A MONOTONIC METHOD FOR SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS

JULIEN SALOMON, GABRIEL TURINICI*

Abstract. Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.

Key words. Monotonic algorithms, nonlinear control, optimal control, non-convex optimization

AMS subject classifications. 49J20, 80M50

1. Introduction. We document in this paper a general unified formulation for several algorithms that were proposed in different areas of nonlinear (bilinear) control.

Historically first to appear in quantum control (cf. Section 3.1), it was noted that the nonlinearity of the mapping control → state induces poor performance of the standard, gradient-based algorithms; as such new numerical procedures have been proposed [1, 47, 53] and were found to perform excellently in this very nonlinear setting. These were soon followed by scores of variants [18, 25, 44, 26, 27, 28, 29, 30, 31, 32, 35, 16, 40, 41, 42, 45, 46, 51, 52, 54, 9, 33, 12, 7]. At some point similar procedures were also proposed in other control or optimization settings ([39, 17], cf. Section 3.2).

Given a cost functional J, these algorithms are iterative procedures that construct a sequence of solution candidates v^k with the important "monotonic" behavior, i.e. $J(v^{k+1}) \leq J(v^k)$; the algorithms have been named after this property as "monotonic". It is interesting to note that the monotonicity does not requires any additional computational effort, but results from the construction of the procedure itself.

The purpose of this paper is to investigate what is the most general class to which "monotonic" algorithms apply and propose a general framing for procedures tailored to solve such classes of problems.

The paper is structured as follows: Section 2 provides the general framework where our procedure applies; some examples of concrete realization follow in Section 3. The algorithm itself is presented in Section 4. In Section 5 we briefly explain some extensions to more nonlinear settings and then we give details about the convergence of the procedure (in Section 6). A discussion on the the numerical implementation of the algorithm is given in Appendix.

2. Setting of the problem. Let E, \mathcal{H} and V be Hilbert spaces with V densely included in \mathcal{H}, and denote by $\langle \cdot , \cdot \rangle_E$, $\langle \cdot , \cdot \rangle_\mathcal{H}$ and $\langle \cdot , \cdot \rangle_V$ their associated scalar products.

For any space $W = E, \mathcal{H}, V$ by $\langle \cdot , \cdot \rangle_W$ the scalar product associated with it.

Given a real or complex valued function φ, we denote by $\nabla_x \varphi$ its gradient with respect to the variable x. We also denote by D_x and $D_{x,x}$ the first and the second derivative of vectorial functions in the Fréchet sense.

* CEREMADE, UMR CNRS 7534, Université Paris IX, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, France. salomon@ceremade.dauphine.fr, turinici@ceremade.dauphine.fr . This work is partially supported by the French ANR programs OTARIE (ANR-07-BLAN-0235 OTARIE) and C-Quid, and by a CNRS-NFS PICS grant. G.T. acknowledges partial support by INRIA Rocquencourt (MicMac and OMQP)
We consider the unbounded operator \(A(t, v) : \mathbb{R} \times E \times \mathcal{H} \to \mathcal{H} \) and suppose that for almost all \(t \in [0, T] \) the domain of \(A(t, v)^{1/2} \) includes \(V \); furthermore we take \(B(t, v) \) that for almost all \(t \in [0, T] \) and all \(v \in E \) associates an element of \(\mathcal{L}(\mathcal{H}, \mathcal{H}) \cap \mathcal{L}(V, V^*) \).

We can now introduce a system whose state \(X(t) \in V \) is governed by the evolution equation

\[
\begin{align*}
\partial_t X + A(t, v(t))X &= B(t, v(t)) \\
X(0) &= X_0.
\end{align*}
\]

where \(v : [0, T] \to E \) is the control. Note that \(E \) is not necessarily finite dimensional, cf. Section 3.2 where \(E = W^{1,\infty}(0,1) \) for a probability measure \(m \). Let us stress that although the equation is linear in \(X \) (for \(v \) fixed) the mapping \(v \mapsto X \) is not linear; the term \(A(t, v(t)) \) multiplies the state \(X \) and as such the mapping is highly nonlinear (of non-commuting exponential type).

Within an optimal control formulation, the desirable evolution of the system is encoded in the following optimization problem:

\[
\min_v J(v),
\]

where

\[
J(v) := \int_0^T F(t, v(t), X(t))dt + G(X(T)).
\]

The functions \(F : \mathbb{R} \times E \times V \to \mathbb{R} \) and \(G : V \to \mathbb{R} \) are supposed to be differentiable and integral supposed to exist. We postpone to Section 4 (cf. Lemma 4.4, Theorem 1) the precise formulation of additional regularity assumptions to be imposed on \(A, B, F, G \).

However, the following concavity with respect to \(X \) will be assumed throughout the paper:

\[
\forall X, X' \in V, \ G(X') - G(X) \leq \langle \nabla_X G(X), X' - X \rangle,
\]

\forall t \in \mathbb{R}, \forall v \in E, \forall X, X' \in V, \ F(t, v, X') - F(t, v, X) \leq \langle \nabla_X F(t, v, X), X' - X \rangle. \quad (2.6)

Remark 1. Contrary to the more technical hypothesis that will be assumed latter, the properties (2.5), (2.6) and the linearity of (2.1) are crucial to the existence of the monotonic algorithms. We will discuss in the Section 5 some possible ideas to relax the form (2.1) of the state evolution or the concavity.

Remark 2. The intrinsic nonlinear regime is manifest from the explicit concave dependence of the functionals \(F \) and \(G \) on the state; certainly a linear \(v \mapsto X \) minimization problem would only have trivial solutions for such functionals.

3. Examples. Within the framework of control theory, nonlinear formulations prove useful nowadays in domains as diverse as the laser control of quantum phenomena \([22, 34, 36, 37, 49, 50]\) or the modeling of a equilibrium (or again social beliefs, product prices, etc) within a game with infinite numbers of agents \([19, 20, 21]\). Yet other applications arise from modern formulations of the Monge-Kantorovich mass transfer problem \([3, 4]\), see \([39]\).
3.1. (I): Quantum control. The evolution of a quantum system is described by the Schrödinger equation
\[
\partial_t X + i H(t) X = 0
\]
\[
X(0, z) = X_0(z),
\]
where \(H(t) \) is the Hamiltonian of the system and \(z \in \mathbb{R}^\gamma \) the set of internal degrees of freedom. The Hamiltonian will be supposed to be an auto-adjoint operator over \(L^2(\mathbb{R}^\gamma; \mathbb{C}) \), i.e. \(H(t)^* = H(t) \).

Note that this results in the following norm conservation property
\[
\|X(t, \cdot)\|_{L^2(\mathbb{R}^\gamma; \mathbb{C})} = \|X_0\|_{L^2(\mathbb{R}^\gamma; \mathbb{C})}, \quad \forall t > 0,
\]
so that the state (or wave-) function \(X(t, \cdot) \), evolves on the (complex) unit sphere \(S := \{ X \in L^2(\mathbb{R}^\gamma; \mathbb{C}) : \|X\|_{L^2(\mathbb{R}^\gamma; \mathbb{C})} = 1 \} \).

The Hamiltonian is composed of two parts: a free evolution Hamiltonian \(H_0 \) and a part that describes the coupling of the system with an external laser source of intensity \(v(t) \in \mathbb{R}, \ t \geq 0 \); a first order approximation leads to adding a time-independent dipole moment operator \(\mu(x) \) resulting in the formula
\[
H(t) = H_0 - v(t) \mu
\]
and the dynamics:
\[
\partial_t X + i (H_0 - v(t) \mu) X = 0
\]
\[
X(0) = X_0.
\]

The purpose of control may be formulated as to drive the system from its initial state \(X_0 \) to a final state \(X_{\text{target}} \) compatible with predefined requirements. Here, the control is the laser intensity \(v(t) \). Because the control is multiplying the state, this formulation is called “bilinear” control. The dependence \(v \mapsto X(T) \) is of course not linear.

The optimal control approach can be implemented by introducing a cost functional. The following functionals are often considered:
\[
J(v) := \|X(T) - X_{\text{target}}\|_{L^2(\mathbb{R}^\gamma; \mathbb{C})}^2 + \int_0^T \alpha(t)v^2(t)dt,
\]
\[
\tilde{J}(v) := -\langle X(T), O(X(T)) \rangle + \int_0^T \alpha(t)v^2(t)dt,
\]
where \(O \) is a positive linear operator defined on \(\mathcal{H} \), characterizing an observable quantity and \(\alpha(t) > 0 \) is a parameter that penalizes large (in the \(L^2 \) sense) controls. The goal is thus to minimize these functionals with respect to \(v \). According to (3.1) the cost functional \(J \) is equal to
\[
J(v) := 2 - 2Re\langle X(T), X_{\text{target}} \rangle_{L^2(\mathbb{R}^\gamma; \mathbb{C})} + \int_0^T \alpha(t)v^2(t)dt,
\]
so that the functionals \(J \) and \(\tilde{J} \) satisfy assumptions (2.5) and (2.6).

\[1\text{For any operator } M, \text{ we denote by } M^* \text{ its adjoint.}\]
3.2. (II) : Mean field games. Although the Nash equilibrium in game theory has been initially formulated for a finite number of players, modern results [19, 20, 21] indicate that it is possible to extend it to an infinite number of players and obtain the equations that describe this equilibrium; applications have already been proposed in economic theory and others are expected in the behavior of multi-agents ensembles and decision theory.

The equations describe evolution of the density $X(t, z)$ of players at time t and position $z \in Q = [0, 1]$ in terms of a control $v(t, z)$ and a fixed parameter $\nu > 0$:

$$
\partial_t X - \nu \Delta X + \text{div}(v(t, z)X) = 0, \\
X(0) = X_0.
$$

The control v is chosen to minimize the cost criterion (2.4). For reasons related to economic modeling interesting examples include situations where F, G are concave in X, e.g., in [17]

$$
G = 0, \\
F(t, z, X) = \int_Q p(t)(1 - \beta z)X(t, z) + \frac{c_0 \cdot z \cdot X(t, z)}{c_1 + c_2 X(t, z)} dz + \frac{v^2(t)}{2},
$$

with positive constants β, c_0, c_1, c_2 and $p(t)$ a positive function. Another example is given in [39]:

$$
G(X(T)) = \langle v, X(T) \rangle, \\
F(t, z, X) = \int_Q X(t, z)v^2(t, z)dz,
$$

The relevance of the monotonic algorithms to this setting has been established in several works [39, 17].

4. Monotonic algorithms. We now present the structure of our optimization procedure together with the general algorithm.

4.1. Tools for monotonic algorithms. The monotonic algorithms are mainly based on a special factorization obtained after algebraic manipulations built on the results presented in this section. To ease the notations we will make explicit the dependence of X on v, i.e., we will write X_v instead of X in Eqs. (2.1–2.2).

We define the adjoint state Y_v [11, 23] by:

$$
\partial_t Y_v - A^*(t, v(t))Y_v + \nabla_X F(t, v(t), X_v(t)) = 0 \tag{4.1}
$$

$$
Y_v(T) = \nabla_X G(X_v(T)). \tag{4.2}
$$

Thanks to this auxiliary variable, a first estimate about the variations in J can be obtained.

Lemma 4.1. For any $v', v : [0, T] \to E$,

$$
J(v') - J(v) \leq \int_0^T -\langle Y_v(t), \left(A(t, v'(t)) - A(t, v(t)) \right) X_v(t) \rangle + \langle Y_v(t), B(t, v'(t)) - B(t, v(t)) \rangle + F(t, v'(t), X_v(t)) - F(t, v(t), X_v) dt. \tag{4.3}
$$
Proof. Using successively (2.5), (2.6), (2.1) and finally (4.2), we find that:

\[
J(v') - J(v) = \int_0^T F(t, v(t), X_{v'}(t)) - F(t, v(t), X_v(t)) dt \\
+ G(X_{v'}(T)) - G(X_v(T)) \\
\leq \int_0^T \langle \nabla_X F(t, v(t), X_v(t)), X_{v'}(t) - X_v(t) \rangle \\
+ F(t, v'(t), X_{v'}(t)) - F(t, v(t), X_v(t)) dt \\
+ \langle Y_v(T), X_{v'}(T) - X_v(T) \rangle \\
\leq \int_0^T \left(\frac{\partial}{\partial t} Y_v(t) - A(t, v(t))^* Y_v(t) + \nabla_X F(t, v(t), X_v(t)) \right) X_{v'}(t) \\
- \langle Y_v(t), \left(A(t, v'(t)) - A(t, v(t)) \right) X_v(t) \rangle \\
+ \langle Y_v(t), B(t, v'(t)) - B(t, v(t)) \rangle \\
+ F(t, v'(t), X_{v'}) - F(t, v(t), X_v(t)) dt.
\]

Thanks to (4.1), the first term of the left-hand side of this last inequality cancels and the results follows.

Remark 3. The focus of the result is not on obtaining an estimation of the increment \(J(v') - J(v)\) via the adjoint (which is well documented in optimal control theory, cf.,[11, 23]); we rather emphasize that \(J(v') - J(v)\) is upper bounded by a quantity that only requires information on \(v'\) up to time \(t\) (in other words which is independent of \(v'\) on \([t, T]\)); this estimate can be useful in deciding, at time \(t\) if the next contribution of the control \(v'(t+\delta t)\) will result in an increase or decrease of \(J(v')\). This localization property is a consequence of the concavity of \(F\) and \(G\) (in \(X\)) and bi-linearity induced by \(A\). The purpose of the paper is to construct and theoretically support a general numerical algorithm that exploits this remark.

Remark 4. We can intuitively note that the right hand side term of (4.3) has the factorized form:

\[
\Delta(v, v')(t) \cdot E (v'(t) - v(t)) = -\langle Y_v(t), \left(A(t, v'(t)) - A(t, v(t)) \right) X_v(t) \rangle \\
+ \langle Y_v(t), B(t, v'(t)) - B(t, v(t)) \rangle \\
+ F(t, v'(t), X_v(t)) - F(t, v(t), X_v(t)), \tag{4.4}
\]

with \(\cdot E\) the \(E\) scalar product. Thus \(v'\) can always be chosen so as to make it negative (in the worse case set it null by the choice \(v' = v\)). We will come back with a precise definition of \(\Delta(v, v')(t)\) in Section 4.3.

A more general formulation can be obtained if we suppose that the backward propagation of the adjoint state is performed with intermediate field \(\tilde{v}\) [27], i.e. ac-
cording to the equation:
\[
\frac{\partial}{\partial t} Y_{\tilde{v}} - A^*(t, \tilde{v}(t)) Y_{\tilde{v}} + \nabla_X F(t, v(t), X_v(t)) = 0
\]
\[
Y_{\tilde{v}}(T) = \nabla_X G(X_v(T)).
\]
Note that because of its final condition, \(Y_{\tilde{v}}\) actually also depends on \(v\). Nevertheless, for sake of simplicity, we keep the previous notation. We then obtain the following lemma.

Lemma 4.2. For any \(v', \tilde{v}, v : [0, T] \rightarrow E\),
\[
J(v') - J(v) \leq \int_0^T - (Y_{\tilde{v}}(t), (A(t, v'(t)) - A(t, \tilde{v}(t))) X_{v'}(t))
\]
\[
+ (Y_{\tilde{v}}(t), B(t, v'(t)) - B(t, \tilde{v}(t)))
\]
\[
+ F(t, v'(t), X_{v'}(t)) - F(t, \tilde{v}(t), X_{\tilde{v}}(t)) dt
\]
\[
+ \int_0^T - (Y_{\tilde{v}}(t), (A(t, \tilde{v}(t)) - A(t, v(t))) X_{v}(t))
\]
\[
+ (Y_{\tilde{v}}(t), B(t, \tilde{v}(t)) - B(t, v(t)))
\]
\[
+ F(t, \tilde{v}(t), X_{\tilde{v}}(t)) - F(t, v(t), X_{v}(t)) dt.
\]
In this lemma, the variation in the cost functional \(J\) is expressed as the sum of two terms, and can be considered as factorized with respect to \(v' - \tilde{v}\) and \(\tilde{v} - v\).

4.2. The algorithms

The factorization obtained in the previous lemmas brings to light various arguments to ensure that \(J(v') \leq J(v)\), i.e. that guaranty the monotonicity resulting from the update \(v' = v\). This allows to present a general structure for our class of optimization algorithms. We focus on the one that results from Lemma 4.1.

Algorithm 1. (Monotonic algorithm)

Given an initial control \(v^0\), the sequence \((v^k)_{k \in \mathbb{N}}\) is computed iteratively by:

1. Compute the solution \(X_{v^k}\) of (2.1–2.2) with \(v = v^k\).
2. Compute the solution \(Y_{v^k}\) of (4.1–4.2) with \(v = v^k\), starting from
 \[
 Y_{v^k}(T) := \nabla_X G(X_{v^k}(T)).
 \]
3. Define \(v^{k+1}\) together with \(X_{v^{k+1}}\) such that for all \(t \leq T\) the following monotonicity condition be satisfied:
 \[
 \Delta(v^{k+1}, v^k)(t), E \left(v^{k+1}(t) - v^k(t) \right) \leq 0. \tag{4.5}
 \]

Lemma 4.1 then guarantees that \(J(v^{k+1}) \leq J(v^k)\). Many strategies can be used to ensure (4.5). Its importance stems from the fact that no further optimization is necessary once this condition is fulfilled. In order to guarantee (4.5), many authors [27, 47, 53] consider an update formula of the form:
\[
v^{k+1}(t) - v^k(t) = -\frac{1}{\theta} \Delta(v^{k+1}, v^k)(t), \tag{4.6}
\]
where θ is a positive number, that can also depend on k and t. In this case, the variations in J are such that:

$$J(v^{k+1}) - J(v^k) \leq -\theta \int_0^T (v^{k+1}(t) - v^k(t))^2 dt.$$

Note that (4.6) reads as an intermediate update formula between a gradient method:

$$v^{k+1}(t) - v^k(t) = -\frac{1}{\theta} \Delta(v^k, v^k)(t),$$

and the proximal algorithm [5], which prescribes:

$$v^{k+1}(t) - v^k(t) = -\frac{1}{\theta} \Delta(v^{k+1}, v^{k+1})(t).$$

Remark 5. In the case $F = 0$ and A independent of v, i.e. linear control with final objective, (4.6) coincides with a gradient method.

4.3. Wellposedness of the algorithm.

In this section, we focus on the procedure obtained when using Algorithm 1 with the update formula (4.6).

Lemma 4.3. Suppose that for any $t \in [0, T]$:

- $A : \mathbb{R} \times V \times V \rightarrow \mathbb{R}, A(t, X, Y, v) = \langle Y, A(t, v)X \rangle$ is Fréchet differentiable everywhere with respect to v for any X, Y, v.
- $B : \mathbb{R} \times V \times E \rightarrow \mathbb{R}, B(t, Y, v) = \langle Y, B(t, v) \rangle$ is Fréchet differentiable everywhere with respect to v for any Y, v.
- F is Fréchet differentiable everywhere with respect to $v \in E$ for any X, Y, v.

Then there exists $\Delta(\cdot, \cdot; t, X, Y) \in C^0(E^2, E)$ such that, for all $v, v' \in E$

$$\Delta(v', v; t, X, Y) = -\left(Y \left(A(t, v') - A(t, v) \right) X + B(t, v') - B(t, v) \right) + F(t, v', X) - F(t, v, X).$$

Moreover, if A, B, F are of C^1 class in v then $\Delta(\cdot, \cdot; t, X, Y)$ can be defined through the explicit formula:

$$\Delta(v', v; t, X, Y) = \int_0^1 -\nabla w \left(\langle Y, A(t, w)X - B(t, w) \rangle \right)|_{w=v+\lambda(v'-v)}$$

$$+ \nabla v F(t, v + \lambda(v' - v), X) d\lambda.$$

Proof. We denote by $\| \cdot \|$ the norm associated with E. Since A, B, F are Fréchet differentiable with respect to v the full expression in Eq. (4.7) is of the form $\Xi(v') - \Xi(v)$ with $\Xi(v) = -A(t, X, Y, v) + B(t, Y, v) - F(t, v, X)$ differentiable in v; we introduce

$$\Delta_\Xi(v', v) := \frac{\Xi(v') - \Xi(v)}{\|v' - v\|^2} (v' - v) \in E.$$

Since Ξ is differentiable, we obtain the continuity of $\Delta_\Xi(v', v)$ for all points $v' = v$ with value $\Delta_\Xi(v, v) = \nabla v \Xi(v)$ (the continuity is obvious everywhere else) hence the conclusion.
Finally, Eq. (4.8) is an application of the identity
\[\Xi(v') - \Xi(v) = \int_0^1 \nabla_v \Xi(v + \lambda(v' - v)) d\lambda \cdot E(v' - v). \]

Lemma 4.4. Suppose that
- \(A, B, F \) are of (Fréchet) \(C^2 \) class with respect to \(v \) with \(D_v A, D_v B \) uniformly bounded as soon as \(X, Y \) are in a bounded set;
- \(\nabla_v F \) is of \(C^1 \) class in \(X \);
- \(D_v F(t, \cdot, X) \) is bounded by a positive, continuous, increasing, bounded from below function \(X \mapsto k(\|X\|) \).

Given \(\varepsilon > 0 \), \((t, v, X, Y) \in \mathbb{R} \times E \times V \times V \) and a bounded neighborhood \(W \) of \((t, v, X, Y)\), there exists \(\theta^* > 0 \) depending only on \(\varepsilon, W, \|v\|, \|X\| \) and \(\|Y\| \) such that:

1. \(\Delta(v', v; t, X, Y) = -\theta(v' - v) \) has an unique solution \(v' = V_0(t, v, X, Y) \in \mathbb{R} \).
2. \(V_0(t, v, X, Y) = v \) implies
 \[-\nabla_v \left(\langle Y, A(t, v)X \rangle \right)(v) + \nabla_v \left(\langle Y, B(t, v) \rangle \right)(v) + \nabla_v F(t, v, X, Y) = 0. \] (4.10)
3. \(\|V_0(t, v, X, Y) - v\| \leq \frac{\|X\|\|Y\|\| + k(\|X\|)}{\theta} \{M_0(t) + M_1\|v\|\} \) with \(M_0(t) \) and \(M_1 \) independent of \(v, X, Y \). If the dependence of \(A, B, F \) on \(t \) is smooth then \(M_0(t) \) is bounded on \([0, T]\).
4. \(V_0(t, v, X, Y) \) is continuous on \(W \).
5. Let \(X \) belong to a bounded set; then \(X \mapsto V_0(t, v, X, Y) \) is Lipschitz with the Lipschitz constant smaller than \(\varepsilon \).

Proof.

1. Denote \(h = v' - v \) and \(G_{t,v,X,Y}(h) = -\Delta(v + h; t, X, Y) \). When the dependence is clear we write simply \(G(h) \) instead of \(G_{t,v,X,Y}(h) \). We look thus for a solution to the following fixed point problem: \(G(h) = h \). For \(\theta \) large enough, the mapping \(G \) is a (strict) contraction and we obtain the conclusion by a Picard iteration. The uniqueness is a consequence of the contractivity of \(G \).

2. If \(v' = v \) then \(h = 0 \) thus \(G(h) = 0 \) which gives (4.10) after using (4.8).

3. For \(\theta \) large enough, the mapping \(G \) is not only a contraction but has its Lipschitz constant less than, say, \(1/2 \). Because of the contractivity of \(G \), we have \[\|h\| - \|G(0)\| \leq \|h - G(0)\| = \|G(h) - G(0)\| \leq \frac{1}{\theta} \|h\|, \] which amounts to \[\|G(0)\| \leq \frac{\|\Delta(v, v; t, X, Y) - \Delta(0, 0, t, X, Y)\|}{\theta} \] Next, we note that
 \[\|G(0)\| \leq M_2\|v\| + M_3(t) \]
 and the estimates follows.

4. Formula (4.8) shows that \(\Delta \) depends continuously on \(t, v, v', X, Y \). Consider converging sequences \(t_n \to t, v_n \to v, X_n \to X, Y_n \to Y \) and define \(h_n := V_0(t_n, v_n, X_n, Y_n) \) and \(h := V_0(t, v, X, Y) \).

 Given \(W \) and \(\eta > 0 \), consider large value of \(\theta \) such that:
 - for any \((t', v', X', Y') \in W, G_{t', v', X', Y'} \) is a contraction with Lipschitz constant less than \(1/2 \).
for any \((t', v', X', Y')\), \((t'', v'', X'', Y'')\) \(\in W\),
\[
\|\Delta(v'' + h, v'', t'', X'', Y'') - \Delta(v' + h, v', t', X', Y')\| \leq \eta.
\]
This last property implies \(\|G_{t_n, v_n, X_n, Y_n}(h) - G_{t, v, X, Y}(h)\| \leq \eta\) for \(n\) large enough. On the other hand
\[
\|h_n - h\| = \|G_{t_n, v_n, X_n, Y_n}(h_n) - G_{t, v, X, Y}(h)\|
\leq \|G_{t_n, v_n, X_n, Y_n}(h_n) - G_{t_n, v_n, X_n, Y_n}(h)\|
+ \|G_{t_n, v_n, X_n, Y_n}(h) - G_{t, v, X, Y}(h)\|
\leq \frac{1}{2}\|h_n - h\| + \frac{\eta}{2}.
\]
We have thus obtained that for \(n\) large enough :
\[
\frac{1}{2}\|h_n - h\| \leq \frac{\eta}{2}
\] and the continuity follows.

5. Subtracting the two equalities
\[
\Delta(V_1, v; t, X_1, Y) = -\theta(V_1 - v), \quad \Delta(V_2, v; t, X_2, Y) = -\theta(V_2 - v)
\]
and using that \(\Delta(V; v; t, X, Y)\) is \(C^1\) in \(X\) and \(v\) gives to first order
\[
\Delta_V(...)V_1 - V_2 + \Delta_X(...)X_1 - X_2 = -\theta(V_1 - V_2).
\]
For \(\theta\) large enough the operator \(\Delta_V(...) + \theta \cdot \text{Id}\) is invertible and the conclusion follows.

\[\square\]

Remark 6. Note that \(\theta^*\) is proportional to \((\|X\|_V\|Y\|_V + \|Y\|_V + k(\|X\|_V))\).

We are thus able to give an example of a setting where the existence of \(v^{k+1}(t)\) satisfying (4.5) is guaranteed.

Theorem 1. Suppose that \(A, B, F\) satisfy hypothesis of Lemma 4.4. Also suppose that the operators \(A, B\) are such that Eqs. (2.1–2.2) and (4.1–4.2) have solutions for any \(v \in L^\infty(0, T; E)\) with \(v \mapsto X, v \mapsto Y\) locally Lipschitz.

1. For any \(v \in L^\infty(0, T; E)\), there exists \(\theta^* > 0\) such that for any \(\theta > \theta^*\), the (nonlinear) equation
\[
\partial_t X_v(t) + A(t, v')X_v(t) = B(t, v') (4.11)
\]
\[
v'(t) = V_p(t, v(t), X_v(t), Y_v(t)) (4.12)
\]
\[
X_v(0) = X_0 (4.13)
\]
has a solution. Here \(Y_v\) is the adjoint state defined by (4.1–4.2) and corresponding to \(v\).

2. There exists a sequence \((\theta_k)_{k \in \mathbb{N}}\) such that the algorithm (cf Section 4.2)
a/ initialization \(v^0 \in L^\infty(0, T; E)\),
b/ \(v^{k+1}(t) = V_{\theta_k}(t, v^k(t), X_{v^{k+1}}(t), Y_{v^k}(t))\)
is monotonic and satisfies
\[
J(v^{k+1}) - J(v^k) \leq -\theta_k\|v^{k+1} - v^k\|^2_{L^2([0, T])}.
\]

3. With the notations above, if for all \(t \in [0, T]\) \(v^{k+1}(t) = v^k(t)\) (i.e. algorithm stops) then \(v^k\) is a critical point of \(J\): \(\nabla_v J(v^k) = 0\).
Proof. Most of the proof is already contained in the previous lemmas. The part that still has to be proven is the existence of a solution to (4.11)-(4.13).

Given \(v \in L^\infty(0, T; E) \), consider the following iterative procedure:

\[
v_0 = v, \quad v_{k+1}(t) = V_\theta(t, v(t), X_v(t), Y_v(t)).
\]

We take a spherical neighborhood \(B_v(R) \) of \(v \) of radius \(R \) and suppose

\[
\forall k \leq l, \; v_k \in B_v(R).
\]

Since the correspondence \(v \mapsto X_v \) is continuous, it follows that the set of solutions \(S_{v, R} := \{ X_v; w \in B_v(R) \} \) of (2.1) is bounded. In particular for \(w = v_1 \) by the item 3 of Lemma 4.4 the quantity \(\| V_\theta(t, v(t), X_v(t), Y_v(t)) - v \| \) will be bounded by \(R \) for \(\theta \) large enough (depending on \(R \), independent of \(l \)), i.e. \(v_{l+1} \in B_v(R) \). Thus \(v_l \in B_v(R) \) for all \(l \geq 1 \).

Since \(S_{v, R} \) is bounded, recall that by item 5 of Lemma 4.4 the mapping \(X \mapsto V_\theta(t, v(t), X, Y_v(t)) \) has on \(S_{v, R} \) a Lipschitz constant as small as desired. Since the mapping \(w \mapsto X_w \) is Lipschitz, for \(\theta \) large enough, \(w \in B_v(R) \Rightarrow V_\theta(t, v(t), X_w, Y_v(t)) \) is a contraction. By a Picard argument the sequence \(v_l \) is converging. The limit will be a solution of (4.11–4.12).

4.4. Applications. We illustrate here how the examples in Sections 3.1 and 3.2 fit into the setting of the Theorem 1. The space does not allow to treat all other variants (cf. references in Introduction) so we leave them as an exercise to the reader.

4.4.1. Example 3.1. We have

- \(A(t, v) = H_0 + v(t)\mu \) with (possibly) unbounded \(v \)-independent operator \(H_0 \) (but which generates a \(C^0 \) semi group) and bounded operator \(\mu \). The dependence of \(A \) on \(v \) is smooth (linear) and therefore all hypotheses on \(A \) are satisfied.

- \(E = \mathbb{R}, \; \mathcal{H} = L^2(\mathbb{R}^d, \mathcal{C}), \; V = \text{dom}(H_0^{1/2}) \) (over \(\mathcal{C} \)), or their realizations \(\mathcal{H} = L^2 \times L^2, \; V = \text{dom}(H_0^{1/2}) \times \text{dom}(H_0^{1/2}) \) (over \(\mathbb{R} \)) see [13];

- \(B(t, v) = 0 \);

- \(F(t, v, X) = \alpha(t)v(t)^2 \) with \(\alpha(t) \in L^\infty(\mathbb{R}) \); here the second derivative \(D_vF \) is obviously bounded. Since it is independent of \(X \) it will be trivially concave.

- \(G \) is either (see, e.g., [26, 27]) \(2 - 2Re\langle X_{\text{target}}, X(T) \rangle \) or \(-\langle X(T), OX(T) \rangle \) where \(O \) is a positive semi-definite operator; both are concave in \(X \).

- Here

\[
\Delta(v', v; t, X, Y) = -Re\langle Y, i\mu X \rangle + \alpha(t)(v' + v)
\]

and the equation in \(v' \) \(\Delta(v', v; t, X, Y) = -\theta(v' - v) \) has, for \(\theta \) large enough, an unique solution \(v' = V_\theta(t, v, X, Y) := \frac{(\theta - \alpha(t))v + Re\langle Y_v, i\mu X \rangle}{\theta + \alpha(t)} \).

- at the \(k + 1 \)-th iteration, Theorem 1 guarantees the existence of the solution \(X^{k+1} \) of the following nonlinear evolution equation:

\[
i\theta_t X^{k+1}(t) = \left(H_0 + \frac{(\theta - \alpha(t))v^k + Re\langle Y_v, i\mu X^{k+1} \rangle}{\theta + \alpha(t)} \right) X^{k+1}(t)
\]

Then

\[
v^{k+1} = \frac{(\theta - \alpha(t))v^k + Re\langle Y_v, i\mu X^{k+1} \rangle}{\theta + \alpha(t)}, \quad X_{v^{k+1}} = X^{k+1}.
\]
4.4.2. Example 3.2. We have

\(E = W^{1, \infty}(0, 1), \ H = L^2(0, 1), \ V = H^1(0, 1) \) see [17] and [8] (Chap XVIII §4.4).

- \(A(t, v) = -\nu \Delta v + \text{div}(v) \). The dependence of \(A \) on \(v \) is smooth (linear) and therefore all hypotheses on \(A \) are satisfied (\(D_{vv}A = 0, \ldots \)).
- \(B(t, v) = 0 \).

- with definitions in (3.5) \(F(t, v, X) = \int_Q p(t)(1 - \beta z)X(t, z) + \frac{\nu(t, z)^2}{2}X(t, z)dz; \ F \) is concave in \(X \); the second differential \(D_{vv}F \) has all required properties.
- \(G = 0 \) (algorithm will apply in general when \(G \) is concave with respect to \(X \)).
- Here

\[
\Delta(v', v; t, X, Y) = \nabla Y + \frac{v' + v}{2}
\]

and the equation in \(v' \Delta(v', v; t, X, Y) = -\theta(v' - v) \) has for all \(\theta > 0 \) an unique solution \(v' = V_\theta(t, v, X, Y) := (\theta^{-1/2})\nabla Y \).

- at the \(k + 1 \)-th iteration, Theorem 1 guarantees the existence of the solution \(X^{k+1} \) of the following nonlinear evolution equation:

\[
\partial_t X^{k+1}(t) - \nu \Delta X^{k+1} + \text{div}(\frac{(\theta - 1/2)v^k - \nabla Y^k}{\theta + 1/2}X^{k+1}) = 0.
\]

Then

\[
v^{k+1} = \frac{(\theta - 1/2)v^k - \nabla Y^k}{\theta + 1/2}, \ X^{k+1} = X^{k+1}.
\]

4.4.3. Additional application. To illustrate the application of the methodology for a more nonlinear vectorial case, as a third example we consider a situation from [10, 48] which differs from that of Section 3.1 in that \(v(t) = \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) \in E = \mathbb{R}^2 \) and \(A(t, v) = i[H_0 + (v_1(t)^2 + v_2(t)^2)\mu_1 + v_1(t)^2v_2(t)\mu_2] \). Here, denoting \(\xi_1 = -\text{Re}(Y, i\mu X) + \alpha(t), \ \xi_2 = -\text{Re}(Y, i\mu_2 X) \) we obtain

\[
\Delta(v', v; t, X, Y) = \xi_1 \left(\frac{v_1 + v_1'}{v_2 + v_2'} \right) + \xi_2 \left(\frac{(v_1 + v_1')(v_2')}{(v_2')^2} \right)
\]

and the equation in \(v' \): \(\Delta(v', v; t, X, Y) = -\theta(v' - v) \) has, for \(\theta \) large enough, an unique solution \(v' = V_\theta(t, v, X, Y) = \left(\begin{array}{c} \frac{\sigma - \xi_1}{\xi_1 + \xi_2}v_1 + \xi_1^2 - \xi_2^2 \\ \frac{\sigma - \xi_1}{\xi_1 + \xi_2}v_2 + \xi_1^2 - \xi_2^2 \end{array} \right) \). We leave as an exercice to the reader the writing of the equation for \(X^{k+1} \) and the formula for \(v^{k+1} \).

5. Extension of the monotonic algorithms. In this section, we discuss the relaxation of some of the assumptions concerning either the concavity of (parts of) \(J \) or the linearity in Eq. (2.1) (cf. Remark 1).

5.1. Relaxation of concavity assumptions for norm preserving evolution. In some cases, Eq. 2.1 is endowed with additional properties that enable to relax the hypothesis of concavity of the cost functional \(J \). For instance, in Section 3.1 the \(L^2 \) norm of \(X \) is preserved. Thus, for any \(G \) whose second differential with respect to \(X \in L^2 \) is bounded (e.g. by \(M \)), our algorithm applies : in this case use \(G - M \cdot \text{Id} \) instead of \(G \) (see e.g., [40]). The same conclusions also hold for \(F \).
5.2. General evolution equation. We consider a general form of the semi-group generator

\[\partial_t X_v + L(t, v(t), X_v(t)) = 0 \]
\[X_v(0) = X_0. \]

For a given \(v \) the corresponding adjoint state \(Y_v \) is:

\[\partial_t Y_v - DX L^* (t, v(t), X_v(t)) Y_v + \nabla_X F(t, v(t), X_v) = 0 \]
\[Y_v(T) = \nabla_X G(X_v(T)). \]

In the case of the cost functional \(J \) defined in (2.4), the arguments of the proof of Lemma 4.1 apply, and we obtain the following result.

Lemma 5.1. For any \(v', v : [0, T] \to E \),

\[J(v') - J(v) \leq \int_0^T \mathcal{D}(v', v') \, dt \]

where

\[\mathcal{D}(v, v', t) = F(t, v'(t), X_{v'}) - F(t, v(t), X_v) \]
\[+ (Y_v(t), L(t, v(t), X_v(t)) - L(t, v'(t), X_{v'}(t))) \]
\[+ (Y_v(t), DX L(t, v(t), X_v(t))(X_{v'}(t) - X_v(t))). \]

We note however that choosing at time \(t \), \(v'(t) = v(t) \) does not ensure in general that \(\mathcal{D}(v, v', t) \) is zero; thus the factorization of the form \(\mathcal{D}(v, v', t) = \Delta^{NL} (v, v') \cdot E \) (\(v' - v \)) is not true any more. In particular we are not sure to be able to find a \(v'(t) \) which sets this term negative. Manifestly the reason is that the adjoint is not adapted; we do not want to develop here on how to change the adjoint but we are lead to propose the following procedure: advance in time \(v'(t) \) by solving for \(v'(t) \) in the relation \(\mathcal{D}(v, v', t) = - \theta(v'(t) - v(t))^2 \) for as long as possible, say from \(t_1 = 0 \) to \(t_2 \leq T \). Then one sets \(v = 1_{[0, t_1]} v'(t) + 1_{[t_2, T]} v(t) \), compute a new adjoint \(Y_v \) and advance again in time from \(t_2 \) to \(t_3 \), etc.

6. About the convergence of the schemes. The convergence of the sequence given by Algorithm 1 when using (4.6) has been obtained in the case of quantum control (see Section 3.1) using Łojasiewicz-Simon inequality (see [6, 15, 24, 43] and the references therein) in discrete and continuous settings in [2, 38]. The structure of the proofs shows that when \(J \) is analytic and its gradient is Fredholm, convergence is guaranteed as soon as \(J \) contains a penalization term of the \(L^2 \)-norm of the control \(v \), as is the case, e.g. in (3.4).

Note also that another proof has been presented in the framework of semi-group theory [14] using compactness arguments.

REFERENCES

Appendix: Time discretized case. This section is devoted to the time-discretization.

Setting. In order to reproduce at the discrete level the computation involved in the monotonotic algorithms, one has to define a time discretized version of J and a scheme devoted to numerical resolution of (2.1–2.2).
Note that our optimization method does not impose any restrictions thus any scheme with standard numerical properties (consistency, stability, convergence) is compatible with our procedure.

Since we only deal with optimizations problems, we consider arbitrary time-discretizations of the functional (2.4):

\[J_{\Delta t}(v) = \Delta t \sum_{n=0}^{N-1} F(v_n, x_n) + G(x_N), \]

together with the general numerical scheme

\[x_{n+1} = A_{\Delta t}(v_n)x_n + B_{\Delta t}(v_n), \quad (6.1) \]

where \(N \) is a positive integer, \(\Delta t = T/N \) and \(v = (v_n)_{n=0}^{N-1} \). We assume that the functions \(F \) and \(G \) have the same properties as in Section 2.

Discrete adjoint and factorization. As in the continuous case, the adjoint operator definition directly follows from the state equation evolution. Given a numerical solver (6.1), the discrete adjoint operator is defined by:

\[
\begin{align*}
 y_n &= A_{\Delta t}^*(v_n)y_{n+1} + \Delta t \nabla_x F(v_n, x_n) \\
 y_N &= \nabla_x G(x_N).
\end{align*}
\]

With this definition, a factorization similar to the one of Lemma 4.1 can be obtained.

Lemma 6.1. For any \(v' = (v'_n)_{n=0}^{N-1}, v = (v_n)_{n=0}^{N-1}, \)

\[
J_{\Delta t}(v') - J_{\Delta t}(v) \leq \sum_{n=0}^{N-1} \langle y_n, (A_{\Delta t}(v'_n) - A_{\Delta t}(v_{n-1}))x'_{n-1} \rangle \\
+ \langle y_{n+1}, B_{\Delta t}(v'_n) - B_{\Delta t}(v_n) \rangle \\
+ \Delta t (F(v'_n, x'_n) - F(v_n, x_n)).
\]

Thanks to this lemma, we obtain a discrete version of monotonicity condition (4.5). Depending on the way the functions \(A, B \) and \(F \) depend on \(v \), the computation of a \(v'_n \) satisfying the discrete monotonic condition may requires an inner iterative solver.

In many cases this computation can anyway be parallelized. During an optimization step, at a given time step \(n \), the terms of the previous sum can be factorized with respect to each component of the vector \(v'_n - v_n \) and made negative independently.

The fact that the computation of \(v'_n \) requires \(x'_n \) makes anyway the time resolution sequential. To solve this problem, some time parallelizations have been designed in the case of quantum control [26].