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A MONOTONIC METHOD FOR SOLVING NONLINEAR OPTIMAL
CONTROL PROBLEMS

JULIEN SALOMON, GABRIEL TURINICI*

Abstract. Initially introduced in the framework of quantum control, the so-called monotonic
algorithms have shown excellent numerical results when dealing with various bilinear optimal control
problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic
assumptions they require. In this framework, we prove the feasibility of the general algorithm.
Finally, we explain how these assumptions can be relaxed.
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1. Introduction. We document in this paper a general unified formulation for
several algorithms that were proposed in different areas of nonlinear (bilinear) control.

Historically first to appear in quantum control (cf. Section 3.1), it was noted
that the nonlinearity of the mapping control — state induces poor performance of the
standard, gradient-based algorithms; as such new numerical procedures have been
proposed [1, 47, 53] and were found to perform excellently in this very nonlinear
setting. These were soon followed by scores of variants [18, 25, 44, 26, 27, 28, 29,
30, 31, 32, 35, 16, 40, 41, 42, 45, 46, 51, 52, 54, 9, 33, 12, 7]. At some point similar
procedures were also proposed in other control or optimization settings ([39, 17], cf.
Section 3.2).

Given a cost functional J, these algorithms are iterative procedures that construct
a sequence of solution candidates v* with the important ”monotonic” behavior, i.e.
J(wFt) < J(vF) ; the algorithms have been named after this property as ”mono-
tonic”. It is interesting to note that the monotonicity does not requires any additional
computational effort, but results from the construction of the procedure itself.

The purpose of this paper is to investigate what is the most general class to which
”monotonic” algorithms apply and propose a general framing for procedures tailored
to solve such classes of problems.

The paper is structured as follows: Section 2 provides the general framework
where our procedure applies; some examples of concrete realization follow in Section 3.
The algorithm itself is presented in Section 4. In Section 5 we briefly explain some
extensions to more nonlinear settings and then we give details about the convergence
of the procedure (in Section 6). A discussion on the the numerical implementation of
the algorithm is given in Appendix.

2. Setting of the problem. Let E, H and V be Hilbert spaces with V densly
included in H. and denote by -z, (-,-) and (-,-)v their associated scalar products.

For any space W = E,H,V by (-, -)w the scalar product associated with it.

Given a real or complex valued function ¢, we denote by V¢ its gradient with
respect to the variable 2. We also denote by D, and D, , the first and the second
derivative of vectorial functions in the Fréchet sense.
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We consider the unbounded operator A(t,v) : R x E x H — H and suppose
that for almost all t € [0,T] the domain of A(t,v)"/? includes V; furthermore we
take B(t,v) that for almost all ¢ € [0,7] and all v € E associates an element of
LH,H)NL(V,V*).

We can now introduce a system whose state X (t) € V is governed by the evolution
equation

9 X + A(t,v(8))X = B(t,v(t)) (2.1)
X(0) = Xo.

where v : [0,T] — E is the control. Note that E is not necessarily finite dimensional,
cf. Section 3.2 where E = W°(0,1) for a probability measure m. Let us stress
that although the equation is linear in X (for v fixed) the mapping v — X is not
linear ; the term A(t, v(t)) multiplies the state X and as such the mapping is highly
nonlinear (of non-commuting exponential type).

Within an optimal control formulation, the desirable evolution of the system is
encoded in the following optimization problem:

mvin J(v), (2.3)

where

J(v) ;:/O F(t,0(t), X (t))dt + G(X(T)). (2.4)

The functions F': R X E XV — R and G : V — R are supposed to be differ-
entiable and integral supposed to exist. We postpone to Section 4 (cf. Lemma 4.4,
Theorem 1) the precise formulation of additional regularity assumptions to be imposed
on A, B, F,G.

However, the following concavity with respect to X will be assumed throughout
the paper:

VX, X' €V, G(X') - G(X) < (VxG(X), X' — X), (2.5)

VteR,Yv € E\VX, X' €V, F(t,0,X)—F(t,v,X) < (VxF(t,v,X), X' X). (2.6)

REMARK 1. Contrary to the more technical hypothesis that will be assumed latter,
the properties (2.5), (2.6) and the linearity of (2.1) are crucial to the existence of the
monotonic algorithms. We will discuss in the Section 5 some possible ideas to relax
the form (2.1) of the state evolution or the concavity.

REMARK 2. The intrinsic nonlinear regime is manifest from the explicit concave
dependence of the functionals F and G on the state ; certainly a linear v — X
minimization problem would only have trivial solutions for such functionals.

3. Examples. Within the framework of control theory, nonlinear formulations
prove useful nowadays in domains as diverse as the laser control of quantum phenom-
ena [22, 34, 36, 37, 49, 50] or the modeling of a equilibrium (or again social beliefs,
product prices, etc) within a game with infinite numbers of agents [19, 20, 21]. Yet
other applications arise from modern formulations of the Monge-Kantorovich mass
transfer problem [3, 4], see [39).
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3.1. (I): Quantum control. The evolution of a quantum system is described
by the Schrédinger equation

KX +iH(t)X =0
X(0,z2) = Xo(2),

where H(t) is the Hamiltonian of the system and z € R” the set of internal de-
grees of freedom. The Hamiltonian will be supposed to be an auto-adjoint operator
over L>(R7;C), i.e. H(t)* = H(t)!. Note that this results in the following norm
conservation property

X ) z2®rvc) = 1 XollLervicys VE >0, (3.1)

so that the state (or wave-) function X (¢,-), evolves on the (complex) unit sphere
$={X e 2R%C) + | Xl gy = 1}-

The Hamiltonian is composed of two parts: a free evolution Hamiltonian Hy
and a part that describes the coupling of the system with an external laser source
of intensity v(t) € R, t > 0 ; a first order approximation leads to adding a time-
independent dipole moment operator p(z) resulting in the formula H(t) = Ho—v(t)u
and the dynamics:

0y X +i(Ho—v(t)u) X =0
X (0) = Xo.

The purpose of control may be formulated as to drive the system from its initial
state Xo to a final state Xy4,ger compatible with predefined requirements. Here, the
control is the laser intensity v(t). Because the control is multiplying the state, this
formulation is called “bilinear” control. The dependence v — X (T) is of course not
linear.

The optimal control approach can be implemented by introducing a cost func-
tional. The following functionals are often considered:

T
J(0) = | X(T) ~ Xyargerl 2o rnscy + / a(ty? (t)dt, (3.2)

T
J() := —<X(T),O(X(T))>+/0 at)v?(t)dt, (3.3)

where O is a positive linear operator defined on H, characterizing an observable
quantity and a(t) > 0 is a parameter that penalizes large (in the L? sense) controls.
The goal is thus to minimize these functionals with respect to v. According to (3.1)
the cost functional J is equal to

T
J(v) 1= 2 — 2Re(X(T), Xparget) 12 () + /O a(t)o?(t)dt, (3.4)

so that the functionals J and J satisfy assumptions (2.5) and (2.6).

1For any operator M, we denote by M* its adjoint.
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3.2. (II) : Mean field games. Although the Nash equilibrium in game theory
has been initially formulated for a finite number of players, modern results [19, 20, 21]
indicate that it is possible to extend it to a infinite number of players and obtain the
equations that describe this equilibrium ; applications have already been proposed
in economic theory and other are expected in the behavior of multi-agents ensembles
and decision theory.

The equations describe evolution of the density X (t, z) of players at time ¢ and
position z € Q = [0,1] in terms of a control v(¢, z) and a fixed parameter v > 0:

X —vAX + div(v(t,z)X) = 0,
X (0) = Xo.
The control v is chosen to minimize the cost criterion (2.4). For reasons related

to economic modeling interesting examples include situations where F, G are concave
in X, e.g., in [17]

dz + ”22(t), (3.5)

- - 4 . co-z-X(t,2)
G =0, F(t,z,X)—/Qp(t)(l BX )+ T2

with positive constants 3, cg, ¢1,co and p(t) a positive function. Another example is
given in [39]:

GX(T)) = (v, X(T)), F(t,z,X) = /QX(t,z)UQ(t,z)dz, (3.6)

The relevance of the monotonic algorithms to this setting has been established in
several works [39, 17].

4. Monotonic algorithms. We now present the structure of our optimization
procedure together with the general algorithm.

4.1. Tools for monotonic algorithms. The monotonic algorithms are mainly
based on a special factorization obtained after algebraic manipulations built on the
results presented in this section. To ease the notations we will make explicit the
dependence of X on v, i.e. we will write X, instead of X in Egs. (2.1-2.2).

We define the adjoint state Y, [11, 23] by:

Y, — A*(t,v(t))Y, + VxF(t,v(t), X,(t)) =0 (4.1)
Y,(T) = VxG(X,(T)).
Thanks to this auxiliary variable, a first estimate about the variations in J can be

obtained.
LEMMA 4.1. For any v',v:[0,T] — E,

T
J(') — J(v) < /0 (Y, (1), (A(t, V(1) — A
+ (Yo (t), B(t,v'(t)) — B(t,v(t))
+ F(t,0'(t), X (t)) — F(t,v(t), Xo)dt. (4.3)
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Proof. Using successively (2.5),(2.6), (2.1) and finally (4.2), we find that:

T
J(") — J(v) :/0 F(t,v(t), Xo () — F(t,0(t), Xu(1))

+ F(t,0'(t), X (1) — F(t,0(t), X (t))dt
+G(X, (T)) = G(X,(T))

T
< /(VXF(t,v(t),XU(t)),Xv/(t) — X, ()
0

+ F(t,0'(t), X (1)) — F(t,0(t), X (t))dt
+(Yo(T), Xor (T) = X,

T

o (*)>

S /<5Y;1(t) - A(t,’l)(f)) Yv(t) + VxF(t,’U(t),Xv(t)),le(t) - Xv(t»
0

— (1), (AL V(1) = At o(0) ) Xur ()
+ (Yo (1), B(t,v' (1) = B(t,v(1)))

+ F(t,0'(t), X ) — F(t,0(t), Xo (t))dt.

Thanks to (4.1), the first term of the left-hand side of this last inequality cancels and
the results follows.OI

REMARK 3. The focus of the result is not on obtaining an estimation of the incre-
ment J(v') — J(v) via the adjoint (which is well documented in optimal control theory,
cf [11, 23]); we rather emphasis that J(v') — J(v) is upper bounded by a quantity that
only requires information on v’ up to time t (in other words which is independent of
v on)t,T)); this estimate can be useful in deciding, at time t if the next contribution
of the control V' (t+dt) will result in an increase or decrease of J(v'). This localization
property is a consequence of the concavity of F' and G (in X ) and bi-linearity induced
by A. The purpose of the paper is to construct and theoretically support a general
numerical algorithm that exploits this remark.

REMARK 4. We can intuitively note that the right hand side term of (4.3) has
the factorized form:

A0, ')(t) -5 (v'(t) = v(t)) = —(Yo(2), (A(t, v'(t)) = Alt, v(t)))Xv/(t»
+(Y,(t), B(t,v'(t)) — B(t )
+F(t,0'(t), Xor (1)) — F(t,0(t), Xo (),  (4.4)

with -5 the E scalar product. Thus v' can always be chosen so as to make it negative
(in the worse case set it null by the choice v' = v). We will come back with a precise
definition of A(v,v")(t) in Section 4.3.

A more general formulation can be obtained if we suppose that the backward
propagation of the adjoint state is performed with intermediate field v [27], i.e. ac-
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cording to the equation :

Oy 4 (1,5(0)) Vs + VX F (1,0(8), X, (1)) = 0

ot
Y5(T) = VxG(X,(T)).

Note that because of its final condition, Yz actually also depends on v. Nevertheless,
for sake of simplicity, we keep the previous notation. We then obtain the following
lemma.

LEMMA 4.2. For any v',v,v:[0,T] — E,

T
JW') = J(v) < /0 (0. (At () — AT ) X0 (1)
+ (Y5(t), B(t,v'(t)) — B(t,0(t)))
+ F(t,0'(t), X (£)) — F(t,0(t), Xo (t))dt
T
+/O — (Y3 (1), (A(t,v(t)) - A(t,v(t)))Xv(t))
+ (Y (8), B(t,0(t)) — B(t, v(t)))

+ F(t,0(t), X5(t)) — F(t,v(t), X5(t))dt.

In this lemma, the variation in the cost functional J is expressed as the sum of two
terms, and can be considered as factorized with respect to v — v and v — v.

4.2. The algorithms. The factorization obtained in the previous lemmas brings
to light various arguments to ensure that J(v') < J(v), i.e. that guaranty the mono-
tonicity resulting from the update v’ « v. This allows to present a general structure
for our class of optimization algorithms. We focus on the one that results from Lemma
4.1.

ALGORITHM 1. ( Monotonic algorithm )
Given an initial control v°, the sequence (vV¥)ren is computed iteratively by:
1. Compute the solution X« of (2.1-2.2) with v = v*.
2. Compute the solution Yy« of (4.1-4.2) with v = v*, starting from

3. Define v*+1 together with X, i1 such that for all t < T the following mono-
tonicity condition be satisfied :

AW@HL ) (1) g (2F1(0) — o (1)) <. (4.5)

Lemma 4.1 then guarantees that J(v**1) < J(v¥). Many strategies can be used
to ensure (4.5). Its importance stems from the fact that no further optimization is
necessary once this condition is fulfilled. In order to guarantee (4.5), many authors
[27, 47, 53] consider an update formula of the form:

VP E) — R (1) = —%A(vk"'l,vk)(t), (4.6)
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where 6 is a positive number, that can also depend on k£ and ¢. In this case, the
variations in J are such that:

TR — J() < —6 /0 "R 8 — ok ()2t
Note that (4.6) reads as an intermediate update formula between a gradient method:
() = M) = - — GAGH (),
and the proximal algorithm [5], which prescribes:

karl(t) - vk(t) =—— %A(karl, vk+1)(t).

REMARK 5. In the case F' =0 and A independent of v, i.e. linear control with
final objective, (4.6) coincides with a gradient method.

4.3. Wellposedness of the algorithm. In this section, we focus on the proce-
dure obtained when using Algorithm 1 with the update formula (4.6).

LEMMA 4.3. Suppose that for any t € [0,T]:

-A:RXVXVXE—-R, A(t,X,Y,v) = (Y, A(t,v)X) is Fréchet differentiable
everywhere with respect to v for any X,Y,v.

-B:RxVxXxE—=R,B(tY,v)=(Y,B(t,v)) is Fréchet differentiable everywhere
with respect to v for any Y, v.

- I is Fréchet differentiable everywhere with respect tov € E for any X,Y,v.

Then there exists A(+,+;t, X,Y) € C°(E?, E) such that, for all v,v' € E

AW vit, X)Y) g (v/ - v) =— <Y, (A(t,v’) - A(t,v))X + B(t,v") — B(t,v)>
+F(t, v, X) - F(t,v,X). (4.7)

Moreover, if A,B,F are of C* class in v then A(-,-;t,X,Y) can be defined through
the explicit formula:

1
AWt X Y) = [ V(WA w)X - Bw) )|
0 w=v+A(v'—v)

+ Vo F(t,v+ A —v), X)dA. (4.8)

Proof. We denote by || - || the norm associated with E. Since A, B,F are Fréchet
differentiable with respect to v the full expression in Eq. (4.7) is of the form Z(v")—Z(v)
with 2(v) = —A(t, X, Y,v) + B(t,Y,v) — F(t,v, X) differentiable in v; we introduce

As(v/,v) = H(v’ ) €E. (4.9)

Since = is differentiable, we obtain the continuity of Agz(v’,v) for all points v = v
with value Az(v,v) = V,E(v) (the continuity is obvious everywhere else) hence the
conclusion.
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Finally, Eq. (4.8) is an application of the identity

[1]

(V') —E(v) = /0 Vo2 + A0 —v))d\ g (v —v).

LEMMA 4.4. Suppose that

- A, B, F are of (Fréchet) C? class with respect to v with Dy, A, Dy, B uniformly
bounded as soon as X,Y are in a bounded set;

- Vo F is of O class in X;

- Dy F(t,-, X) is bounded by a positive, continuous, increasing, bounded from
below function X — k(|| X|]).

Given € > 0, (t,v,X,Y) € Rx ExV xV and a bounded neighborhood W of
(t,v, X,Y), there exists 0* > 0 depending only on e, W, |lv||, | X || and ||Y|| such that,
for any 0 > 6*

1.
2.

AW v;t, X,Y) = —0(v' —v) has an unique solution v/ = Vy(t,v, X,Y) € E.
Vo(t,v, X,Y) = v implies

- vv( (Y, A(t, v) X) ) (v) + V, ( (Y, B(t,v)) ) (0) + Vo F(t, 0, X) = 0. (4.10)

Va(t, v, X,Y) — v < IXIXIEIVIERAXD ¢ g (4) 4+ My [|o]|} with Mo(t) and
M independent of v, X, Y. If the dependence of A, B, F on t is smooth then
My(t) is bounded on [0,T].

4. Vo(t,v, X,Y) is continuous on W.
5. Let X belong to a bounded set; then X — Vo(t,v,X,Y) is Lipschitz with the
Lipschitz constant smaller than €.
Proof.
1. Denote h =v' — v and G xyv(h) = w When the dependence

is clear we will write simply G(h) instead of G, xy (h). We look thus for a
solution to the following fixed point problem: G(h) = h. For 0 large enough,
the mapping G is a (strict) contraction and we obtain the conclusion by a
Picard iteration. The uniqueness is a consequence of the contrativity of G.

. If v = v then h = 0 thus G(h) = 0 which gives (4.10) after using (4.8).
. For 0 large enough, the mapping G is not only a contraction but has its

Lipschitz constant less than, say, 1/2. Because of the contractivity of G, we
have [[2] = [|G(0)]| < [ = G(0)I| = [IG(h) — G(0)]| < 5]A]l, which amounts to
[I7]l < 2]|G(0)]|. Next, we note that

IA(v,v,t, X, Y) — A(0,0,¢t, X, Y)|| + [|A(0,0,¢, X, Y)||
0

1G(0)]| <
< M||v|| + M3(t)

and the estimates follows.

. Formula (4.8) shows that A depends continuously on ¢,v,v, X, Y. Con-

sider converging sequences t, — t, v, — v, X, — X, Y, — Y and define
ha = Vo(tn, Un, Xn, Yn) and b := Vy(t,v, X, Y).
Given W and n > 0, consider large value of 6 such that:

- for any (t/,v', X', Y') € W, Gy x vy’ is a contraction with Lipschitz con-
stant less than 1/2.
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- for any (¢/,0", X, Y"), (t", 0", X" Y") e W,
HA(U” + h,v”,t”,X”,Y”) _ A(U/ _|_ h,vl7t/7X/,Y/)|| S T]

This last property implies |Gy, v,.x,,v, (R) = Giox,v(h)|| < 4 for n large
enough. On the other hand

th - hH = Hgtnwian;)/n (hn) gt7'U;X7Y(h/)H
< NGt om0 Yo (Bn) = Gty v X v (R
Gt v, X0, v () — G x v (Rl

1 7
< Z||h,, — h|| + =.
< Sllhn = bl +

We have thus obtained that for n large enough : ||k, — k|| < 7 and the
continuity follows.
5. Subtracting the two equalities

A(Vl,’l);t,Xl,Y) = —6‘(V1 — ’U), A(‘/Q,'U;t,XQ,Y) = —9(‘/2 — ’U)
and using that A(V,v;t, X,Y) is C' in X and v gives to first order
Av ()i = Vo) + Ax () (X1 — X)) = —0(V1 — Va).

For 0 large enough the operator Ay (...)+8-Id is invertible and the conclusion
follows.

REMARK 6. Note that 0% is proportional to (|| X||v||Y]||lv + |Y v + k(| X||v))-

We are thus able to give an example of a setting where the existence of v**+1(¢)
satisfying (4.5) is guaranteed.

THEOREM 1. Suppose that A, B, F satisfy hypothesis of Lemma 4.4. Also suppose
that the operators A, B are such that Egs. (2.1-2.2) and (4.1-4.2) have solutions for
any v € L>=(0,T; FE) with v+— X, v—Y locally Lipschitz.

1. For any v € L>(0,T; E), there exists 8* > 0 such that for any 6 > 6*, the
(nonlinear) equation

0 Xy (t) + A(t,0") X (t) = B(t,v") (4.11)
V' (t) = Vo(t,v(t), X (t), Yo (t)) (4.12)
X, (0) = Xo (4.13)

has a solution. Here 'Y, is the adjoint state defined by (4.1-4.2) and corre-
sponding to control v.
2. There exists a sequence (0i)ken such that the algorithm (cf Section 4.2)
a/ initialization v € L>(0,T; E),
b/ Than (t) = Vo, (t, vk (), Xyrt1(t), Yor (1))

is monotonic and satisfies

T = J(0F) < =6k lv* T = 0¥ |13 0.0

3. With the notations above, if for all t € [0,T] v**1(t) = v*(t) (i.e. algorithm
stops) then v* is a critical point of J: V,J(v*F) = 0.
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Proof. Most of the proof is already contained in the previous lemmas. The part
that still has to be proven is the existence of a solution to (4.11)-(4.13).
Given v € L*>°(0,T; E), consider the following iterative procedure :

vo =, vi41(t) = Vo(t, v(t), Xo, (1), Yo (t)).
We take a spherical neighborhood B, (R) of v of radius R and suppose
VEk <1, v € By(R).

Since the correspondence v — X, is continuous, it follows that the set of solutions
Su.r = {Xuw;w € By(R)} of (2.1) is bounded. In particular for w = v; by the item 3
of Lemma 4.4 the quantity ||[Vy(t,v(t), X, (t), Y, (¢)) — v|| will be bounded by R for 0
large enough (depending on R, independent of 1), i.e. vj41 € B,(R). Thus v; € B,(R)
for all [ > 1.

Since S, r is bounded, recall that by item 5 of Lemma 4.4 the mapping X —
Vo(t,v(t), X,Y,(t)) has on S, r a Lipschitz constant as small as desired. Since the
mapping w — X, is Lipschitz, for 6 large enough, w € B, (R) — Va(t, v(t), Xu, Yo (1))
is a contraction. By a Picard argument the sequence v; is converging. The limit will
be a solution of (4.11-4.12).0

4.4. Applications. We illustrate here how the examples in Sections 3.1 and 3.2
fit into the setting of the Theorem 1. The space does not allow to treat all other
variants (cf. references in Introduction) so we leave them as an exercise to the reader.

4.4.1. Example 3.1. We have

o A(t,v) = Hy + v(t)u with (possibly) unbounded v-independent operator H
(but which generates a C° semi group) and bounded operator x. The dependence of
A on v is smooth (linear) and therefore all hypotheses on A are satisfied.

e £E =R, H=L*R%C), V = dom(Hé/Q) (over C), or their realifications
H = L2 x L2, V = dom(H'*) x dom(H}'?) (over R) see [13];

e B(t,v) =0.

o F(t,v,X) = a(t)v(t)® with a(t) € L>°(R); here the second derivative D, F is
obviously bounded. Since it is independent of X it will be trivially concave.

o (G is either (see, e.g., [26, 27]) 2—2Re(X qrget, X (T)) or (X (T),0X (T)) where
O is a positive semi-definite operator; both are concave in X.

o Here

AW, v;it, X,Y) = —Re(Y,inX) + a(t)(v' +v) (4.14)

and the equation in v/ A(v',v;t, X,Y) = —60(v' —v) has, for 0 large enough, an unique
solution v' = Vy(t,v, X,Y) := (97a(t)2)14;1?5<y,wx>'
e at the k + 1-th iteraction, Theorem 1 guarantees the existence of the solution

XF*+1 of the following nonlinear evolution equation:

. 0 — a(t))v* + Re(Y,r,ipXF+1
10, XL (t) = (Ho + ( () 9+aé) Sl >u) Xkt (4.15)
Then
N k : k+1
et _ (0= a®)v" + Re(Yir, ipX >7 Xyin = XPH, (4.16)

0+ a(t)
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4.4.2. Example 3.2. We have

o B =W (0,1), H = L(0,1), V = H'(0,1) see [17] and [8] (Chap XVIII §4.4)

e A(t,v) = —vA - +div(v-). The dependence of A on v is smooth (linear) and
therefore all hypotheses on A are satisfied (D,, A =0, ...).

e B(t,v) = 0.

e with definitions in (3.5) F(t,v,X) = pr(t)(l - B2)X(t,z) + % +

@X (t,z)dz; F is concave in X; the second differential D, F has all required
properties.

e G =0 (algorithm will apply in general when G is concave with respect to X).

e Here
v 4w

2

and the equation in v A(v',v;t, X,Y) = —60(v' — v) has for all # > 0 an unique
solution v' = Vy(t,v, X,Y) := W

e at the k + 1-th iteraction, Theorem 1 guarantees the existence of the solution
X*+1 of the following nonlinear evolution equation:

(0 —1/2)v% — VY,k
0+1/2

AW, v;t, X,Y) =VY + (4.17)

X ) — vAXFTL 4 din( Xk =o. (4.18)

Then
wp1 (0 —1/2)0F — VY, X _ ek A
— = . 19
v T X (4.19)

4.4.3. Additional application. To illustrate the application of the method-
ology for a more nonlinear vectorial case, as a third example we consider a situ-

ation from [10, 48] which differs from that of Section 3.1 in that v(t) = (Zl) €
2

E = R? and A(t,v) = i[Hy + (v1(t)? 4+ v2(t)*)p1 + v1(t)?ve(t)u2]. Here, denoting
& = —Re(Y,ipX) + a(t), & = —Re(Y,i2X) we obtain

+ v (v1 + v )0t
AW ot X, V) =& (2 T" 102 4.20
(U y Uity Ay ) 51 (’U2 +'Ué +€2 (,Ul)2 ( )
and the equation in v: A(v',v;t,X,Y) = —0(v' — v) has, for 6 large enough, an
(0—&1)va—Eav?
0+&1 R

unique solution v = Vy(t,v, X,Y) = 0614, S0 v2 82 . We leave as an

_ u

0—E1)vg—Eqv2
9+51+52(19)+#

exercice to the reader the writing of the equation for X**! and the formula for v**1.

5. Extension of the monotonic algorithms. In this section, we discuss the
relaxation of some of the assumptions concerning either the concavity of (parts of) J
or the linearity in Eq. (2.1) (cf. Remark 1).

5.1. Relaxation of concavity assumptions for norm preserving evolu-
tion. In some cases, Eq. 2.1 is endowed with additional properties that enable to
relax the hypothesis of concavity of the cost functional J. For instance, in Section 3.1
the L? norm of X is preserved. Thus, for any G whose second differential with respect
to X € L? is bounded (e.g. by M), our algorithm applies : in this case use G — M - Id
instead of G (see e.g., [40]). The same conclusions also hold for F.
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5.2. General evolution equation. We consider a general form of the semi-
group generator

8, X, + Lt,v(t), Xo(t)) = 0
X,(0) = Xo.

For a given v the corresponding adjoint state Y, is:

oY, — DxL*(t,v(t), X, (t))Y, + Vx F(t,v(t), X)) = 0
Y, (T) = VxG(X,(T)).

In the case of the cost functional J defined in (2.4), the arguments of the proof of
Lemma 4.1 apply, and we obtain the following result.
LEMMA 5.1. For any v',v:[0,T] — E,

T — J(v) < /0 oy

where

+(Yo (1), Dx L(t, v(t), Xo () (Xo () = Xu(t))))-

We note however that choosing at time ¢, v'(t) = v(t) does not ensure in general
that D(v,v',t) is zero; thus the factorization of the form D(v,v’,t) = ANE(v,v') -
(v/ — v) is not true any more. In particular we are not sure to be able to find a
v'(t) which sets this term negative. Manifestly the reason is that the adjoint is not
adapted; we do not want to develop here on how to change the adjoint but we are
lead to propose the following procedure: advance in time v’(t) by solving for v'(¢) in
the relation D(v,v’,t) = —0(v'(t) — v(t))? for as long as possible, say from ¢; = 0 to
to < T . Then one sets v < 1y, [v'(t) + 1, ryv(t), compute a new adjoint Y, and
advance again in time from ¢ to t3, etc.

6. About the convergence of the schemes. The convergence of the sequence
given by Algorithm 1 when using (4.6) has been obtained in the case of quantum
control (see Section 3.1) using Lojasiewicz-Simon inequality (see [6, 15, 24, 43] and
the references therein) in discrete and continuous settings in [2, 38]. The structure of
the proofs shows that when .J is analytic and its gradient is Fredholm, convergence is
guaranteed as soon as J contains a penalization term of the L2-norm of the control
v, as is the case, e.g. in (3.4).

Note also that another proof has been presented in the framework of semi-group
theory [14] using compactness arguments.
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Appendix: Time discretized case. This section is devoted to the time-

discretization.

Setting. In order to reproduce at the discrete level the computation involved

in the monotonic algorithms, one has to define a time discretized version of J and a
scheme devoted to numerical resolution of (2.1-2.2).
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Note that our optimization method does not impose any restrictions thus any scheme
with standard numerical properties (consistency, stability, convergence) is compatible
with our procedure.

Since we only deal with optimizations problems, we consider arbitrary time-
discretizations of the functional (2.4):

N—-1
Jar(v) = ALY F(vn,2n) + Glan),

n=0

together with the general numerical scheme
Tn+1 = AAt(’Un):En + BAt(Un)u (61)

where N is a positive integer, At = T/N and v = (v, )p=0.. N—1. We assume that the
functions F' and G have the same properties as in Section 2.

Discrete adjoint and factorization. As in the continuous case, the adjoint op-
erator definition directly follows from the state equation evolution. Given a numerical
solver (6.1), the discrete adjoint operator is defined by :

Yn = Apni(Vn)Ynt1 + AtV F(v,, 2,)
YN = VIG(ZEN)

With this definition, a factorization similar to the one of Lemma 4.1 can be obtained.

LEMMA 6.1. For any v' = (v)n=0.. N—1, ¥ = (Un)n=0..N—1,

N-1
Taiv') = Tae(®) £ Y (g, (Aae(v)_y) = Ane(vn—1))a), )

n=0

+ (Yn+1, Bae(vy,) — Bai(vn))

+ At (F (v, z)) — F(vp,x,)) .

n

Thanks to this lemma, we obtain a discrete version of monotonicity condition (4.5).
Depending on the way the functions A, B and F' depend on v, the computation of a
v}, satisfying the discrete monotonic condition may requires an inner iterative solver.
In many cases this computation can anyway be parallelized. During an optimization
step, at a given time step n, the terms of the previous sum can be factorized with
respect to each component of the vector v/, — v, and made negative independently.
The fact that the computation of v/, requires z/, makes anyway the time resolution
sequential. To solve this problem, some time parallelizations have been designed in
the case of quantum control [26].



