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a b s t r a c t

The controllability of bilinear systems is well understood for finite dimensional isolated systems where
the control can be implemented exactly. However when perturbations are present some interesting
theoretical questions are raised. We consider in this paper a control system whose control cannot be
implemented exactly but is shifted by a time independent constant in a discrete list of possibilities. We
prove under general hypothesis that the collection of possible systems (one for each possible
perturbation) is simultaneously controllable with a common control. The result is extended to the
situations where the perturbations are constant over a common, long enough, time frame. We apply the
result to the controllability of quantum systems. Furthermore, some examples and a convergence result
are presented for the situation where an infinite number of perturbations occurs. In addition, the
techniques invoked in the proof allow us to obtain generic necessary and sufficient conditions for
ensemble controllability.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental importance of addressing the controllability of
bilinear systems has long been recognized in engineering control
applications (see [40,21,31,24,34,12,1,2,48]). Among recent applica-
tions one may cite the field of quantum control with optical or
magnetic external fields (see [35,18,19,34,46,36,47,48,14,7,8,15]).

Although the controllability is well understood when the system
is of finite dimension, isolated and the control can be implemented
exactly, new theoretical and numerical questions are raised when
perturbations are present.

The question that is addressed in this paper is related to the
simultaneous controllability of bilinear systems.

Consider a collection of control systems with states Xk, k¼ 1;…;K
in Lie groups Gk evolving according to dXkðtÞ=dt ¼ ðAkþuðtÞBkÞXk .
Simultaneous controllability (also called “ensemble controllability”)
is the question of whether all states Xk can be controlled with the
same control u(t). We will use the terms “simultaneous controll-
ability” and “ensemble controllability” interchangeably.

Problems of simultaneous control of a finite collection of systems
have been addressed recently in applications related to quantum

control [50,28,49,33,37,25–27,42,44,3,30]. In such circumstances,
the system is a collection of molecules or atoms or spin systems
and the control is a magnetic field (in NMR) or a laser. The assess-
ment of whether a single control pulse can drive independent (i.e.,
distinct) quantum systems to their respective target states was
addressed theoretically in [50] for general Ak, Bk and applied to the
optimal dynamic discrimination of separate quantum systems in
[28]. The particular case of identical molecules with Ak ¼ A (con-
stant) and Bk ¼ ξkB; ξkAR, G¼ SUðNÞ was treated in [49,33] where,
under some technical assumptions on A and B, it is proved that all
members of an ensemble of randomly oriented molecules subjected
to a single ultra-fast laser control pulse can be simultaneously
controlled. An independent work [3] treats the circumstance when
Ak ¼ ϵkA, jϵj ja jϵℓ j for any jaℓ, G¼ SUðNÞ and Bk ¼ B (constant)
and was used to show controllability for ensembles N-level quantum
systems having different Larmor dispersion. This last result gener-
alizes the findings of [25] for ensembles of spin 1=2 systems.

The infinite dimensional version (an infinite number of systems
Aϵ ¼ ϵA with ϵ taking arbitrary values in an interval �ϵn; ϵn½) was
treated in [26,27,9] for the specific situation of the Bloch equations.

In this paper, we extend the result in [3] to the new circum-
stance when Ak ¼ AþαkB;αkAR and Bk ¼ B (constant) or, equiva-
lently, to the simultaneous controllability of systems submitted to
time independent perturbations dXkðtÞ=dt ¼ ½AþðuðtÞþαkÞB�Xk. As
the result in [3] does not apply to this situation, we prove new
controllability results. Moreover, the mathematical techniques
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employed in this work turn out to be useful in other settings such
as [49,3] for which we give stronger controllability results.

The perturbation model AþðuðtÞþαkÞB was investigated theo-
retically and numerically in the physical literature independent of
any theoretical controllability results. In the quantum computing
literature such perturbations are called “fixed systematic errors”
(see Section VI.A. Eq. (40) of [22]) or simply “systematic control
error”, see [23] where the authors concluded that mitigating such
errors may be possible (although at the expense of longer pulse
sequences). We give here a theoretical result to sustain this view.
We also refer to [41], where the authors design pulse sequences
that are generically robust with respect to errors in the amplitude of
the control field. In a related recent work the corresponding noise
model is called “low frequency noise” (see Section IV.C. of [17]): it is
defined as the portion of the (control) amplitude noise that has a
correlation time that is long (up to 103 times) compared to the
timescale of the dynamics and as such it can be treated as constant
in time. Additional noise models (additive or multiplicative) are
presented in [39] in the general quantum control area.

The balance of the paper is as follows: in Section 2 we introduce
the general framework and the main notations and in Section 3 we
present our main results including a general ensemble controllabil-
ity result. In Section 4, we apply our results to the controllability of
quantum systems. The situation of an infinite number of perturba-
tions is discussed in Section 5 from the theoretical and numerical
point of views. Finally, some conclusions and perspectives of future
work are given in Section 6.

2. Problem formulation

Let G be a Lie group. Throughout this paper G is considered to
be finite dimensional, connected, compact, simple real Lie group.
Its Lie algebra is denoted by g, the identity element is Id and
A;BAg are fixed. Remarkable examples of such Lie groups are (see
[16,13]) the following:

� the special unitary group SU(N) for NZ2,
� the special orthogonal group SO(N) for Na4,
� the compact symplectic group (quaternionic N�N unitary

matrices) SpðNÞ for NZ2,
� the spin group SpinðNÞ for NZ2.

Consider the following control system on G:

dXðtÞ
dt

¼ ðAþuðtÞBÞXðtÞ; Xð0Þ ¼ Id: ð1Þ

The matrix X(t) evolves in the Lie group G.
The controllability of a system on Lie groups such as (1) is a

well-studied problem [24,34,12,1,2,48]. The literature on the
subject of bilinear control relies essentially on the following
theorem (originally due to [20]):

Theorem 1. Denote by LA;B the Lie subalgebra of g generated by A
and B. The system (1) on the Lie group G is controllable if and only if
LA;B ¼ g or equivalently if dimRLA;B ¼ dimRg. Moreover there exists
TA;B40 such that any target can be reached in time tZTA;B with
controls u such that juðsÞjr1; 8sA ½0; t�.

Here dimRLA;B stands for the dimension of LA;B as linear vector
space over R.

An important question is what happens if the control u(t) in (1)
is submitted to some perturbations in a predefined (discrete) list
fαk; k¼ 1;…;Kg?:
dXkðtÞ
dt

¼ AXkðtÞþ½uðtÞþαk�BXkðtÞ; Xkð0Þ ¼ Id: ð2Þ

Can one still control the systems simultaneously? The real pertur-
bation αk for a given system is not known beforehand, therefore in
order to be certain that the system is controlled, one has to find
a control u(t) that simultaneously controls all states Xk(t), i.e., find
u(t) such that XkðTÞ ¼ V for k¼ 1;…;K (here V is the target state).

Yet a distinct circumstance is when αk are not arbitrary
perturbations but unknown characteristics of the system to be
identified. Here, the goal is to find u(t) such that, given distinct Vk

one has XkðTÞ ¼ Vk. By measuring the state of the system at the
final time T, one knows which αk was effective during ½0; T �.

In conclusion, our problem can be formalized as follows: let
VkAG; k¼ 1;…;K be arbitrary. Is it possible to find T40 and a
measurable u : ½0; T �-R such that the system given by (2) satisfies
XkðTÞ ¼ Vk; 8 k¼ 1;…;K? If the answer to this question is positive
then the system in (2) will be called simultaneously controllable (or
ensemble controllable).

3. Simultaneous controllability for perturbations

3.1. Tools for simultaneous controllability

In this section, we recall an important result on simultaneous
controllability. Consider K bilinear systems on the (finite dimen-
sional, connected, compact, simple) Lie groups Gk:

dXkðtÞ
dt

¼ ðAkþuðtÞBkÞXkðtÞ; Xkð0Þ ¼ Id; ð3Þ

where Ak;BkAgk; k¼ 1;…;K and gk is the Lie algebra of Gk. Recall
that when Gk is simple the Lie algebra gk is also simple which means
that the only ideals in gk are f0g and gk. In particular gk is also semi-
simple. Let A¼ A1 � ⋯ � AK A �K

k ¼ 1 gk and B¼ B � ⋯ � BA
�K

k ¼ 1gk. When gk are represented as matrix algebras and MkAgk
the element M1 � ⋯ � MK A �K

k ¼ 1 gk is simply the block diagonal
matrix

M1 0
⋱

0 MK

0
B@

1
CA:

By assembling the K bilinear systems (3), the evolution of this
collection of states can be written as a bilinear system on �K

k ¼ 1Gk:

dXðtÞ
dt

¼AXðtÞþuðtÞBXðtÞ; Xð0Þ ¼ IdA �K
k ¼ 1 Gk: ð4Þ

Denote by LA;B the Lie algebra generated by the matrices A and B.
Then, we have the following result (see [20,50, Theorems 1 and 2,
p. 277] and [28, Section 3] for an application):

Theorem 2. The collection (3) of K bilinear systems is simulta-
neously controllable if and only if LA;B ¼ �K

k ¼ 1 gk or equivalently

dim
R

LA;B ¼
XK
k ¼ 1

dimRgk:

Moreover, there exists TA;B40 such that any collection of targets
ðVkÞKk ¼ 1A �K

k ¼ 1 Gk can be reached in time tZTA;B with controls
u(t) such that juðsÞjr1; 8sA ½0; t�.

3.2. Main result

The proof of our main result uses the following lemma.

Lemma 3. Consider the collection (3) of K bilinear systems as a
control system on �K

k ¼ 1Gk. Suppose K41 and LAk ;Bk
¼ gk for any

k¼ 1;…;K. The system is not ensemble controllable if and only if
there exist k;ℓAf1;…;Kg, kaℓ and an isomorphism f : gk-gℓ such
that f ðAkÞ ¼ Aℓ and f ðBkÞ ¼ Bℓ.
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Proof. If such an isomorphism exists then the dynamics of the
ℓ-th system is completely dependent on the dynamics of the k-th
system, in fact there will be an isomorphism of Lie groups F : Gk-Gℓ

such that Xℓ ¼ FðXkÞ at any time t and with any control u(t). There-
fore the collection of systems is not ensemble controllable.

To prove the direct implication, suppose that the collection of K
bilinear systems is not ensemble controllable and let K 0rK be the
first integer such that the systems associated with Ak, Bk, k¼ 1;…;K 0

are not ensemble controllable but any (K 0 �1)-tuple fi1;…; iK 0 �1g
� f1;…;K 0 �1g (ika iℓ for kaℓ) of systems Aik , Bik , k¼ 1;…;K 0 �1,
is ensemble controllable; by hypothesis KZ2 since any individual
system is controllable. To ease notations we denote K ¼ K 0.

Step 1: Denote g0 ¼ fχAgK j0 � ⋯ � 0 � χALA;Bg. Since LA;B is
a linear space g0 will also be a non-empty linear space. Let χAg0

and ψAgK . Since LAK ;BK ¼ gK there exists at least an element of
the form ψ1 � ⋯ � ψK�1 � ψALA;B . Recall that 0 � ⋯ � 0 �
χALA;B thus 0 � ⋯ � 0 � ½χ;ψ � ¼ ½0 � ⋯ � 0 � χ;ψ1 � ⋯ �
ψK�1 � ψ �ALA;B therefore ½χ;ψ �Ag0. We obtain that g0 is an ideal
of gK . But gK is a simple Lie algebra which implies that the only
ideals in gK are f0g and gK .

We treat first the alternative g0 ¼ gK . Let χ1Ag1;…; χK AgK be
arbitrary. The (K�1)-tuple of systems on �K�1

k ¼ 1Gk is controllable
therefore the Lie algebra generated by A1 � ⋯ � AK�1 and B1 � ⋯ �
BK�1 is �K�1

k ¼ 1gk thus LA;B contains at least one element of the form

χ1 � ⋯ � χK�1 � ~χK for some ~χK AgK . In addition g0 ¼ gK implies
that χK � ~χK Ag0 therefore 0 � ⋯ � 0 � ðχK � ~χK ÞALA;B . Summing
the two we obtain χ1 � ⋯ � χK ALA;B therefore LA;B ¼ �K

k ¼ 1 gk
and we obtain controllability which contradicts the hypothesis. It
follows that g0 ¼ f0g.

Step 2: For any χ1Ag1;…; χK�1AgK�1 there exists thus a
unique element χ1 � ⋯ � χK ALA;B . Introduce the mapping J :
�K�1

k ¼ 1gk-gK defined by

Jðχ1;…; χK�1Þ ¼ χK ⟺ χ1 � ⋯ � χK ALA;B : ð5Þ
In particular JðB1;…;BK�1Þ ¼ BK and JðA1;…;AK�1Þ ¼ AK . Elementary
computations indicate that J is a morphism of Lie algebras, in parti-
cular invariant with respect to commutation and Jð0;…;0Þ ¼ 0.

Consider J0 : g1-gK defined by J0ðχ1Þ ¼ Jðχ1;0;…;0Þ. Take χ1 such
that J0ðχ1Þ ¼ 0. Then Jðχ1;0;…;0Þ ¼ 0 or, equivalently, χ1 � 0 � ⋯
�0ALA;B . By a reasoning similar to that in Step 1 we prove that
fχ1Ag1 jχ1 � 0 � ⋯ � 0ALA;Bg must be f0g thus χ1 ¼ 0. Therefore
we proved that J0ðχ1Þ ¼ 0 implies χ1 ¼ 0 which means that J0 is
injective. Since the (K�1)-tuple of systems Ak;Bk, k¼ 2;…;K is
ensemble controllable, for any χ2Ag2;…; χK AgK the algebra LA;B
contains at least one element of the form χ1 � χ2 � ⋯ � χK . Consider-
ing χ2 ¼ 0;…χK�1 ¼ 0 and χK arbitrary, we find that for any χK AgK at
least one χ1Ag1 exists such that χK ¼ Jðχ1;0;…;0Þ ¼ J0ðχ1Þ. Therefore
J0 is also surjective thus bijective. Since J0 is linear and invariant to
commutation, it follows that J0 is an isomorphism between the Lie
algebras g1 and gK .

Furthermore, let χAg1 and ψ kAgk, krK�1; then

χ � 0 � ⋯ � 0 � J0ðχÞALA;B

ψ1 � ⋯ � ψK�1 � Jðψ1;…;ψK�1ÞALA;B :

Computing the commutator, we obtain

½χ;ψ1� � 0 � ⋯ � 0 � ½J0ðχÞ; Jðψ1;…;ψK�1Þ�ALA;B ; ð6Þ
and the definition of J and J0 implies that J0ð½χ;ψ1�Þ ¼ ½J0ðχÞ;
Jðψ1;…;ψK�1Þ�. Since J0 is a morphism of Lie algebras, we obtain
½J0ðχÞ; J0ðψ1Þ� ¼ ½J0ðχÞ; Jðψ1;…;ψK�1Þ�. This can be written as ½J0ðχÞ;
Jð0;ψ2;…;ψK�1Þ� ¼ 0. But J0 is surjective therefore ½Z; Jð0;ψ2;…;

ψK�1Þ� ¼ 0 for all ZAg1. The Lie algebra g1 is (simple thus) semi-
simple which means that the above equation implies Jð0;ψ2;…;

ψK�1Þ ¼ 0 for any ψ2Ag2;…;ψK�1AgK�1. In particular, J0ðA1Þ ¼
JðA1;0;…;0Þ ¼ JðA1;…;AK�1Þ ¼ AK and similarly J0ðB1Þ ¼ BK . □

Remark 1.

1. When dimR gk are all different the individual controllability
implies ensemble controllability. From this point of view the
situation gk ¼ g (for all k) is most difficult.

2. When gk ¼ g (for all k) one can exploit the structure of g. For the
remarkable example g¼ suðNÞ, we know that any automorph-
ism is either χ↦YχY �1 or χ↦YχY �1 for some YASUðNÞ (χ
denotes the element-wise complex conjugation). In any such
situation, it is enough to know if some Y exists such that
Aℓ ¼ YAkY

�1;Bℓ ¼ YBkY
�1 or Aℓ ¼ YAkY

�1;Bℓ ¼ YBkY
�1.

3. The result is not true for semi-simple Lie algebras. In this case the
non-controllability is equivalent to the existence of an isomorph-
ism between an ideal of some gk and an ideal of some gℓ.

4. The result extends easily to the situation of several controls.

Using the previous results we can now treat the situation
where the control seen by the k-th system is uðtÞþαk and not
uðtÞαk as in [49].

Theorem 4. Consider KZ1 and αkAR, k¼ 1;‥;K. The collection of
systems (2) is simultaneously controllable if and only if LA;B ¼ g and
αkaαℓ for any kaℓ. In this case, there exists TA;B;α1 ;…;αK 40 such
that the system is controllable in any time tZTA;B;α1 ;…;αK

with
controls u such that juðsÞjr1; 8sA ½0; t�.

Proof. In the view of Theorem 1 the condition LA;B ¼ g is neces-
sary. Of course αkaαℓ for any kaℓ is also required otherwise the
same system with the same control that appears twice in the list.

To assess controllability of (2), we consider it as a control system
on �K

k ¼ 1G given by matrices A¼ ðAþα1BÞ � ⋯ � ðAþαKBÞ and
B¼ B � ⋯ � B. Simultaneous controllability is equivalent to prov-
ing that LA;B is isomorphic with �K

k ¼ 1g.
Suppose that this is not the case; then by Lemma 3, there exist

kaℓ and an automorphism f : g-g such that f ðAþαkBÞ ¼ AþαℓB
and f ðBÞ ¼ B. Denote β¼ αℓ�αka0 then f ðAÞ ¼ AþβB.

Denote by AutðgÞ the group of automorphisms of g. We recall
that AutðgÞ is compact (see [16,13,51] or any classical Lie theory
textbook). Indeed, from the definition of the Killing form Kgðχ;ψ Þ ¼
Trgð½χ; ��○½ψ ; ��Þ it follows that any automorphism hAAutðgÞ is such
that KgðhðχÞ;hðψ ÞÞ ¼ Kgðχ;ψ Þ. Since g is connected, compact, simple
(thus semi-simple) the Killing form is negative definite and thus
AutðgÞ is isomorphic to a closed Lie subgroup of the orthogonal
group of OðdimR g;RÞ therefore AutðgÞ is compact.

On the other hand

A¼ f ðAÞ�βB¼ �βBþ f ð�βBþ f ðAÞÞ
¼ �2βBþ f ðf ðAÞÞ ¼⋯¼ �mβBþ f mðAÞ:

Here, the automorphism fm is the m-th power of the automorph-
ism f. We obtain thus

B¼ �A� f mðAÞ
βm

; 8m¼ 1;2;… ð7Þ

All fm live in the compact set AutðgÞ thus the sequence f mðAÞ is
bounded and, passing to the limit in Eq. (7), we obtain B¼0 which
is impossible. □

Corollary 5. Consider the bilinear system in Eq. (3), where Gk ¼ G
and Ak ¼ ϵkA, Bk ¼ B, ϵkAR, k¼ 1;‥;K . Suppose jϵk ja jϵℓ j for any
kaℓ and LA;B ¼ g; then the collection of systems (3) is ensemble
controllable.

Proof. We use the same arguments as in the previous result. Let f
be an automorphism of g, with f ðϵkAÞ ¼ ϵℓA. Since jϵk ja jϵℓ j
there exists λAR, jλja1 such that f ðAÞ ¼ λA. Suppose for instance
jλj41 (otherwise use f �1). Then f mðAÞ ¼ λmA and the contra-
diction is obtained because all fm live in a compact set. □
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Remark 2.

1. Theorem 4 is not true for semi-simple Lie groups. For instance
let χ;ψAsuðNÞ such that Lχ;ψ ¼ suðNÞ and A¼ χ � ðχþψ ÞA
suðNÞ � suðNÞ, B¼ψ � ψAsuðNÞ � suðNÞ, α1 ¼ 0; α2 ¼ 1. The
result above implies that (A,B) is controllable as a system on
SUðNÞ � SUðNÞ. However the matrices A and B correspon-
ding to the collection of systems AþðuðtÞþαkÞB are A¼ χ �
ðχþψ Þ � ðχþψ Þ � ðχþ2ψ Þ and respectively B¼ψ � ψ � ψ�
ψ . We note that the second and the third component are
identical thus the system is not controllable.

2. The assumptions of Corollary 5 are weaker than those present
in the literature. In [3], the same conclusion is obtained under
the additional hypothesis that the transitions of iA are non-
degenerate (i.e., A is “strongly regular” in the terminology of
Definition 2 in [3]). Recall that a matrix ψ with eigenvalues
λψ1 ;…;λψN has no degenerate transitions if λψa �λψb aλψi �λψj for
all ða; bÞa ði; jÞ.

3. Additional results can be easily constructed along the same
lines, for instance for cases where the perturbation is not
additive but on the form αkuðtÞþβk.

4. Having proved the results above for the bilinear setting, it is
interesting to compare with the analogous result in the linear
case. For this we consider the following linear systems:

d
dt
x1 ¼ Ax1þBuðtÞ; x1ð0Þ ¼ 0

d
dt
x2 ¼ Ax2þB½uðtÞþα�; x2ð0Þ ¼ 0:

The dynamics of x2ðtÞ�x1ðtÞ is not influenced by the control
since ðd=dtÞðx2�x1Þ ¼ Aðx2�x1ÞþBα, x2ð0Þ�x1ð0Þ ¼ 0. Hence
this collection of systems is never simultaneously controllable.

Theorem 4 can be extended to the situation when the pertur-
bations of the control depend on time. We will require however
that the perturbations be constant on a common, long enough,
time interval.

Corollary 6. Consider the collection of control systems with control u(t):

dYkðtÞ
dt

¼ AþðuðtÞþβkðtÞÞB
� �

YkðtÞ;Ykð0Þ ¼ Yk;0AG: ð8Þ

Suppose that LA;B ¼ g and there exists 0ot1ot2o1 such that
βkðtÞ ¼ αk (constant) 8 tA ½t1; t2� and αkaαℓ for kaℓ. Then there
exists TA;B;α1 ;…;αK

such that if t2�t1ZTA;B;α1 ;…;αK
the collection of

systems (8) is simultaneously controllable at any time TZt2.

Proof. Let Vk be given targets for the systems (8) at time TZt2.
Define u(t) to be zero on ½0; t1� [ ½t2; T � and V �

k ¼ Y �
k ðt1Þ where

Y �
k ðtÞ is the solution of dY �

k ðtÞ=dt ¼ ðAþβkðtÞBÞY �
k ðtÞ, Y �

k ð0Þ ¼ Yk;0

and V þ
k ¼ Y þ

k ðTÞ where Y þ
k ðtÞ satisfies dY þ

k ðtÞ=dt ¼ ðAþβkðtÞBÞ
Y þ
k ðtÞ, Y þ

k ðt2Þ ¼ Id. Set targets Wk ¼ ðV þ
k Þ�1VkðV �

k Þ�1 for the
system (2) on ½0; t2�t1� and initial states Xkð0Þ ¼ Id and let ~uðtÞ
be the control that drives Xk from Xkð0Þ ¼ Id to Xkðt2�t1Þ ¼
Wk; 8k¼ 1;…;K . Then the control u(s) with uðsÞ ¼ 0, for sA ½0; t1
½[�t2; T� and uðsÞ ¼ ~uðs�t1Þ, for sA ½t1; t2� is such that YkðTÞ ¼
V þ
k WkV

�
k ¼ Vk. □

3.3. Further results on related models

Note that the model in Eq. (1) implies that the perturbation αk

is present even when the control u(t) is null. In practice, it may
sometimes be possible to eliminate the perturbations when the
control field is not used and in this situation the controller can
switch between a free, unperturbed dynamics and a controlled,

perturbed one. This circumstance is modeled as

dZkðtÞ
dt

¼ AZkðtÞþ½uðtÞþαk�ξðtÞBZkðtÞ; Zkð0ÞAG; ð9Þ

where the controls are u(t) and ξðtÞ, but ξðtÞAf0;1g8 tZ0 (with ξ
being a measurable function). We obtain the following:

Corollary 7. The system (9) is simultaneously controllable if and
only if LA;B ¼ g and αkaαℓ for any kaℓ.

Proof. Let ξðtÞ ¼ 1 and apply Theorem 4. Of course LA;B ¼ g and
αkaαℓ for any kaℓ are necessary conditions for controllability,
which proves the reverse implication. □

Remark 3. For the situation (9) a result analogous to Corollary 6
can be proved. We leave the proof as an exercise to the reader. In
addition, both results remain true when ξ is piecewise constant
(with a discrete set of discontinuities).

4. Application to the control of a quantum system

Consider now a quantum bilinear system (cf. [45,34,48,36]):

i
d
dt
ψ ¼ ½H0þuðtÞμ�ψ ðtÞ; ð10Þ

H0 ¼

1:0 0 0 0 0
0 1:2 0 0 0
0 0 1:3 0 0
0 0 0 2:0 0
0 0 0 0 2:15

0
BBBBBB@

1
CCCCCCA
; ð11Þ

μ¼

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

0
BBBBBB@

1
CCCCCCA
; ð12Þ

controlled by the control u(t) and with ψ ð0Þ ¼ ð1=
ffiffiffi
2

p
;0;0;1=

ffiffiffi
2

p
;0ÞT

and target ψ T ¼ ð0;1=
ffiffiffi
2

p
;0;0;1=

ffiffiffi
2

p
ÞT . This system has been exten-

sively used (see the references above) as a benchmark for testing the
controllability of bilinear quantum finite-dimensional systems: con-
trollability criterions, search algorithms to find the controls, etc. It has
no degenerate transitions but a bi-partite connectivity graph struc-
ture: the set of eigenstates 1–3 is not directly connected, same for
4 and 5. Thus transferring population from eigenstate 1 to 2 requires
a second-order excitation using eigenstates 4 or 5 as intermediary.
Define B¼ μ=i and, for simplicity, A¼ ½H0�0:2 TrðH0Þ � Id�=i such
that both A and B belong to suð5Þ. Using the tool in [32], we obtain
dimR LA;B ¼ 24¼ dimRsuð5Þ thus LA;B ¼ suð5Þ. Consider the perturba-
tions α1 ¼ �0:1; α2 ¼ 0; α3 ¼ 0:1. Therefore Theorem 4, Corollaries
6 and 7 of the previous section apply. Since SUð5Þ is transitive on
the unit sphere of C5 (cf. [1]) there exists UT ASUð5Þ such that
UTψ0 ¼ψ T and by Theorem 4 there exists a time T and a control
u : ½0; T �-R such that uðtÞ;uðtÞ�0:1 and uðtÞþ0:1 all drive Id to UT

in Eq. (1) thus all drive the initial state ψ0 to the final state ψ T in
Eq. (10). We searched numerically the control u(t) using a so-called
monotonic procedure, see [10,43,52,38,6,29] for details. For T¼500,
we obtain the control presented in Fig. 1. The quality of the control,
i.e., the quantity j 〈ψ ðTÞ;ψ ð0Þ〉j=Jψ ð0ÞJ is over 99% for all perturba-
tions αk; k¼ 1;2;3. We also tested different pairs of initial and target
states ðψ0;ψ T Þ and in all cases high quality controls were found.

5. Extensions to an infinite set of perturbations

We investigate in this section the circumstance when K (the
number of perturbations) is infinite. The controllability of a system
consisting of an infinite collection of finite-dimensional systems has
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been analyzed for the situation of the Bloch equation (G¼ SOð3Þ) in
[9,26,25,27]. To the best of our knowledge no general results are
available for generic systems and values of N; moreover the
counter-example in Theorem 4 in [27] warns that general results
may be impossible to obtain.

We explore two questions: first we give an example that builds
on the Maxwell–Bloch equation where a positive controllability
result is expected; next we give a procedure for the numerical
identification of approximate controls of a Bloch equation.

5.1. An example of perturbed Maxwell–Bloch equation

Let Ω be a compact subset of R3 and recall the notation for the
Pauli matrices:

σx ¼
0 1
1 0

� �
; σy ¼

0 � i
i 0

� �
; σz ¼

1 0
0 �1

� �
: ð13Þ

Consider the Maxwell–Bloch equation with two controls:

i
dXðt;ω;α;βÞ

dt
¼ ωσzþ½uðtÞþα�σxþ½vðtÞþβ�σy
� �

Xðt;ω;α;βÞ;

Xð0;ω;α;βÞ ¼ Id; ðω;α;βÞAΩ: ð14Þ

Proposition 8. Let f ¼ ðf x; f y; f zÞ : Ω-R3 be a continuous function.
Then, for any η40 there exist a time Tη40 and two controls
uη; vηAL1ð½0; Tη�Þ such that for all ðω;α;βÞAΩ:

JXðTη;ω;α;βÞ�eiðf xðω;α;βÞσx þ f yðω;α;βÞσy þ f zðω;α;βÞσzÞ Jrη: ð15Þ

Proof. Although a rigorous proof of the controllability would
require the tools in [9] and is beyond the scope of this work, we
give below the arguments that indicate that this system is con-
trollable. First note that the results in [11, Section 10] (see also
Theorem 10.2.3 in the same section) allow us to give a meaning to
the solution of (14) when one of the controls is a Dirac mass (or any
measure whose cumulative function has a discontinuity); additional
arguments have to be invoked when both controls are irregular
precisely at the same instant (but this will not be the case here).

Consider the sequence of controls: start with u¼ �ðπ=2Þδ0 (δ0 is
the Dirac mass at the origin), followed by free evolution during a unit
of time and then u¼ þðπ=2Þδ1. That is, choose u¼ �ðπ=2Þδ0þ
ðπ=2Þδ1, v¼0. This results in the evolution

e� iðπ=2Þσx e� iðωσz þασx þβσyÞeiðπ=2Þσx ¼ e� ið�ωσz þασx �βσyÞ: ð16Þ
Thus the propagator associated with �ωσzþασx�βσy can be
synthesized. A similar computation (now using the control v) allows
us to construct �ωσz�ασxþβσy. Using now infinitesimal times and
the formula eUþV ¼ limn-1ðeU=neV=nÞn, we have thus at our disposal
all propagators e7 iωσz , e7 iασx and e7 iβσy . Recall that we also have
e7 iσx and e7 iσy .

From now on, the argument is similar to that in [27]: the
formula

lim
n-1

fe�χ=ne�ψ=neχ=neψ=ngn
2

¼ e½χ;ψ �; ð17Þ

allows us to use commutators of, for instance, 7 iωσz and 7 iσx

which produce 7 iωσy and then commutators 7 iωσz and 7 iωσy,
which produce 7 iω2σx; all other polynomials of ω can be
obtained as multiplicative factors in front of σx. Similar arguments
allow us to further obtain all possible polynomials of three varia-
bles ω;α;β. Therefore we obtain approximate controllability of the
system to any (smooth) target with L1 controls. □

Remark 4.

1. The result extends obviously to the Bloch equation (set on
SOð3Þ, see next section).

2. Not all situations have favorable outcomes. For instance, using
same arguments as in Remark page 030302-2 of [26], it is possible
to show that for the controlled Hamiltonian σzþασyþuðtÞσx the
unknown perturbation αA �αn;αn½ cannot always be compen-
sated. Indeed, the attainable propagators are of the form

expfif 1ðα2Þðσy�ασzÞþ if 2ðα2ÞðσzþασyÞþ if 3ðα2Þσxg ð18Þ
where f1, f2 and f3 are arbitrary functions. Thus when for instance
Ω is symmetric with respect to α the functions f 1; f 2 and f 3 are
odd functions which is a restriction for controllability.

5.2. Convergence of the controls for a discrete set of perturbations

We investigate here a numerical algorithm to find the control
when the set of perturbations can be a whole (possibly unbounded)
closed interval Iα �R. Suppose A;BAg are such that LA;B ¼ g and let
us denote by Xðt;α;uÞ the solution of dXðtÞ=dt¼ ðAþðuðtÞþαÞBÞX at
time t starting from Xð0Þ ¼ Id.

Consider also a continuous cost function to be minimized
F : Iα � G-Rþ and to fix notations suppose that for any αA Iα
there exists some ZαAGwith Fðα; ZαÞ ¼ 0. One interesting example
of such function is the distance Fðα; ZÞ ¼ JZ�YðαÞJ to some
predefined target YðαÞ continuous with respect to αA Iα . Of course
Y can be in particular constant with respect to α. Consider a
sequence of divisions T ℓ � Iα : αℓ

1oαℓ
2o⋯oαℓ

Kℓ
of the interval Iα

such that jT ℓ j≔maxj ¼ 2;Kℓ
jαℓ

j �αℓ
j�1 j tends to 0 when ℓ tends to

1. Fix also a tolerance ηZ0. Using the results of the previous
sections there exist a time Tℓ and a control uℓ such that
Fðαℓ

j ;XðTℓ;αℓ
j ;uℓÞÞrη for all j¼ 1;…;Kℓ. In this section, we give

a sufficient result that ensures the existence of a control u that
minimizes the cost F for the whole interval of perturbations Iα up
to the tolerance η.

Proposition 9. Suppose that the sequence Tℓ is not converging to
infinity and ‖uℓ‖Lr ð½0;Tℓ�Þ are bounded by a common constant for some
1oro1. Then there exists T40 and uALrð½0; T �Þ (independent of
α) such that Fðα;XðT ;α;uÞÞrη, for all αA Iα .

Proof. Since Tℓ does not converge to 1 it has a subsequence
converging to some TAR. Denote again by Tℓ this subsequence;
we can moreover consider that all Tℓ are either greater or smaller
than T, let us say TℓrT for all ℓ. Extend the domain of definition of
uℓ on ½0; T � with uℓ ¼ 0 on ½Tℓ; T �; this will not change its Lr norm.
Up to extracting another subsequence, there exists uALrð½0; T �Þ
such that uℓ converges weakly in L1ð½0; T�Þ to u. Let us prove that u
satisfies the required conditions. Fix αA Iα. Since jT ℓ j-0, there
exists a sequence αℓ

kℓ
such that αℓ

kℓ
-α when ℓ-1. We write

JXðTℓ;αℓ
kℓ ;uℓÞ�XðT ;α;uÞJ

r JXðTℓ;αℓ
kℓ ;uℓÞ�eðT�TℓÞAXðTℓ;αℓ

kℓ ;uℓÞJ
þ JeðT�TℓÞAXðTℓ;αℓ

kℓ ;uℓÞ�XðT ;α;uÞJ : ð19Þ

The term JXðTℓ;αℓ
kℓ
;uℓÞ�eðT�TℓÞAXðTℓ;αℓ

kℓ
;uℓÞJ is bounded by

C J Id�eðT�TℓÞA J for some constant C40 and thus converges to 0.

-0.03
-0.02
-0.01

0
0.01
0.02
0.03

0 100 200 300 400 500

u(
t)

Time

Fig. 1. The control that drives ψ0 to ψT (cf. Eq. (10)) irrespective of the perturbation
αkAf�0:1;0;0:1g. The quality of the control is over 99% for any perturbation.
However the trajectories ψðtÞ corresponding to uðtÞ�0:1, u(t) and uðtÞþ0:1 are all
different.
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The last term can be written as

JeðT�TℓÞAXðTℓ;αℓ
kℓ ;uℓÞ�XðT ;α;uÞJ

¼ JeðT�TℓÞAXðTℓ;0;αℓ
kℓ þuℓÞ�XðT ;0;αþuÞJ

¼ JXðT ;0;αℓ
kℓ þuℓþ1½Tℓ ;T � � ð�αℓ

kℓ ÞÞ
�XðT ;0;αþuÞJ : ð20Þ

Since Tℓ-T , it follows that αℓ
kℓ
þuℓþ1½Tℓ ;T � � ð�αℓ

kℓ
Þ converges

weakly in L1ð½0; T �Þ to αþu. From Theorem 3.6 of [5] (see also
the Aubin–Lions lemma [4]), the weak convergence of αℓ

kℓ
þuℓþ

1½Tℓ ;T � � ð�αℓ
kℓ
Þ to αþu ensures that limℓ-1 XðT ;0;αℓ

kℓ
þuℓþ

1½Tℓ ;T � � ð�αℓ
kℓ
ÞÞ ¼ XðT ;0;αþuÞ. Combining all estimations, we obtain

limℓ-1XðTℓ;αℓ
kℓ
;uℓÞ ¼ XðT ;α;uÞ thus

Fðα;XðT ;α;uÞÞ ¼ lim
ℓ-1

Fðαℓ
kℓ ;XðTℓ;αℓ

kℓ ;uℓÞÞrη; ð21Þ

and the conclusion follows. □

Remark 5. The proposition is not a controllability result but can
be used numerically to find the control when controllability
holds true.

In particular the situation η¼ 0 corresponds to exact controll-
ability; however the results in [9] show that approximate con-
trollability is more likely to hold and the controls will be in L1loc ,
thus in all Lrð½0; t�Þ.

As a numerical illustrationwe consider the Bloch equation (which
is a perturbation of the system in [9] for ω¼ω0):

d
dt

Mx

My

Mz

0
B@

1
CA¼

0 �ðuðtÞþαÞ 0
uðtÞþα 0 �ω0

0 ω0 0

0
B@

1
CA

Mx

My

Mz

0
B@

1
CA;

Mxð0Þ
Myð0Þ
Mzð0Þ

0
B@

1
CA¼M0;

where u(t) is the control. The system can be put into the framework
of Proposition 9 by considering G¼ SOð3Þ:

A¼ω0

0 0 0
0 0 �1
0 1 0

0
B@

1
CA; B¼

0 �1 0
1 0 0
0 0 0

0
B@

1
CA:

LetMf be some target state. The goal to steerM0 toMf at time T can
be rephrased as minimizing, with respect to u, Fðα;XðT ;α;uÞÞ where
Fðα; ZÞ ¼ JZM0�Mf J . The tolerance η is set to 5%. We take
M0 ¼ ð1;0;0ÞT and Mf ¼ ð0;0;1ÞT . The perturbation α takes all values
in the interval Iα ¼ ½�αmax;αmax�; the divisions T ℓ use a Tchebytchev-
type grid containing the points αℓ

k ¼ αmax cos ðkπ=ℓÞ with k¼ 0;…;

Kℓ ¼ ℓ. We consider the values of the parameters ω0 ¼ 50, T¼1000,
αmax ¼ 0:5. For the numerical resolution of the evolution equation in
Xðt;α;uÞ we use a Crank–Nicholson time-discretization scheme, with
103 time steps in ½0; T �. To compute the optimal controls uℓ we apply
again the monotonic procedure, see Section 4.

In order to check the assumptions of Proposition 9 we set r¼2
and verify that the norms Juℓ J L2 remain bounded when ℓ
increases. The norms Juℓ J L2 are presented in Fig. 2 and are

uniformly bounded with respect to ℓ. The quality of these controls
is evaluated with Fðα;XðT ;α;uℓÞÞ, which is in all cases lower than η.
In Fig. 3, Fðα;XðT ;α;uℓÞÞ is plotted as a function of α for the control
field u250. We observe a very accurate control in the whole interval
αA Iα (but the quality decays outside this interval).

6. Conclusion and perspectives

Necessary and sufficient conditions have been derived for the
ensemble controllability of a finite collection of bilinear systems
on a connected, compact, simple Lie group. The result was applied
to the case where the control is submitted to a finite collection of
constant or partially constant perturbations. The result extends to
ensemble controllability and generalizes several works from the
literature. Additional arguments have been presented when the
number of possible perturbations is infinite.

This work studied the controllability for possibly large final
times. A related question is whether small time local controll-
ability (called STLC) is also true. A further question is whether the
result extends to more general, time dependent, perturbations.
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