solver. For that reason, the coarse solver G(Tn+1, Tn, Un) is always assigned to the solution of the reduced model 
(2) and the fine solver F(Tn+1, Tn, Un) is always assigned to the (approximated) solution of the original problem (1). In 
addition, we let the coarse propagator perform a single time step per time slice [Tn, Tn+1].

The parareal algorithm aims at computing a sequence (U k
n)k,n of approximations of u(Tn) for n ∈ {0, . . . , N} for every k

in the following way. At the first step, the initial approximation U 0
n at coarse time points 0 = T0 < T1 < · · · < T N = T can 

be computed sequentially using the coarse solver that reads

U 0
n+1 = G(Tn+1, Tn, U 0

n), U 0
0 = u0,

and then for k = 0, 1, . . . with U k+1
0 = u0, the parareal algorithm computes a more accurate approximation

Uk+1
n+1 = G(Tn+1, Tn, Uk+1

n ) +F(Tn+1, Tn, Uk
n) − G(Tn+1, Tn, Uk

n).

In this iteration, the terms F(Tn+1, Tn, U k
n) have the largest computational cost. Therefore, all these fine computations could 

be performed in parallel over each interval [Tn, Tn+1], the main goal of parareal being to speed up the computing time. 
However, in order to achieve a real speed-up, the algorithm should converge in a number of iterations significantly smaller 
than the number of time intervals.
3
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3. Two-scale asymptotic expansion

In this section, we summarize the principles and the main result of two-scale asymptotic expansion allowing to obtain 
reduced models. The equation (1) is a particular instance of the more general singularly perturbed dynamical system

dXε

dt
= a(t,Xε) + 1

ε
b(t,Xε), Xε(s) = X , (5)

where Xε : R → Rd and a and b are given fields satisfying suitable assumptions and s plays the role of the initial time. 
Following [4], we briefly recall the asymptotic two-scale expansion method in order to approximate the solution Xε(t) when 
ε → 0. Under regularity assumptions on a and b and assuming the solution Z(t; θ, z) to equation

dZ

dθ
= b(t,Z), Z(t;0, z) = z (6)

to be periodic in θ , for every t ∈R and every z ∈Rd , it is proved in [4] that Xε admits the following two-scale expansion 
in time

Xε(t) = X 0
(

t,
t − s

ε

)
+ εX 1

(
t,

t − s

ε

)
+ ε2 X 2

(
t,

t − s

ε

)
+ . . . (7)

when ε → 0 and where the functions X i(t, θ) are periodic in θ for every i ∈N . In this setting, ordinary differential equa-
tions characterizing the terms of the expansion (7) are derived in [4, Theorems 1.1 & 1.3]. In addition, strong convergence 
theorems are proved, justifying the approximation results asserting that, e.g., at the zero-th order we have

Xε(t) ∼ X 0
(

t,
t − s

ε

)
, when ε → 0,

and at the first order,

Xε(t) ∼ X 0
(

t,
t − s

ε

)
+ εX 1

(
t,

t − s

ε

)
, when ε → 0.

For the sake of completeness, we give below the result concerning the two-scale limit model or the zero-th order approxi-
mation [4, Theorem 1.1] in the case of a six dimensional space (d = 6).

Theorem 3.1. We assume that1 a ∈ (
C1

b (R ×R6)
)6

and b ∈ (
C2

b (R ×R6)
)6

. Assume also that the solution of (6) is 2π -periodic in 
θ , for every t ∈ R and every z ∈ R6 . Then, for every initial condition X ∈ R6 , every ε > 0, and every �S > 0, the solution Xε of (5)
exists on [s, s + �S], is unique and satisfies

lim
ε→0

sup
t∈[s,s+�S]

∣∣∣∣Xε(t) −X 0
(

t,
t − s

ε

)∣∣∣∣ = 0, (8)

where | · | stands for the Euclidean norm on R6 and X 0 satisfies

X 0(t, θ) = Z
(
t; θ,Y0(t)

)
(9)

and where Y0 is the solution to

dY0

dt
= α(t,Y0), Y0(s) = X , (10)

with α defined by

α(t,Y) = 1

2π

2π∫
0

{∇Z(t; θ,Y)}−1
{

a(t,Z(t; θ,Y)) − ∂Z

∂t
(t; θ,Y)

}
dθ.

Remark 3.2. We remark that the limit model in (10) does not contain high oscillations in time so that cheap numerical 
schemes can be used to compute Y0. Then, when Z is known in (6), we obtain the term X 0 by (9), as an approximation 
of the solution Xε in the sense of (8). Though obtained at a low computational cost, the approximation X 0 still contains 
information about the high oscillations in the solution, through the operator Z.

These facts underline that the solution to the limit model given by (9)-(10) is a good candidate for a coarse solving in 
the parareal framework.

1 Cm
b stands for the space of continuous functions with bounded derivatives to the order m.
4



L. Grigori, S.A. Hirstoaga, V.-T. Nguyen et al. Journal of Computational Physics 436 (2021) 110282
In the subsequent sections, we develop this framework for equations of the type of equation (1), by using the notation 
X = (x, v)T , where, as in classical mechanics, x = (x1, x2, x3)

T stands for the position vector and v = (v1, v2, v3)
T for the 

velocity vector. In this setting, it is important to note the particular form of the system (6). The solution Z captures only the 
rotation of the particle velocity following the magnetic field: Z = (xZ, vZ)T is the solution to⎧⎪⎪⎨

⎪⎪⎩
dxZ

dθ
= 0, xZ(0) = x,

dvZ

dθ
= vZ × B(xZ), vZ(0) = v.

This motion is assumed to be 2π -periodic in the theory we use. We denote in the sequel the cyclotron period in time by 
P = 2πε and the cyclotron frequency by 1/ε, which are associated to the full system (1).

4. The case of a constant magnetic field

In this section we consider equation (1) provided with a constant magnetic field Bε =−→e1 , where {−→e1 , −→e2 , −→e3 } is the frame 
of R3 and with a given external electric field. In this way, the term vε × Bε(xε) in the velocity equation of (1) writes 
(vε)

⊥ = (0, (vε)3, −(vε)2)
T . Thus, we can see that the basic assumption of periodicity of the solution of (6) is satisfied. The 

common feature of the test cases we treat in this section is that we can compute analytically the solutions of equation (1)
and of the corresponding reduced model. Therefore, when applying the parareal algorithm we will be able to use the exact 
flows for the fine and the coarse solvers.

4.1. A uniform time varying electric field

In this section, we take an electric field which is only highly oscillating in time. In this case, system (1) writes⎧⎪⎪⎨
⎪⎪⎩

dxε

dt
= vε, xε(s) = x,

dvε

dt
= 1

ε
(vε)

⊥ + E
( t

ε

)
, vε(s) = v,

(11)

where E has the form E(τ ) = (
E1, E2(τ ), E3(τ )

)T
, with E1 ∈ R and E2, E3 are 2π -periodic functions, see [4, Section 3.1]. 

This system can be used for modelling ion cyclotron resonance with application in isotope separation in plasmas, see [5]
and the references therein. In magnetized plasmas, the ions are heated by an oscillating perpendicular electric field at 
frequencies corresponding to the ion cyclotron frequency. Thus, the cyclotron resonance leads to a growth of the amplitude 
of motion in time. In the sequel, we consider for illustration the following electric field

E1 = 0, E2(τ ) = sin(τ ), E3(τ ) = cos(τ ). (12)

However, all the following results can be derived in a similar form for a general electric field with the above properties. 
Next, we need the following matrices denoted by

P =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ , R(θ) =

⎛
⎝1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠ ,R(θ) =

⎛
⎝0 0 0

0 sin θ 1 − cos θ

0 cos θ − 1 sin θ

⎞
⎠ . (13)

It is convenient to put the solution of (11)-(12) in the form(
xε(t)
vε(t)

)
= A

(
x
v

)
+B, (14)

where the 6 × 6 matrix A and the vector B are given by

A =
(

I3 (t − s)P + εR
( t−s

ε

)
O 3 R

( t−s
ε

) )
and

B =
(

ε(t − s)
(
0,− cos(t/ε), sin(t/ε)

)T + ε2
(
0, sin(t/ε) − sin(s/ε), cos(t/ε) − cos(s/ε)

)T

(t − s)
(
0, sin(t/ε), cos(t/ε)

)T

)
,

with I3 the 3 × 3 identity matrix and O 3 the 3 × 3 zero matrix.
Next, we derive the reduced model for equation (11). We apply [4, Theorems 3.1, 3.2] to equations (11)-(12) to obtain 

the first order two-scale model. The approximation of the solution is
5
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G(t) =
⎛
⎜⎝ x0

(
t,

t − s

ε

)
v0

(
t,

t − s

ε

)
⎞
⎟⎠ + ε

⎛
⎜⎝ x1

(
t,

t − s

ε

)
v1

(
t,

t − s

ε

)
⎞
⎟⎠ , (15)

where the terms in the expansion are given by

(
x0(t, θ)

v0(t, θ)

)
=

(
y0(t)

R(θ)u0(t)

)
(16)

and

(
x1(t, θ)

v1(t, θ)

)
=

⎛
⎜⎜⎜⎝

y1(t) +R(θ)u0(t)

R(θ)u1(t) + R(θ)
( θ∫

0

dσ − θ

2π

2π∫
0

dσ
)(

R(−σ)E(σ )
)
⎞
⎟⎟⎟⎠ . (17)

Then, in the particular case of the electric field in (12), we have that 
(
y0(t), u0(t)

)
is solution to

dy0

dt
=

⎛
⎝ (u0)1

0
0

⎞
⎠ ,

du0

dt
=

⎛
⎝ 0

0
1

⎞
⎠ and

{
y0(s) = x,

u0(s) = v,
(18)

with (x, v) the initial condition in (11) and that 
(
y1(t), u1(t)

)
is solution to

dy1

dt
=

⎛
⎝ (u1)1

−1
0

⎞
⎠ ,

du1

dt
= 0 and

{
y1(s) = 0,

u1(s) = 0.
(19)

Equations (18)-(19) are easy to solve, their solutions are

{
y0(t) = (

v1(t − s) + x1,x2,x3
)T

,

u0(t) = (
v1,v2, (t − s) + v3

)T
,

and respectively

{
y1(t) = (

0,−(t − s),0
)T

,

u1(t) = (
0,0,0

)T
.

Replacing these formulas in (16)-(17) and getting the result in (15) we obtain the analytical form of the first-order two-scale 
approximation G(t). However, it is interesting to write G as the solution of the original system was derived in equation (14). 
We have

G(t) = A
(

x
v

)
+ C, (20)

where the matrix A is as in (14) and C is given by

C =
(

ε(t − s)
(
0,− cos((t − s)/ε), sin((t − s)/ε)

)T

(t − s)
(
0, sin((t − s)/ε), cos((t − s)/ε)

)T

)
.

Remark 4.1. We notice that in the general case where E has the form

E(τ ) = (
E1, E2(τ ), E3(τ )

)T
, with E1 ∈R and 2π-periodic functions E2, E3,

the solutions of the full model and of the reduced one keep similar expressions to those in (14) and (20) respectively. More 
precisely, the matrix A will be the same, the difference appearing in the vectors B and C which will contain averages in 
the fast variable against sin(·) and cos(·) of the functions E2 and E3.
6
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4.2. A non uniform stationary electric field

In this part, we consider an electric field which is not dependent of time but of space and we use the framework in [4, 
Section 3.2]. In this case, system (1) writes⎧⎪⎪⎨

⎪⎪⎩
dxε

dt
= vε, xε(s) = x,

dvε

dt
= 1

ε
(vε)

⊥ + E(xε), vε(s) = v.

(21)

Then, following a standard strategy we can find an explicit form of a linear application E leading to highly oscillating 
solution but which is bounded in time. Nevertheless, by taking in (21) the electric field given by

E(x) = c

⎛
⎝ −x1

x2/2
x3/2

⎞
⎠ , (22)

with an arbitrary constant c > 0, the system describes the dynamics of a charged particle in an ideal Penning trap [12] (we 
fix to 1 both the charge and the mass of the particle). Under the condition ε <

√
1/(2c), the solution of (21)-(22) is

xε(t) =
⎛
⎝ c1 cos(

√
c (t − s)) + c2 sin(

√
c (t − s))

a1 sin(aε(t − s)) − a2 cos(aε(t − s)) + b1 sin(bε(t − s)) − b2 cos(bε(t − s))
a1 cos(aε(t − s)) + a2 sin(aε(t − s)) + b1 cos(bε(t − s)) + b2 sin(bε(t − s))

⎞
⎠ ,

vε(t) =dxε

dt
(t), (23)

where

aε = 1 + √
1 − 2cε2

2ε
, bε = 1 − √

1 − 2cε2

2ε
, (24)

and a1, a2, b1, b2, c1, c2 are constants to be found from the initial condition.

Remark 4.2.

1. A Penning trap is a device for storing charged particles using a homogeneous magnetic field and an inhomogeneous 
quadrupole electric field. The constant c in (22) entails the geometry of the trap and the voltage between the electrodes, 
while 1/ε is the magnitude of the magnetic field. The condition for having a stable periodic trajectory [12] is

1

ε
>

√
2c. (25)

Otherwise, the particle escapes from the trap due to a magnetic field which is weaker than the electric field. This 
corresponds to a solution with growing amplitude of motion in time.

2. We notice that the three frequencies 
√

c, aε , and bε are denoted in literature [12] by ωx , ω+ , and ω− respectively, and 
they verify the relation

ω± = 1

2

(
ωcy ±

√
ω2

cy − 2ω2
x
)
,

where ωcy is the cyclotron frequency. In our notation ωcy = 1/ε.
3. It is clear that the motion in the −→e1 direction is decoupled from the motion in the other two directions. More precisely, 

a charged particle performs in an ideal Penning trap three independent motions with characteristic frequencies: a 
modified cyclotron motion (at frequency ω+), the axial motion (at frequency ωx), and the magnetron motion or the 
E × B drift (at frequency ω−).

4. We have aε ∼ 1
ε and bε ∼ ε when ε → 0. Therefore, the solution in (23) oscillates in time at three scales, 2πε, 1 and 

2π/ε. In addition, we can identify initial conditions leading to solutions which are oscillating at the desired scale(s) by 
equating to zero the corresponding coefficients.

Next, we derive the reduced model for equation (21). More precisely, we apply [4, Theorem 3.3] to write the specific 
first order two-scale model to the system (21)-(22). Recalling the formula in [4, Theorem 3.3], the first-order approximation 
of the solution to the model (21)-(22) is given by
7
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G(t) =
⎛
⎜⎝ x0

(
t,

t − s

ε

)
v0

(
t,

t − s

ε

)
⎞
⎟⎠ + ε

⎛
⎜⎝ x1

(
t,

t − s

ε

)
v1

(
t,

t − s

ε

)
⎞
⎟⎠ , (26)

where, as in section 4.1, the terms in the expansion are given by(
x0(t, θ)

v0(t, θ)

)
=

(
y0(t)

R(θ)u0(t)

)
(27)

and (
x1(t, θ)

v1(t, θ)

)
=

(
y1(t) +R(θ)u0(t)

R(θ)u1(t) +R(θ)E(y0(t))

)
. (28)

Then, in the particular case of the electric field in (22), we have that 
(
y0(t), u0(t)

)
is solution to

dy0

dt
=

⎛
⎝ (u0)1

0
0

⎞
⎠ ,

du0

dt
=

⎛
⎝ −c(y0)1

0
0

⎞
⎠ and

{
y0(s) = x,

u0(s) = v,
(29)

with (x, v) the initial condition in (21) and that 
(
y1(t), u1(t)

)
is solution to

dy1

dt
=

⎛
⎝ (u1)1

c
2 (y0)3

− c
2 (y0)2

⎞
⎠ ,

du1

dt
=

⎛
⎝ −c(y1)1

− c
2 (u0)3

c
2 (u0)2

⎞
⎠ and

{
y1(s) = 0,

u1(s) = 0.
(30)

Equations (29)-(30) are easy to solve, their solutions are{
y0(t) = (

x1 cos(
√

c (t − s)) + v1√
c

sin(
√

c (t − s)), x2, x3
)T

,

u0(t) = ( − x1
√

c sin(
√

c (t − s)) + v1 cos(
√

c (t − s)), v2, v3
)T

,

and respectively{
y1(t) = (

0, c
2 x3(t − s), − c

2 x2(t − s)
)T

,

u1(t) = (
0, − c

2 v3(t − s), c
2 v2(t − s)

)T
.

Replacing (27)-(28) in (26), we obtain

G(t) =
(

y0(t)
R( t−s

ε )u0(t)

)
+ ε

(
y1(t) +R( t−s

ε )u0(t)
R( t−s

ε )u1(t) +R( t−s
ε )E(y0(t))

)
, (31)

and thus, getting the analytic expressions of y0, u0, y1, u1, E and of matrices R and R in the above formula leads to the 
analytic form of the approximation G(t) to the solution 

(
xε(t), vε(t)

)
when ε is small enough and at any time t ∈ [s, s +�S]. 

The obtained formula will be used in section 6 for the coarse solver.

5. The case of a variable magnetic field

In this section we study the case of a magnetic field with a strong part which is variable and a bounded part which is 
constant (see [4, Section 3.4]). In addition, we restrict to the case without electric field. More precisely, we consider equation 
(1) in the form⎧⎪⎪⎨

⎪⎪⎩
dxε

dt
= vε, xε(s) = x,

dvε

dt
= 1

ε

(
vε ×M(xε)

) + vε × −→e3 , vε(s) = v,

(32)

where

M(x) = 1√
x1

2 + x2
2

⎛
⎝ −x2

x1
0

⎞
⎠ .

We first notice that the assumption on the 2π -periodicity of the solution Z to equation (6) is satisfied. Then, unlike the test 
cases in section 4, we do not have an analytic expression for the solution of equation (32). The reduced model we will use 
8
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in the parareal method for this case, is the two-scale limit and not the first order approximation. The reason is that using 
the first order term in the asymptotic expansion becomes almost impossible due to its complex form (see [4, Theorem 3.6 
& Appendix A]).

Next, we detail the two-scale limit model approximating equation (32) when ε → 0. Following [4, Theorem 3.6], the 
limit term in the expansion is given by(

x0(t, θ)

v0(t, θ)

)
=

(
y0(t)

Zv
(
t; θ,y0(t),u0(t)

) )
,

where the components of Z(t; θ, x, v) = (
Zx(t; θ, x, v), Zv(t; θ, x, v)

)T
are Zx(t; θ, x, v) = x and Zv(t; θ, x, v) = C(θ, x)v, 

with

C(θ,x) =

⎛
⎜⎜⎜⎝

x1
2 cos θ+x2

2

x1
2+x2

2
x1x2(cos θ−1)

x1
2+x2

2 − x1 sin θ√
x1

2+x2
2

x1x2(cos θ−1)

x1
2+x2

2
x2

2 cos θ+x1
2

x1
2+x2

2 − x2 sin θ√
x1

2+x2
2

x1 sin θ√
x1

2+x2
2

x2 sin θ√
x1

2+x2
2

cos θ

⎞
⎟⎟⎟⎠

and where 
(
y0(t), u0(t)

)
is solution to

dy0

dt
= A(y0)u0,

du0

dt
= β(y0,u0) and

{
y0(s) = x,

u0(s) = v,
(33)

with (x, v) the initial condition in (32) and with

A(y) = 1

y1
2 + y2

2

⎛
⎝ y2

2 −y1y2 0
−y1y2 y1

2 0
0 0 0

⎞
⎠ , β(y,u) =

⎛
⎜⎝

u2(u1y2−u2y1)

y1
2+y2

2

u1(u2y1−u1y2)

y1
2+y2

2

0

⎞
⎟⎠ .

Thus, in this case, the approximation G(t) to the solution 
(
xε(t), vε(t)

)
when ε is small enough, is obtained first by solving 

the system (33) and then

G(t) =
(

y0(t)
C
( t−s

ε ,y0(t)
)
u0(t)

)
. (34)

6. Numerical results

First, in section 6.1 we analyze the time interval of validity and the accuracy of the reduced models for each test case. 
Then, we present numerical experiments illustrating the convergence of the parareal algorithm. In all the cases we consider, 
we obtained the numerical convergence with a number of parareal iterations K much smaller than the number N of the 
time slices of the interval [0, T ].

The reduced models that we use are zero-th or first order approximations of the initial stiff equation until a final 
time of order 1. The parareal algorithm allows us to perform simulations in long times, of order 1/ε or larger, by using 
the reduced model on time intervals where the latter is proved to be valid. For each case, we study the convergence of 
the algorithm when ε is fixed and also when making the parameter ε vanishing. This last issue is meaningful from the 
application viewpoint, since in realistic plasma physics phenomena such parameters are not fixed to a single value during 
the simulation but they can decrease in time.

6.1. Validity of the reduced models

The theorems from [4] prove convergence over time intervals of length 1 of the original models to the reduced models 
when the parameter ε vanishes. Therefore we cannot expect, in theory, that the approximation be valid over intervals of 
length 1/ε or larger. In addition, to the best of our knowledge, there are no estimates for the rate of convergence. In this 
section, we consequently assess numerically the quality of approximation of the reduced models in valid final times, i.e. in 
times of order O(1). We then check how large the final time can be such that the reduced models still provide satisfactory 
approximations. To this end, we plot the relative error

Error(Tn) = ‖Gn −X (Tn)‖1

‖X (Tn)‖1
, (35)

where ‖ · ‖1 stands for the 
1 norm in R6, Gn stands for the reduced model solution at time Tn and X (Tn) stands for the 
original model solution at time Tn . Recall that Gn and X (Tn) have analytic forms for the test case in section 4.2, whereas 
9
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Fig. 1. The position trajectories until final time 5 of two particles: (36) at the left panel and (37) at the centre, following the model in (32). The projection 
of their motion on the perpendicular plane to →e3 is at the right panel.

Fig. 2. The position trajectories until final time 50 of two particles: (36) at the left panel and (37) at the right, following the model in (32).

numerical approximations are used for both for the test case in section 5. Next, we do not discuss the case described in 
section 4.1 since writing the solutions of the original and the reduced models in the forms (14) and (20) respectively, shows 
that parareal convergence occurs after one iteration (see next section).

For the case considered in section 4.2 we recall that both the original and the first-order reduced models have analytic 
solutions given by (23) and (31). First, we remark that the exact solutions corresponding to the values of ε ∈ {0.1, 0.04} are 
not well-approximated by the reduced model, see Fig. 3. We can see that beyond the final time T = 50 the approximations 
are not acceptable anymore. In contrast, for ε = 0.01 or smaller, the relative error is below 0.1 till the final time T = 2500, 
meaning that ε is small enough so that the reduced model provides a good approximation. Thus, if ε = 0.01, we obtain an 
acceptable relative error at the final time T = 2500, which means almost 40000 cyclotron orbits.

We now consider the test case of section 5. Here, we solve both models numerically, since no analytic expressions of 
their solutions are available. More precisely, we solve the system (32) by the symmetric and volume-preserving method 
G4 of order 4 described in [11] and the limit model in (33) by the explicit Runge-Kutta 4 method. We use for the limit 
model approximation a time step equal to 0.625, whereas for the original dynamics we use a time step about 2πε/80 to 
accurately solve the cyclotron motion. We consider two initial conditions

x = (0,1,1)T , v = (1, ε,0)T (36)

and

x = (1,1,1)T , v = (1, ε,0)T . (37)

Let us do some qualitative remarks about the trajectories of both particles. First, notice that the solutions obtained with 
these initial conditions behave differently: for the first particle, the solution oscillates at two time scales (a rapid oscillation 
of order ε and a slower oscillation of order 1) whereas for the second one, the solution entails additionally a slow motion, 
consisting of a linear drift in the −→e3 direction (see Fig. 1). Also, the amplitude of the rapid oscillation in position in the −→e3
direction is of order ε2 for one particle and of order ε for the other.

Then, as we can deduce from (33), the two-scale limit model does not capture the motion in the −→e3 direction, providing 
only an approximation of the projected motion on the perpendicular plane to −→e3 . Thus, the limit model misses the −→e3 -drift 
motion of the particle in (37). Eventually, the right panel in Fig. 1 shows that the planar angular velocity of the particle in 
(36) is larger than that of the particle in (37). We plot the relative error of the reduced (limit) model for several values of 
ε in Fig. 4. We can see that the behaviour of the error displays significant difference between these two initial conditions. 
More precisely, we observe that at final time T = 100, the reduced model does not provide a good approximation of the 
10
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Fig. 3. Evolution with respect to time of the relative errors of the reduced model solution in (31) with respect to the solution in (23) with the initial 
condition in (38), in short time (at left) and long time (at right), for several values of ε.

Fig. 4. Evolution with respect to time of the relative errors of the numerical approximation of the reduced model in (34) with respect to the numerical 
solution of (32) with the initial condition in (37) (at left) and that in (36) (at right), for several values of ε.

Fig. 5. Evolution with respect to time of the relative errors of the reduced model in (34) with respect to the solution of (32) with the initial condition in 
(37) (at left) and that in (36) (at right). The fast cyclotron period is denoted by P = 2πε where ε = 0.01. Two time steps for the reduced model are used: 
0.625 ∼ 10P and 0.3125 ∼ 5P .

original model when ε ∈ {0.1, 0.05} in the case of the initial condition given by (37). On the contrary, when the initial 
condition is given by (36), the error is acceptable. However, for both particles, we deduce from Fig. 4 that the errors are 
large for times of order 2500, for any value of ε. In addition, when diminishing the time step for the numerical solver of 
the reduced model, we observe that the error drastically decreases when using the initial condition in (36). This result does 
not hold for the initial condition in (37), see Fig. 5.

In conclusion, we obtained for the first test case that the reduced model accurately approximates the original model in 
large times if ε is sufficiently small. For the second test case the reduced model fails to approximate the original dynamics 
in long times for every considered value of ε. We show in the next sections that the parareal algorithm allows to enhance 
the situation.
11
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Table 1
Numbers of cyclotron periods (P = 2π/aε ) enclosed in a time step of the coarse solver for 
several values of N . We have T = 5, �t = T /N , and ε = 0.01.

N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

�t/P 39.79 19.89 9.95 4.97 2.49 1.24 0.62

6.2. The test cases with strong constant magnetic field

First, we discuss about the case in section 4.1 of a uniform but time varying electric force in equation (11). Assume we 
fix an initial condition and we fix ε to a small value, say ε = 0.01. Then we use the exact solutions in (14) and (20) for the 
fine propagator F and respectively the coarse solver G . We observe that the parareal algorithm writes in this case

Uk+1
n+1 = F(Tn+1, Tn, Uk+1

n ), ∀n ∈ {0, . . . , N − 1},∀k ≥ 0.

In particular, for k = 1 we have

U 1
n+1 = F(Tn+1, Tn, U 1

n), ∀n ∈ {0, . . . , N − 1}
and therefore, since the exact flows are used for the propagators F and G , the parareal algorithm provides an exact solution 
in one iteration. Though easy to solve, this test case underlines the strength of the strategy: thanks to the writing of the 
original and reduced flows as (14) and (20) respectively, the use of the reduced model through the parareal algorithm leads 
to high accuracy in one iteration, whereas the error of the reduced model alone is very large (of order 1, following our 
simulations when ε is fixed to ε = 0.01).

We now treat the case in section 4.2. We consider the initial condition

x = (1,1,1)T , v = (1,1,1)T (38)

for solving the model (21)-(22). We set c = 2 and we vary ε verifying (25). The solution issued from this initial condition 
oscillates at three definite time scales (see Remark 4.2).

• We first fix ε = 0.01. As a first approach, we apply the parareal method in a standard way, meaning that we use for the 
coarse propagator G the classical Runge-Kutta 4 method for the initial model, with a bigger time step than that for the fine 
propagator. However, the coarse time step still needs to solve the smallest scale in order to have stability and reasonable 
accuracy. In this case, we have only to investigate the needed number of the parareal iterations for achieving convergence. 
More precisely, we first set the final time T = 2πε (one rapid oscillation), N ∈ {8, 16} (larger N is not interesting), �t =
T /N , the number of coarse time steps on each time slice MG = 1 and the number of fine time steps on each time slice 
M F = 80/N . Thus, the fine time step δt = T /80 is fixed with respect to N and additionally is small enough for capturing 
the smallest scale. We plot at the top of Fig. 6 the relative error (in L∞[0, T ]) between the solution X (tn) obtained with 
the fine solver and the parareal solution U k

n , as a function of the number k of parareal iterations

Error(k) = maxn∈{1,...,N} ‖Uk
n −X (tn)‖1

maxn∈{1,...,N} ‖X (tn)‖1
, (39)

where ‖ · ‖1 stands for the 
1 norm in R6. We obtain convergence of the algorithm for small k (4 or 5), however in a case of 
a too small T from the application point of view. When taking a larger final time T = 8πε (4 oscillations) with M F = 320/N
and δt = T /320, we have convergence of parareal for k very close to N (see the bottom of Fig. 6 for N ∈ {8, 16}). We can 
conclude that this parareal strategy provides convergence after k � N iterations and with a ratio �t/δt ∼ 1, which is not an 
interesting approach.

• We now propose to use for the coarse solver G the reduced model in section 4.2 and we thus make use of the analytic 
expression in (31). In addition, we use for the fine solver F the explicit form of the solution in (23). We start by illustrating 
the convergence of the algorithm in short time simulations. We fix the final time T = 5 and the interval [0, T ] is partitioned 
in N ∈ {2, 4, 8, 16, 32, 64, 128} sub-intervals. The big time step is thus �t = T /N . It is interesting to note the size of the 
coarse time step �t with respect to the small cyclotron period P , when N varies (see Table 1). Larger is �t/P , larger is the 
ratio �t/δt and thus, cheaper is the coarse propagator.

We plot in Fig. 7 the relative error in L∞[0, T ] defined in (39) by taking the solution in (23) for X (tn). The case k = 0
corresponds to the relative error of the solution of the reduced model with respect to the exact solution of the original 
model. We obtained convergence of the algorithm after a maximum of 6 iterations for all the considered values of N .

• We now analyze the behaviour of the parareal algorithm when ε decreases, in which case the reduced model becomes a 
more accurate approximation for the initial equation. We display in Fig. 10 the relative errors illustrating the convergence 
of the parareal algorithm. We plot for each value of N in the set {8, 16, 32, 64} the errors for several values of ε at final 
time T = 500ε which corresponds to approximately 80 cyclotron periods. As expected, the initial errors of the parareal 
12
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Fig. 6. Convergence rate of standard parareal algorithm for the test case in section 4.2.

Fig. 7. Convergence of the parareal algorithm for the Penning trap test case at short final time T = 5. The fast cyclotron period is denoted by P ∼ 2πε.

method (i.e. k = 0) are decreasing when ε becomes smaller. Also, the smaller is ε, the faster is the convergence of the 
parareal algorithm since the better is the approximation of the reduced model. We already observed in section 6.1 that for 
ε ∈ {0.1, 0.04}, the reduced model induces a much bigger error than for the other smaller values of ε. However, with the 
parareal strategy we obtain acceptable convergence results for ε = 0.1, which entails a O(1) error for the reduced model: 
the parareal method convergences after k = 10 (resp. k = 14) iterations when N = 32 (resp. N = 64). Except for the values 
of ε ∈ {0.1, 0.04}, the convergence of the parareal algorithm for all the considered values of N is obtained after a maximum 
of k = 5 iterations. We also emphasize the achievement of an uniform error with respect to ε.

• Then, we consider the more challenging case of a long time simulation (of order 1/ε). We fix the final time T = 600 ∼
2π/bε , where bε is defined in (24) and we take N in the set {120, 240, 480, 960}. As previously, we plot in Fig. 8 the relative 
errors between the exact solution and the parareal solution, as a function of the number k of parareal iterations. For this 
case, we can conclude with underlying the strength of using the parareal algorithm. The reduced model is not proved to 
be an approximation of the initial model in time of order 1/ε. However, in a few numbers of parareal iterations we obtain 
high accuracy by applying the reduced model on valid intervals. Thus, if parallelism is to be used, the computational cost in 
the case of N = 480 (resp. N = 960) could drastically be reduced, achieving a round-off error in only 7 parareal iterations. 
In this case, a time slice includes approximately 20 (resp. 10) rapid oscillations.
13



Fig. 8. Convergence of the parareal algorithm for the Penning trap test case at final time T = 600. The fast cyclotron period is denoted by P ∼ 2πε.

Fig. 9. Convergence of the parareal algorithm for the Penning trap test case when the coarse time step is kept constant to 1.25 and the final time T is 
increasing with N . The fast cyclotron period is denoted by P ∼ 2πε.

• Finally, we show the outcome of much longer simulations, where we keep the coarse time step fixed while the final time 
is increased with N . This framework is relevant for applications where one needs to integrate over very long times. We fix 
ε = 0.01 and the coarse time step to �t = 1.25. The final time T is chosen in the set {2000, 4000, 8000, 16000, 32000}, see 
Fig. 9. Setting N = 25600, we observe that when T = 32000, i.e. T larger than 500000 cyclotron orbits, the convergence of 
the parareal algorithm is obtained in k = 21 iterations, with an error around 10−13. In our opinion this is an excellent result 
which is due to the accuracy of the reduced model. Being of first order, the model provides good approximations of the 
slow motion and of the fast oscillation.

6.3. The test case with strong variable magnetic field

We now consider solving the problem in (32) with the initial conditions in (36) and (37). As in the previous section, we 
discuss the results of our simulations when ε = 0.01 in final times of order 1 and 1/ε, and then we perform simulations 
in short final times by varying the values of ε. We recall that we use a symmetric and volume-preserving scheme and 
the classical Runge-Kutta 4 method for the models in (32) and (33) respectively, for the fine and respectively the coarse 
propagators. However, while the F propagator needs a time step δt which is a fraction of the rapid oscillation (P ∼ 2πε), 
the G propagator is computed with a time step �t much larger than 2πε (see typical values in Table 1).

• We first set ε = 0.01. We fix the final time T = 5 and we partitioned the interval [0, T ] in N ∈ {2, 4, 8, 16, 32, 64, 128}
sub-intervals. The coarse time step is �t = T /N and the fine time step is fixed to δt = T /6400, which is sufficiently small 
to solve the rapid oscillation. We plot at the top of Fig. 11 the relative error defined in (39) of the parareal solution with 
respect to the reference one computed with the F propagator. We observe convergence after a maximum of k = 9 iterations 
when N ∈ {32, 64, 128} which could lead to satisfactory speed-up if parallel processing is set up.

• Then, we plot in Fig. 12 the errors of the parareal algorithm when ε vanishes. For a fixed number of time slices of 
[0, T = 500ε] we perform simulations when ε goes in {0.01, 0.04, 0.01, 0.004, 0.001, 0.0004, 0.0001}. We find numerically 
L. Grigori, S.A. Hirstoaga, V.-T. Nguyen et al. Journal of Computational Physics 436 (2021) 110282
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Fig. 10. Convergence of the parareal algorithm in short final times, T = 500ε ∼ 80P , for several small values of ε, for the test case in section 4.2.

Fig. 11. Convergence of the parareal algorithm for the test case in section 5 in short final time T = 5 ∼ 80P (at the top) for the initial conditions in (36)
(left panel) and (37) (right panel) and in longer time T = 50 (at the bottom).
15
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Fig. 12. Convergence of the parareal algorithm in short final times, T = 500ε ∼ 80P , for several small values of ε, for the initial condition in (37), for the 
test case in section 5.

Fig. 13. Convergence of the parareal algorithm for the test case in section 5 when the coarse time step �t is kept constant and the final time is increasing 
with N . At the left panel: the initial condition in (36) and �t = 0.625. At the right panel: the initial condition in (37) and �t = 1.25. The fast cyclotron 
period is denoted by P = 2πε.

the property of smaller errors with smaller ε, for every k, due to the smaller error of the reduced model with respect to the 
initial equation. We obtain unsatisfactory results when ε = 0.1, since we recall from the left panel of Fig. 4 that the reduced 
model is not a good approximation at T = 50 for this case. On the contrary, the value of ε = 0.04 leads to satisfactory 
parareal results, when N ∈ {32, 64}. For the other smaller values of the parameter, we observe convergence of the algorithm 
for all N after a maximum of k = 9 iterations. As for the test case in the previous section, we obtain uniform error with 
respect to ε.

• However, the most interesting problem is that of a long time simulation. We now fix T = 50 and we take N in the set 
{20, 40, 80, 160}. A bigger value of T can be treated similarly, since the trajectories of both particles evolve as until T = 50, 
with a linear drift in the −→e3 direction for the particle in (37) (see Fig. 2). The fine time step is set to δt = T /64000. We 
plot the relative error at the bottom of Fig. 11. We obtained when N is small much larger errors of the parareal algorithm 
for the particle in (36) because of its larger perpendicular angular velocity, as mentioned above. Indeed, when N is small, 
i.e. when the time step is big, the error of the limit model is too large so that the parareal method (or the fine solver) can 
catch a convenient accuracy in a small number of iterations. At the top of Fig. 11, N = 2 means a coarse time step of almost 
40 rapid oscillations; we have the same remark for N = 20 at the bottom of the figure. Nevertheless, we note that in the 
16
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Fig. 14. Evolution of the energy error defined in (40) of the parareal algorithm for the test case in section 5, until the final time T = 1000 = 15915P with 
P = 2πε. Left panel: the initial condition in (36) with �t = 0.625 for the coarse solver. Right panel: the initial condition in (37) with �t = 1.25 for the 
coarse solver.

interesting case of N = 80 (resp. N = 160), we achieve convergence after only k = 9 iterations. This value of N corresponds 
to a coarse time step of almost 10 (resp. 5) rapid oscillations and to a ratio �t/δt of 800 (resp. 400). Thus, coupled to the 
parallel computations of the fine solver, this strategy could be very effective in terms of computational costs.

• Finally, we perform longer simulations, by keeping the coarse time step fixed while the final time increases with N . The 
obtained results (see Fig. 13) are not as good as those reported in the previous section, as a consequence of the accuracy of 
the approximation of the reduced model (compare Fig. 4 to Fig. 3). We fix ε = 0.01, the coarse time step to �t = 1.25 and 
we use the initial condition in (37); smaller values of �t do not significantly improve the error of the reduced model. As for 
the particle in (36), we fix �t = 0.625, in order to approximate the slow circular motion with a similar accuracy as for the 
other particle. When considering the initial condition in (37), the results of the parareal algorithm are not fully satisfactory 
when the final time is large (see Fig. 13): for example, when T = 1000, i.e. almost 16000 cyclotron periods, we obtain an 
error of order 10−5 after less than k = 60 iterations (recall N = 800) but afterwards, the error decays very slowly, a quite 
large number of parareal iterations being necessary to achieve a much smaller error. The situation is completely different 
when using the initial condition in (36). We obtain good convergence results of the parareal algorithm in large times: at 
T = 1000, for N = 1600 time slices, we achieve a 10−10 error after k = 25 iterations.

To further understand the rationale behind the slow convergence of the algorithm for this test case, we assess the long-
term energy error, which is a major issue in applications. First, we verified that the volume-preserving numerical scheme G4, 
used as fine solver, preserves the Hamiltonian of the system (32), at the accuracy of the machine precision. More precisely, 
the Hamiltonian is H(x, v) = |v|2/2, since there is no electric term. Following [7], we plot in Fig. 14 the error in the energy

H(xk
n,vk

n) −H(x0,v0) (40)

where (x0, v0) is the initial condition and (xk
n, vk

n) is the k-th iterate of the parareal algorithm. We display, for both initial 
conditions given by (36) and (37), the energy error corresponding to the first 6 parareal iterations and then, the k = 10-th 
iterate respectively the k = 50-th iterate, taking into account when the parareal convergence is achieved (see Fig. 13). We 
can see that the energy error of the particle in (36) has no large amplitude oscillations in time and the convergence is quite 
fast, unlike the particle in (37). This is in accordance with the results in Fig. 13.
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