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Abstract— The control of quantum phenomena is a topic that
has carried out many challenging problems. Among others, the
Hamiltonian identification, i.e, the inverse problem associated
with the unknown features of a quantum system is still an
open issue. In this work, we present an algorithm that enables
to design a set of selective laser fields that can be used, in
a second stage, to identify unknown parameters of quantum
systems.

I. INTRODUCTION

The possibility to use coherent light to manipulate molec-

ular systems at the nanoscale has been demonstrated both

theoretically [1] and experimentally [17]. Different types of

methods have proven their relevancy for various settings,

ranging from electron to large polyatomic molecules [2], [8],

[10], [11], [15].

At the same time, the ability to generate a large amount

of quantum dynamics data in a small time frame can

also be used to extract from experiments the values of

unknown parameters of quantum systems. The corresponding

inverse problem, usually called Hamiltonian identification

has recently been subject to significant developments through

encouraging experimental results [6].

Various formulations in an optimization settings have been

studied. Because of the nature of the available data, zero

order methods were first tested, see e.g. the technique of

map inversion [18]. The use of optimal control techniques

was then introduced [3], [7].

Contrary to this last class of methods, we present in this work

a methodology that enables to handle situations where the ex-

perimental measurements are provided only at a given time.

Our approach is based on a precomputation that provides a

family of selective laser fields. Roughly speaking, these laser

fields are designed iteratively to highlight variations in the

parameters that are subject to the identification. In a second

stage, these fields and the experimental measurements are

used to assemble a nonlinear system satisfied by the to-be-

identified parameters.

The paper is organized as follows: the optimization frame-

work and the assumptions we use are presented in Sec.

II. In Sec. III, the structure of our algorithm is given.

The procedures used in the two parts of this algorithm are

described in Sec. IV and Sec. V. The identification step is

explained in Sec. VI. Details about practical implementation

and some numerical results are given Sec. VII. We conclude

with some remarks in Sec. VIII.

Throughout this paper, Ω is a spacial domain in R
d, d =

1, 2, 3, L2 denotes the space of complex valued square

integrable functions over Ω, and 〈., .〉 the usual Hermitian

product associated to L2. The following standard convention

is used:

〈a|O|b〉 := 〈a,O(b)〉, a ∈ L2, b ∈ L2, O ∈ L(L2;L2)

the set of all linear operator from L2 into L2. Finally,

we use ℜ(z),ℑ(z) to denote respectively the real and the

imaginary part of a complex number z.

II. THE IDENTIFICATION PROBLEM

We first introduce the model and the framework used in

this paper.

A. Control of the Schrödinger Equation

Consider a quantum system ψ ∈ H1, with norm ‖ψ‖L2 =
1, evolving according to the Schrödinger equation

{
iψ̇ = [H0 + V + ε(t)µ]ψ
ψ(0) = ψ0,

(1)

where H0 is the kinetic energy operator, V ∈ L(L2;L2) the

potential operator and µ ∈ L(L2;L2) the dipole moment

operator coupling the system to a time-dependent external

laser field ε(t). In this context, ε reads as a control since it

can be chosen by the experimenter.

In the settings we consider here, we assume that the

internal Hamiltonian H = H0 + V is known so that the

goal is to identify the dipole moment operator µ. The

generalization to the identification of V should not give rise

to any particular problem and is left to a future contribution.

The basic hypothesis made on µ is that it belongs to

(or actually can be conveniently approximated by) a fi-

nite dimensional space spanned by some basis set Bµ =
(µℓ)ℓ=1,...,L. In this work, we restrict ourself to the case

where µ is a bounded operator and we assume that H0 + V

generates a semi-group so that the existence of solutions of

(1) is then guaranteed. One can refer to [4] for more details

about the functionals spaces associated to (1) .

B. Experimental measurements and controllability

In order to perform the identification, we assume that

given a time T and a laser field ε ∈ L2(0, T ), the

experimenter can measure, for some fixed state ψ1 ∈ L2,

with norm ‖ψ1‖L2 = 1, the value ϕ(µ, ε) := 〈ψ1, ψ(T )〉.

Remark 1: Note that at the experimental level, ϕ(µ, ε)
cannot be measured, and is considered for the sake of sim-

plicity. A more realistic measurement would be |ϕ(µ, ε)|2.

Yet, the methodology presented in this paper -except Algo-

rithm 2- also applies for this type of measurement. Further

work has to be done to tackle general observables.
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Note that all what follows still holds when considering

several measurements a time T , i.e., in the case where a set

of measurement (〈ψℓ, ψ(T )〉)ℓ=1...,p, with p > 1, is known.

Finally, we assume that the system under consideration is

wavefunction controllable, i.e., that ε ∈ L2(0, T ) 7→ ψ(T ) is

surjective. In our setting, this assumption holds in the case

where the spectrum of H0 + V has a discrete spectrum.

See, e.g. [1], [5] for more details about the controllability

of quantum systems.

C. Formulation of problem

Our identification method is based on a particular for-

mulation of the identification problem that we now briefly

introduce.

Denote by µ⋆ the actual dipole moment operator of a given

system. The solution µ = µ⋆ of our problem also solves the

minimization problem:

inf
µ∈L(L2;L2)

sup
ε∈L2(0,T )

|ϕ(µ, ε)− ϕ(µ⋆, ε)|2. (2)

This settings highlights the fact that as long as µ 6= µ⋆, a

selective laser field should be designed so that the difference

between µ and µ⋆ is discerned through the measurement

ϕ(µ, ε).

III. STRUCTURE OF THE ALGORITHM

Our algorithm consists in designing, through a finite

iterative procedure, a set of selective laser fields. We start

with the general structure of our algorithm. Details about its

steps are given in the next sections.

A. The selective laser fields computation greedy algorithm

Starting from the basis set Bµ = (µℓ)ℓ=1,...,L, the

algorithm builds up iteratively a set of L selective laser

fields as follows.

Algorithm 1: (Selective laser fields computation greedy

algorithm) Let us define ε1 a laser field that solves the

problem:

sup
ε∈L2(0,T )

|ϕ(µ1, ε)|
2.

Suppose now that at the step k, with 1 < k ≤ L, a laser field

εk−1 is given. The computation of εk is performed according

to the two following sub-steps:

1) Fitting step : Find (αkj )j=1,...,k−1 that solves the prob-

lem:




ϕ(
∑k−1
j=1 α

k
jµ

j , ε1) = ϕ(µk, ε1)
...

ϕ(
∑k−1
j=1 α

k
jµ

j , εm) = ϕ(µk, εm)
...

ϕ(
∑k−1
j=1 α

k
jµ

j , εk−1) = ϕ(µk, εk−1),

(3)

in the minimum mean square error sense.

2) Discriminatory step : Find εk that solves the problem:

εk = argmaxε∈L2(0,T )|ϕ(µk, ε)− ϕ(

k−1∑

j=1

αkjµ
j , ε)|2.

The initialization of the algorithm is somehow arbitrary,

the only requirement is that ε1 has a link with the type of

measurement. In our case, we decide to maximize it.

Remark 2: Note that, in opposition to usual approaches

(see e.g. [7], [3]), our method plays the role of a precom-

putation step since the actual measurements ϕ(µ⋆, ε) are not

required at this stage.

B. Intuitive interpretation of the algorithm

In the first sub-step of an iteration of Algorithm 1, one

looks for a defect of selectivity of the current laser fields

ε1, . . . , εk−1: in the case the minimum reaches zero, two dis-

tinct dipole moment operators give rise to two identical mea-

surements when excited with the laser fields ε1, . . . , εk−1.

On the contrary, the second sub-step aims at computing a

laser field that compensates this defect. These two sub-steps

corresponds respectively to the minimization part and to the

maximization part of the formulation (2).

Remark 3: Even if no hierarchy is assumed in the basis

Bµ, this algorithm should be viewed as a first step towards

future works that handle infinite dimensional systems. In

such a framework, the sum
∑k−1
j=1 α

k
jµ

j would read as an

asymptotic expansion of the dipole moment operator.

This algorithm belongs to the class of greedy algorithms,

since it follows the problem-solving’s heuristic of making

the locally optimal choice (in the second sub-step) at each

stage with the hope of finding the global optimum that

solves (2).

IV. FITTING STEP

Let us first focus on the first sub-step of the algorithm.

Consider an integer k such that 1 < k ≤ L and denote by

Kk the functional (defined on R
k−1):

Kk(α) =

k−1∑

m=1

|ϕ(µk, εm)− ϕ(

k−1∑

j=1

αjµ
j , εm)|2.

During this sub-step, one has to find the minimum of

the cost functional Kk. To do this, a standard global

minimization algorithm is applied to this minimum mean

square error associated problem.

Note that, for small values of L, the gradient of the

functional Kk can be computed thanks to the formula:

∇Kk(α).δα =

k−1∑

m=1

2ℜ
(
〈ψαεm(T )− ψkεm(T ), ψ1〉〈δψ

α
εm(T ), ψ1〉

)
,

where ψαεm and ψkεm are the solutions of Eq. (1) with ε = εm

as laser field, and µ =
∑k−1
j=1 αjµ

j and µ = µk respectively

WeA11.4

376



as dipole moment operator. The variation δψα is computed

thanks to:





iδψ̇αεm = εk−1
(∑k−1

j=1 αjµ
j
)
δψαεm

+[H0 + V + εk−1(t)
(∑k−1

j=1 δαjµ
j
)
]ψαεm

δψαεm(0) = 0.

In this way the computation of the components of ∇Kk(α)
can be parallelized to make the use of gradient methods

feasible.

V. DISCRIMINATORY STEP

To achieve the second sub-step of Algorithm 1, we adapt

an efficient strategy usually used in in quantum control. This

strategy has given rise to a large class of algorithms often

called ”monotonic schemes”. For a general presentation of

these algorithms, we refer to [13].

A. Improvement of the selectivity of a given laser field

Let us present in more details how this strategy applies

in our case. Note first that, given a laser field ε ∈ L2(0, T ),
and two dipole moment operators µ̃ and µ̂, one has:

|ϕ(µ̃, ε)− ϕ(µ̂, ε)|2 = 〈ψ̃(T )− ψ̂(T )|Oψ1
|ψ̃(T )− ψ̂(T )〉,

where Oψ1
= ψ1.ψ

T
1 , ψ̃ and ψ̂ are the solutions of Eq.

(1) with respectively µ = µ̃ and µ = µ̂ as dipole moment

operator.

In order to compare the selectivity of ε and ε′, we

introduce the functional:

J(ε) = 〈ψ̃(T )− ψ̂(T )|Oψ1
|ψ̃(T )− ψ̂(T )〉 − β

∫ T

0

ε2(t)dt,

which has to be maximized. For sake of simplicity, we omit

the dependence of J with µ̃ and µ̂ in the notations.

The additional term β
∫ T
0
ε2(t)dt, is introduced for two

complementary reasons: first, as it penalizes the L2-norm

of the laser field, it enables to obtain feasible laser fields

and secondly, it improves the convergence of Algorithm 2

below.

Consider now another laser field ε′ ∈ L2(0, T ), and denote

by ψ̃′ and ψ̂′ the corresponding solutions of Eq. (1) with

µ = µ̃ and µ = µ̂ respectively. We introduce the two adjoints

states defined by:

{
i ˙̃χ = [H0 + V + ε(t)µ̃]χ̃

χ̃(T ) = Oψ1

(
ψ̃(T )− ψ̂(T )

)
,

(4)

and {
i ˙̂χ = [H0 + V + ε(t)µ̂]χ̂

χ̂(T ) = Oψ1

(
ψ̃(T )− ψ̂(T )

)
.

(5)

One has:

J(ε′)− J(ε) = 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+2ℜ〈δψ′(T )− δψ(T ), χ̃(T )− χ̂(T )〉

−β

∫ T

0

ε′2(t)− ε2(t)dt

= 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+

∫ T

0

(ε′(t)− ε(t))

(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉−2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉−β (ε′(t)+ε(t))

)
dt,

(6)

where we denote δψ′(T ) = ψ̃′(T ) − ψ̂′(T ) and δψ(T ) =
ψ̃(T )− ψ̂(T ). Identity (6) gives a criterion to guarantee that

ε′ is more selective than ε. Indeed, suppose that ε′ satisfies

for all t ∈ [0, T ] the condition:

(ε′(t)− ε(t))
(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉 − 2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉

− β(ε′(t) + ε(t))
)
≥ 0, (7)

then J(ε′) ≥ J(ε).
There exist various ways to ensure that (7) holds. For

example [16], one can define ε′ at each time t as the solution

of the equation:

ε′(t)− ε(t) =
θ

β

(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉 − 2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉

− β (ε′(t) + ε(t))
)
,

(8)

where θ is a given strictly positive number. In this case, one

has:

J(ε′)− J(ε) = 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+
β

θ

∫ T

0

(ε′(t)− ε(t))
2
dt ≥ 0,

which is the desired conclusion. In Sec. VII-A, we present an

alternative that can be obtained in a time discretized setting.

B. Discriminatory sub-algorithm

We derive form the previous considerations the following

iterative procedure to define a laser field εk that maximizes

J(ε):

Algorithm 2: (Discriminatory sub-algorithm) Let Tol be

a positive number. Consider an initial guess εk0 and compute

the corresponding solutions of Eq. (1) with µ̃ and µ̂, say ψ̃0

and ψ̂0. Set err = 2.T ol.
While err > Tol, do:

1) Use Eqs. (4–5) with ε = εkℓ , ψ̃ = ψ̃ℓ and ψ̂ = ψ̂ℓ, to

compute χ̃ℓ and χ̂ℓ, respectively.

2) Compute simultaneously the laser field εkℓ+1 and the

states ψ̃ℓ+1 and ψ̂ℓ+1 the solutions of coupled system

composed of Eq. (8) with χ̃ = χ̃ℓ, χ̂ = χ̂ℓ and Eq. (1)

with µ = µ̃ and µ = µ̂ respectively.
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3) ℓ← ℓ+ 1, err = |εkℓ+1 − ε
k
ℓ |.

In [9], one shows that Eq. (8) has a solution and presents

some efficient numerical nonlinear solvers to compute it.

VI. IDENTIFICATION PROCEDURE

Once the L selective fields ε1, ..., εL have been computed,

one can use them experimentally to obtain the corresponding

measurements ϕ(µ⋆, ε1), ..., ϕ(µ⋆, εL).
The identification procedure consists then in finding the

linear combination (α1, ..., αL) that solves the following

nonlinear system:




ϕ(
∑L
j=1 αjµ

j , ε1) = ϕ(µ⋆, ε1)
...

ϕ(
∑L
j=1 αjµ

j , εk) = ϕ(µ⋆, εk)
...

ϕ(
∑L
j=1 αjµ

j , εL) = ϕ(µ⋆, εL).

(9)

in the mean square sense. In this view, the standard

global optimization procedure used for the first sub-step of

algorithm can be applied to the associated problem.

Note that, in a finite-dimensional settings, the existence of

a solution is guaranteed.

VII. NUMERICAL IMPLEMENTATION AND RESULTS

We give here details about the practical implementation of

Algorithm 1, and show its efficiency on an example.

A. Numerical solvers

In order to solve numerically Eq. (1), we use the second

order Strang operator splitting [14]. Given M > 0, a time

step ∆t such that M.∆t = T and an approximation ψj of

ψ(j.∆t) with j < M , this method leads in our case to the

following iteration:

ψj+1 = eiH
∆t
2 eiεjµ∆teiH

∆t
2 ψj . (10)

In the second sub-step of Algorithm 1, Discriminatory sub-

algorithm 2 is adapted to this discrete settings. In this

way, we consider the time-discretized version of the cost

functional J :

J∆t(ε) = 〈ψ̃M − ψ̂M |Oψ1
|ψ̃M − ψ̂M 〉 − β∆t

M−1∑

j=0

ε2j ,

where ε ∈ R
M−1. Fix now two discrete laser fields ε and

ε′, one can then repeat the computation done in Sec. V-A to

obtain:

J∆t(ε
′)− J∆t(ε) = 〈δψ′

M − δψM |Oψ1
|δψ′

M − δψM 〉

+∆t

M−1∑

j=0

(
ε′j − εj

)

(
2ℑ〈χ̃j |µ̃∆t(ε

′
j , εj)|ψ̃

′
j〉 − 2ℑ〈χ̂j |µ̂∆t(ε

′
j , εj)|ψ̂

′
j〉

− β
(
ε′j + εj

))
, (11)

where the vectors χ̃, χ̂, ψ̃′ and ψ̂′ are computed using the

iteration (10) with µ = µ̃∆t(ε
′
j , εj) and µ = µ̂∆t(ε

′
j , εj).

These matrices are the approximations of µ̃ and µ̂ respec-

tively defined by:

µ̃∆t(ε
′
j , εj) = e−iH

∆t
2

eiε
′

j eµ∆t − eiεj eµ∆t

i∆t(ε′j − εj)
eiH

∆t
2

µ̂∆t(ε
′
j , εj) = e−iH

∆t
2

eiε
′

j bµ∆t − eiεj bµ∆t

i∆t(ε′j − εj)
eiH

∆t
2 .

For the sake of simplicity, instead of solving the discrete

version of Eq. (8), we compute ε′j using one step of a

Newton optimization method applied to its corresponding

term in the sum of Eq. (11). This strategy, and the one

corresponding to Eq. (8) are presented in more details in

[9]. Their convergence are proven in [12].

B. Numerical test

1) Settings: To illustrate the ability of our approach, we

consider a simple finite dimensional settings where H0, V

and µ are 3 × 3 Hermitian matrices with entries in C and

ψ(t) ∈ C
3. The internal Hamiltonian we consider is:

H = 10−2




1 0 0
0 2 0
0 0 4


 .

Since Eq. (1) with such an internal Hamiltonian is generically

controllable, we choose to define the basis Bµ randomly so

that the systems handled by our algorithm are almost surely

controllable.

In order to work in a general framework, we chose µ⋆ also

randomly. In our example, we consider:

µ⋆ =




2.4154 1.9335 1.5822
1.9335 1.4366 1.5991
1.5822 1.5991 1.9843


 .

The states ψ0 and ψ1 are

ψ0 =




1
0
0


 , ψ1 =




0
0
1


 .

We choose T = 4000π, which corresponds to 20 periods

of the transition associated to the smallest frequency of the

system.

2) Algorithm parameters: The minimum mean square

error problems (3)-(9) are solved by standard pseudo-Newton

solvers. In order to make a global search, we repeat the mini-

mization 10 times with random initialization. The parameter

β is adapted to make Algorithm 2 converge. In our case

β = 10−2.

3) Numerical results: The precomputation is achieved by

our algorithm in approximately 80 min CPU. The dipole

moment operator is regained with a relative error

‖µ⋆ − µ‖2
‖µ⋆‖2

≈ 9.8960e− 04,

in approximately 10 min CPU. The selective fields that have

been obtained are depicted in Fig. 1.
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Fig. 1. Selective laser fields obtained by Algorithm 2.

VIII. CONCLUDING REMARKS

The Selective laser fields computation greedy algorithm

presented in this paper shows a good efficiency in a general

settings. However, there is some room for improvement

of our strategy. First, the choice of the basis Bµ could

be improved, e.g. through an iterative procedure. Secondly,

the experimental measurements could be used during the

computation of the selective fields in order to design an

online procedure. Lastly, some work has to be done to design

a more specific approach to treat the first sub-step of the

algorithm. The identification procedure presented in Sec. VI

would also certainly take advantage of such a study.
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