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We present a time-parallelization method that enables one to accelerate the computation of quantum optimal
control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as
optimization solver: the computational time is approximately divided by the number of available processors. The
control of spin systems, molecular orientation, and Bose-Einstein condensates are used as illustrative examples
to highlight the wide range of applications of this numerical scheme.
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I. INTRODUCTION

The general goal of quantum control is to actively ma-
nipulate dynamical processes at the atomic or molecular
scale [1,2]. In recent years, the advances in quantum control
have emerged through the introduction of appropriate and
powerful tools coming from mathematical control theory and
by the use of sophisticated experimental techniques to shape
the corresponding control fields [3–6]. In this framework,
different numerical optimal control algorithms [7–9] have
been developed and applied to a large variety of quantum
systems. Optimal control was used in physical chemistry
in order to steer chemical reactions [3], but also for spin
systems [10,11] with applications in nuclear magnetic reso-
nance [7,12–16] and magnetic resonance imaging [17–19].
Recently, optimal control has attracted attention in view of
applications to quantum information processing, for example
as a tool to implement high-fidelity quantum gates in minimum
time [4,20,21]. Generally, algorithms can also be designed to
account for experimental imperfections or constraints related
to a specific material or device [4]. The possibility of including
such constraints renders optimal control theory more useful in
view of experimental applications and helps bridge the gap
between control theory and control experiments.

The standard numerical optimal control algorithms based
on an iterative procedure compute the control fields through
many time propagations of the state of the system, which
can be prohibitive for systems of large dimensions in terms
of computational time. This numerical limit can be bypassed
by making use of parallel computing [22–25]. In the case
where the computational time is divided by the number of
computers, the method is said to be fully efficient. This
full efficiency can be viewed as the physical limit in terms
of performance of a parallel algorithm. While in applied
mathematics different techniques have been developed using
space or time decomposition [22,24], very little has been done
in quantum mechanics [25,26]. Note that quantum control
computations can also be speeded up by the parallelization
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of matrix exponential algorithms [27,28] and by parallelizing
density operator time evolutions using minimal sets of pure
states [29].

This paper is not aimed at proposing a new optimization
approach, but rather at describing and studying a general
framework, namely, the intermediate state method (ISM),
introduced in [24], which uses a time parallelization to speed
up the computation of optimal control fields. We investigate
the efficiency of ISM on three benchmark quantum control
problems, ranging from the control of coupled spin systems
and the control of molecular orientation to the control of
Bose-Einstein condensates. As a byproduct, we show under
which conditions ISM can be made fully efficient.

The paper is organized as follows. Section II is dedicated
to the description of the time-parallelization method. The
numerical schemes involved in this algorithm are defined in
Sec. III. Numerical results on the control of spin systems,
molecular orientation, and Bose-Einstein condensates are
presented in Sec. IV. Conclusion and prospective views are
given in Sec. V.

II. THE TIME-PARALLELIZATION METHOD

We first introduce the optimal control problem and we
derive the corresponding optimality conditions. We consider
pure quantum states and we assume that the time evolution is
coherent. Note that the formalism can be easily extended to
mixed states or to the control of evolution operators [30].
The control process is aimed at maximizing the transfer
of population onto a target state, but modification of the
algorithms in view of optimizing the expectation value of an
observable is straightforward. The dynamics of the quantum
system is governed by the Hamiltonian H . The initial and
target states are denoted by |ψi〉 and |ψf 〉, respectively, and
the general state of the system at time t is denoted by |ψ(t)〉.
The dynamics of the quantum system is governed by the
Schrödinger equation,

i∂t |ψ(t)〉 = H (u(t))|ψ(t)〉, (1)

where u(t) is the field to be determined. The control time T is
fixed. The objective of the control problem is to maximize the
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FIG. 1. Schematic description of the intermediate state method
(see the text for details).

figure of merit J ,

J [u] = Re[〈ψ(T )|ψf 〉] − α

2

∫ T

0
u(t)2dt,

with α being a positive parameter which expresses the relative
weight between the projection onto the target state and the
energy of the control field. A necessary condition to ensure
the optimality of u is given by the cancellation of the gradient
of J with respect to u [7]:

∇J [u](t) = −αu(t) + Im[〈χ (t)|∂u(t)H (u(t))|ψ(t)〉] = 0,

(2)
where |χ (t)〉 is the adjoint state that satisfies

i∂t |χ (t)〉 = H (u(t))|χ (t)〉, (3)

with the final condition |χ (t = T )〉 = |ψf 〉.
We now present the ISM. A schematic description is

displayed in Fig. 1. The main idea consists in considering
a combination of the trajectories followed by |ψ(t)〉 and
|χ (t)〉 [31]. Given N ∈ N, we decompose the interval [0,T ]
into a partition of subintervals [0,T ] = ∪N−1

n=0 [tn,tn+1], with
0 = t0 < · · · < tN = T . The parallelization strategy is based
on this decomposition. We consider an arbitrary control u

and we introduce the sequence |ϕu〉 = (|ϕu
n〉)n=0,...,N that

interpolates the state and adjoint state trajectories at time tn
as follows:

∣∣ϕu
n

〉 = T − tn

T
|ψ(tn)〉 + tn

T
|χ (tn)〉, (4)

where |ψ(t)〉 and |χ (t)〉 are defined by Eqs. (1) and (3), re-
spectively. Note that |ϕu〉 does not sample any usual dynamics,
e.g., |ϕu〉 does not correspond to a solution of Eq. (1). Its
initial and final states are |ϕu(0)〉 = |ψ0〉 and |ϕu(T )〉 = |ψf 〉,
respectively. The choice of intermediate states made in Eq. (4)
is crucial to demonstrate Theorem 1 below [24].

We then introduce in each subinterval the optimal control
problem maxun

Jn[|ϕu〉,un] defined by the maximization of
the subfunctional,

Jn[un,|ϕu〉] = −1

2

∥∥|ψn(tn+1)〉− ∣∣ϕu
n+1

〉∥∥2 − αn

2

∫ tn+1

tn

un(t)2dt,

with 0 � n � N − 1. In this problem, the state |ψn〉 is defined
on [tn,tn+1] by

i∂t |ψn(t)〉 = H (u(t))|ψn(t)〉, (5)

starting from |ψn(tn)〉 = |ϕu
n〉. The penalization coefficient is

defined by αn = tn+1−tn
T

α. Since

Jn[un,|ϕu〉] = −1

2
|||ψn(tn+1)〉||2 − 1

2

∣∣∣∣∣∣ϕu
n+1

〉∣∣∣∣2

+Re
[〈
ψn(tn+1)

∣∣ϕu
n+1

〉] − αn

2

∫ tn+1

tn

un(t)2dt,

maximizing Jn with respect to u is equivalent to maxi-
mizing a figure of merit of the form Re[〈ψn(tn+1)|ϕu

n+1〉] −
αn

2

∫ tn+1

tn
un(t)2dt . In this way, each subproblem has the same

structure as the initial one.
We now review some properties of the time decomposition

in order to establish the relation with the original optimal
control problem. Given an arbitrary trajectory |ϕ(t)〉, we define
an auxiliary figure of merit,

J‖[u,|ϕ〉] =
N−1∑
n=0

βnJn[un,|ϕ〉],

with βn = T
tn+1−tn

. A first relation between J‖ and J is given
in Theorem 1 (see Ref. [24] for the proof).

Theorem 1. Given an arbitrary control u, we have

|ϕu〉 = argmax|ϕ〉(J‖[u,|ϕ〉]).
Moreover, the following relation is satisfied:

J‖[u,|ϕu〉] = J [u].

As a byproduct, this theorem allows us to compute in
parallel J [u], knowing only the sequence |ϕu〉. A similar
relation also holds between the gradients of the functionals, as
stated in Theorem 2.

Theorem 2. Given an arbitrary control u, we have

∇J [u]|[tn,tn+1] = βn∇Jn[u|[tn,tn+1],|ϕu〉].
This result provides a different interpretation of the time-

parallelized method since the sequence |ϕu(tn)〉, n = 0, . . . ,N

of intermediate states enables the decomposition of the
computation of the gradient.

Proof. Let us consider a fixed value n, with 0 � n � N − 1,
t ∈ [tn,tn+1], and denote by |χn(t)〉 and |ψn(t)〉 the trajectories
defined by

i∂t |χn(t)〉 = H (u(t))|χn(t)〉
and

i∂t |ψn(t)〉 = H (u(t))|ψn(t)〉,
with |χn(tn+1)〉 = |ϕu

n+1〉 and |ψn(tn)〉 = |ϕu
n〉. For t ∈

[tn,tn+1], we repeat with Jn the computation made to derive
the gradient of J ,

∇Jn

[
u|[tn,tn+1],|ϕu〉](t) = Im(〈χn(t)|∂u(t)H |ψn(t)〉) − αnu(t).

Using the fact that

|χn(t)〉 = (T − tn+1)

T
|ψ(t)〉 + tn+1

T
|χ (t)〉
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and

|ψn(t)〉 = (T − tn)

T
|ψ(t)〉 + tn

T
|χ (t)〉,

we arrive at

∇Jn

[
u|[tn,tn+1],|ϕu〉](t) = 1

βn

Im[〈χ (t)|∂u(t)H |ψ(t)〉] − α

βn

u(t),

and the result follows. �
We now give the general structure of the ISM. Let 1 � η >

0 and u(0) be an initial control field.
Algorithm 1.
(1) Set Err = 1, k = 0.
(2) While Err > η, do the following:
(a) Compute on [0,T ] the trajectories |ψ (k)(t)〉 and |χ (k)(t)〉

associated with u(k) according to Eqs. (1) and (3).
(b) Compute |ϕ(k)(t)〉 = |ϕu(k)

(t)〉 according to Eq. (4).
(c) On each subinterval [tn,tn+1], compute in parallel

an approximation of the solution u(k+1)
n of the problem

maxun
Jn[un,|ϕk〉].

(d) Define u(k+1) as the concatenation of the controls u(k+1)
n ,

n = 1, . . . ,N − 1.
(e) Set Err = ∑N−1

n=0

∫ Tn+1

Tn
‖∇Jn[u(k+1)

|[tn,tn+1]](t)‖dt .
(f) Set k = k + 1.
Step (2a) contradicts the parallelization paradigm, since it

requires a sequential solving of an evolution equation on the
full interval [0,T ]. We will see how this problem can be solved
in Sec. IV. However, note that the most time-consuming step,
namely, step (2c), is achieved in parallel.

III. DESCRIPTION OF THE NUMERICAL METHODS
USED IN THE PARALLELIZATION

Different schemes can be used to implement the time-
parallelized algorithm in practice. This requires two ingredi-
ents: a numerical scheme to solve approximately the evolution
equations of steps (2a) and (2c), and an optimization procedure
for the subproblem of step (2c). Here, we give some details
about the used numerical methods and we explain how the full
efficiency can be approached in the case of quantum systems
of sufficiently small dimensions.

In the different numerical examples, we consider two
numerical solvers for the Schrödinger equation (1): a Crank-
Nicholson scheme and a second-order Strang operator split-
ting. Such solvers can be described through an equidistant
time-discretization grid ta = t0 < t1 < · · · < tJ = tb of an in-
terval [ta,tb]. The time step is denoted by τ = (tb − ta)/(J − 1)
for some J ∈ N. For each time grid point tj , we introduce the
state |ψj 〉 and the control uj , which are some approximations
of the exact state |ψ(tj )〉 and the exact control field u( tj +tj+1

2 ).
The Crank-Nicholson algorithm is based on the following

recursive relation:
i

τ
(|ψj+1〉 − |ψj 〉) = H (uj )

2
(|ψj+1〉 + |ψj 〉), (6)

which can be rewritten in a more compact form as

(Id + Lj )|ψj+1〉 = (
Id − Lj

)|ψj 〉 , (7)

where Id is the identity operator and Ln := i τ
2 H (un(t)).

The second-order Strang operator splitting is rather used
in the case of infinite-dimensional systems. Indeed, this

method is particularly relevant when the Hamiltonian includes
a differential operator. We consider, for example, the case
H (u(t)) = −
 + V (u(t),x), where 
 denotes the Laplace
operator and V (u(t)) = V (u(t),x) is a scalar potential. In this
case, Strang’s method gives rise to the iteration

|ψj+1〉 = exp

(
− iτ

2



)
exp[−iτV (uj )] exp

(
− iτ

2



)
|ψj 〉.

(8)
In Eq. (8), each product can be determined very quickly since
the operator V (uj ) is diagonal in the physical space, while 


is generally diagonal in the Fourier space, and the change of
basis can be achieved efficiently by fast Fourier transform.

These schemes provide a second-order approximation with
respect to time, which leads to an accurate approximation of the
trajectory |ψ(t)〉. In addition, both propagators automatically
preserve the normalization of the wave function, which is
very interesting to avoid nonphysical solutions. A specific
advantage of these solvers is that they allow an exact
differentiation with respect to the control in the discrete setting,
in the case of scalar control for the Strang solver (8) and in
any case for the Crank-Nicholson solver (6).

We now explain how the full efficiency can be reached
with the parallelization algorithm. Both solvers lead to a linear
relation between the initial and the final states of the system
of the form

|ψJ 〉 = M(u)|ψ0〉.
As an example, for the Crank-Nicholson solver, we have

M(u) = �J−1
j=0 (Id + Lj )−1(Id − Lj ).

The matrix M(u) can be computed in parallel during the
propagation of Eq. (7). Knowing the state |ψ0〉, this matrix
enables one to compute in one matrix-vector product |ψJ 〉. As
a consequence, this propagator assembling technique allows us
to avoid the sequential solving on the full interval [0,T ] in step
(2a) of Algorithm 1. More precisely, assume for example that
at iteration k of Algorithm 1 and on each subinterval, a matrix
Mn(u(k)

n ) is computed and transmitted to the main processor.
The computations of the sequences |ψ(tn)〉 and |χ (tn)〉, which
are required to define the intermediate states |ϕ(k)(tn)〉, can
be achieved in 2N matrix-vector products. Due to storage and
communications issues of the matrices, note that this approach
can only be used for quantum systems of small dimensions.

We conclude this section by presenting a way to derive the
gradient of time-discretized figures of merit of the form

Jτ [u] = Re〈ψJ |ψf 〉 − α

2
τ

J−1∑
j=0

u2
j .

We consider the case of a Crank-Nicholson solver, but similar
computations can be made for Strang’s solver. We introduce
the functional Łτ , defined by

Łτ [u,|ψ〉,|χ〉] = Jτ [u] + Re

⎛
⎝J−1∑

j=0

〈χj |Id + Lj |ψj+1〉

− 〈χj |Id − Lj |ψj 〉
⎞
⎠.
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Since Lj is anti-Hermitian, differentiating Łτ with respect to
|ψ〉 gives rise to the discrete adjoint evolution equation

(Id − Lj−1)|χj−1〉 = (Id + Lj )|χj 〉,
with the final condition (Id − LJ−1)|χJ−1〉 = |ψJ 〉. To derive
the gradient ofJτ [u], it remains to differentiate Lτ with respect
to u, which leads to the j th entry of the gradient of Jτ ,

(∇Jτ [u])j = αdtuj + iτ

2
〈χj |∂uH |ψj+1 + ψj 〉.

In the sequel, we use this result to implement a constant
step gradient method: the approximation of the solution of the
subproblem in step (2d) is computed by iterating on � in the
formula

u�+1 = u� − ρ∇Jτ (u�), (9)

for some ρ > 0.
Other optimization methods such as pseudo- or quasi-

Newton approaches can be used to perform step (2c).

IV. NUMERICAL RESULTS

This section is dedicated to some numerical results obtained
with the ISM, used with the schemes presented in Sec. III. The
efficiency of this approach is illustrated on three benchmark
examples in quantum control [3,4], namely, the control of a
system of coupled spins, the control of molecular orientation,
and the control of a Bose-Einstein condensate whose dynamics
is governed by the Gross-Pitaevskii equation.

A. Control of a system of five coupled spins

Here, we consider the control of a system of coupled
spin-1/2 particles. Since the principles of control in nuclear
magnetic resonance are already described in Refs. [10,11,18],
only a brief account will be given here in order to introduce the
used model. We investigate the control of a system of coupled
spins by means of different magnetic fields acting as local
controls on each spin. Each field only acts on one spin and
does not interact with the others, i.e., the spins are assumed to
be selectively addressable.

We introduce a system of five coupled spins [32,33], the
evolution of which is described by the following Hamiltonian:

H = H0 +
5∑

k=1

[
uk

x(t)I (k)
x + uk

y(t)I (k)
y

]
, (10)

where the operators I (k)
x and I (k)

y are, up to a factor, Pauli
matrices which only act on the kth spin:

Ix : =
(

0 1/2
1/2 0

)
, Iy :=

(
0 −i/2

i/2 0

)
,

Iz : =
(

1/2 0
0 −1/2

)
.

We assume that the free-evolution Hamiltonian H0 is associ-
ated with a topology [32,33] defined by

H0 = 2π
(
J12I

(1)
z I (2)

z + J13I
(1)
z I (3)

z

+J23I
(2)
z I (3)

z + J25I
(2)
z I (5)

z + J34I
(3)
z I (4)

z

)
.

Note that this model system is valid in heteronuclear spin
systems if the coupling strength between the spins is small
with respect to the frequency shifts [10,11]. The coupling
constant between the spins is taken to be uniform and equal
to Jp = 140. For the numerical simulations, we move to the
density matrix formalism, with I (1)

x and I (5)
x as initial and final

states, respectively. The control time is fixed to T = Jp/10.
The parameter α is set to 0.

For the time parallelization, we consider a uniform grid so
that tn+1 − tn = T/N , for n = 0, . . . ,N − 1, and we compare
the results for different values of N . The time discretization
is done by the Crank-Nicholson method of Eq. (6) with the
time step T/215. In step (2c), one iteration of the constant step
gradient descent method [see Eq. (9)] is used, with ρ = 104. As
a result of Theorem 2, the values obtained after a given number
of iterations are the same for all values of N . In this way, the
method is almost fully efficient. It is actually equivalent to
a standard gradient method, except that the computation of
the gradient is done in parallel. The computational effort is
therefore exactly divided by the number of processors, and
the full efficiency is only limited by the memory usage and
also by the communication between processors required by
the update of the intermediate states in steps (2a) and (2b) of
the algorithm. Figure 2 displays the figure of merit with respect
to the parallel computational time.

In order to more precisely evaluate the efficiency of the
algorithm, we give some details about the speedup of the
numerical computations. Numerical simulations are imple-
mented with MATLAB, where the parallelization is realized
using the open-source library MatlabMPI [34]. The tests
have been carried out on a shared memory machine under
a LINUX system with a core of Intel(R) Xeon(R) CPU type (@
2.90 GHz with 198 Giga byte shared memory). The parallel
computation uses N processors where, as above, N is the
number of subintervals of the time-domain decomposition. In

1 10 100
0

0.2

0.4

0.6

0.8

1

Computational time

N
or

m
al

iz
ed

 fi
gu

re
 o

f m
er

it

N=1
N=2
N=4
N=8
N=16

FIG. 2. Evolution of the normalized figure of merit (dimension-
less) at each iteration and for different values of N (the number of
processors) with respect to computational time (wall-clock time) in
the case of the control of a spin system. As stated in Theorem 2,
the values obtained after a given number of iterations are the same
for all values of N . Logarithmic scale is used in the x axis. The
computational time is expressed in seconds.
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Sp
ee
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FIG. 3. Speedup S(1.74,N ) (dimensionless) of the parallel im-
plementation (y axis) with respect to the number of processors N (x
axis). The blue dots indicate the speedup achieved with MatlabMPI
for ε = 1.74 (see Table I for details). The red solid line corresponds
to a linear evolution of the speedup as a function of N .

Fig. 3, parallel numerical performances are compared with
the sequential performance, which is obtained when a single
processor is used to treat the whole time domain. Given
ε > 0, we introduce the quantities S(ε,N ) := t(ε,1)/t(ε,N )
and Eff(ε,N ) := 102[S(ε,N )/N], as the parallel speedup
and the efficiency, respectively, where t(ε,N ) denotes the
computational time (with N processors) necessary to reach
a value J [uk] such that J [u∞] − J [uk] < ε, where u∞
is the value of the sequence uk obtained at the numerical
convergence. Figure 3 displays results about the speedup of
the parallel implementation.

We observe that the algorithm behaves as expected when
increasing the number of processors. Despite the use of
input-output (IO) data files to ensure the communication
between CPUs (as required by MatlabMPI), the ISM achieves
a linear scalability. A profiling of the parallel computing
is reported in Fig. 4, where we present the time spent to
achieve the communications for the master and one slave
processors during 20 iterations of the optimization process.
As expected, the speedup is independent on the value of ε.
This point is clearly exhibited in Table I. The communications
in MatlabMPI are of the point-to-point type through IO files; a
for-loop is therefore necessary to cover all sender and receiver

ScatteringScattering

Gathering

ReceivingReceiving

Computing

Receiving

Computing

Sending

Master processor Slave processor

FIG. 4. MatlabMPI profiling of the tasks performed by the
master and a slave processors with N = 4 and for 20 iterations of
the optimization process. The proportions are computed separately
regarding the wall-clock timing of a given processor.

TABLE I. Efficiency Eff(ε,N ) of the parallel MathlabMPI im-
plementation. Note the full efficiency performance through several
snapshots in the parallel-running computation.

N processors 1 2 4 8

Eff(0.32,N ) 100% 100.5% 99.7 % 100.9%
Eff(0.89,N ) 100% 100.2 % 99.2 % 99.9%
Eff(1.74,N ) 100% 100.2% 99.2% 99.9%

processors. In this view, a slave processor waits for its turn
in order to be able to read the message from the master
processor. On the contrary, the printing message addressed
to the master processor is done on slave processors and hence
is nonblocking.

Figure 4 shows that in the case N = 4, the slave processor
mainly works on parallel computing. Its communication part
is shared between sending and receiving data. The sending part
is longer due to the amount of data to be treated, which consist
not only of partial control but also of propagator matrices.

The full efficiency of the ISM is clearly shown in the
numerical simulations; see Table I. Note that in some cases,
the efficiency is greater than 100% because the full problem
requires more memory, and thus spends more time in hardware
storage processes. On the contrary, the parallel computing
uses a smaller amount of data. Also, depending on the
processor architecture, the computational time shall behave
nonlinearly with respect to the size of the data. Similar linear
and superlinear speedup have been observed in Ref. [34] with
MatlabMPI.

B. Optimal control of molecular orientation

In a second series of numerical tests, we consider the
control of molecular orientation by THz laser fields. Molecular
orientation [35,36] is nowadays a well-established topic both
from the experimental [37,38] and theoretical points of
views [39–43]. Different optimal control analyses have been
made on this quantum system [44–47].

Here, we consider the control of a linear polar molecule,
HCN, by a linearly polarized THz laser field E(t). We assume
that the molecule is in its ground vibronic state and described
by a rigid rotor. In this case, the Hamiltonian of the system can
be written as

H (t) = BJ 2 − μ0 cos θE(t) − E(t)2

2
[(α‖ − α⊥) cos2 θ + α⊥],

where B is the rotational constant, J 2 is the angular momentum
operator, μ0 is the permanent dipolar moment, α‖ and α⊥ are
the dipole polarizability components parallel and perpendic-
ular to the molecular axis, respectively, and θ is the angle
between the molecular axis and the polarization direction of
the electric field. At zero temperature, the dynamics of the
system is ruled by the following differential equation:

i
∂|ψ(t)〉

∂t
= H (t)|ψ(t)〉,

where the initial state at t = 0 is |0,0〉, in the basis of the
spherical harmonics {|j,m〉,j � 0,−j � m � j}. Numerical
values are taken to be B = 6.6376 × 106, μ0 = 1.1413, α‖ =
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FIG. 5. Functional values at each iteration and for various values
of N with respect to computational time for the control of molecular
orientation by a monotonic algorithm. Logarithmic scale is used in the
x axis. The functional values are dimensionless and the computational
time is expressed in seconds.

20.055, and α⊥ = 8.638, in a.u. We refer the reader to Ref. [44]
for details on the numerical implementation of this control
problem. The α parameter is chosen as a time-dependent
function of the form 105( t−T/2

T/2 )6 + 104 in order to design
a control field which is experimentally relevant [44]. The
target state is the eigenvector of the observable cos θ with the
maximum eigenvalue in the subspace such that j � 4 [41,48].

Having investigated the implementation issues in Sec. IV A,
here we focus on the efficiency Eff�(ε,N ) achieved when
neglecting the time associated with IO communications. As
a consequence, the results hereafter do not depend on the
used computer and software. We study the efficiency of the
parallelization method in the cases where the optimization
solver consists of one step of either a monotonic algorithm
or a Newton method. We start with a simulation using a
monotonic algorithm (see [8,49] for details about this method).
Given a target value ε of the figure of merit, we measure the
computational time necessary to obtain it. In the numerical
computation, we use ε = 0.3, while the optimum has been
numerically estimated as 0.2909 [44]. The values of the figure
of merit are plotted in Fig. 5.

In this case, the full efficiency is not obtained, as reported in
Table II. This point can be qualitatively understood as follows.

TABLE II. Efficiency of the ISM for various values of N in
the case of the control of molecular orientation with a monotonic
algorithm.

N Eff�(ε,N )

1 100%
2 55.2%
4 51.2%
8 51.5%
16 38.5%
32 26.4%
64 16.3%
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FIG. 6. Same as Fig. 5, but for a Newton solver.

The monotonic schemes are intrinsically sequential. In [31],
it is shown that they can be interpreted in terms of a tracking
procedure. At each time step, the control field is computed
in order to decrease the distance between the current and the
adjoint states. This feature is perturbed by the decomposition
associated with the time parallelization, and may explain why
the full efficiency can hardly be obtained with these schemes.

In the different numerical simulations, we observe that
this method seems to be significantly more efficient than
gradient descent solvers. The wall-clock computational time
is a decreasing function of N , so that solving benefits from
large parallelization. However, Eff�(ε,N ) does not appear to
be a monotonic function of N . The analysis of this point is
beyond the scope of this paper.

We repeat this test with one iteration of the Newton method
as optimization solver. More precisely, we implement a matrix-
free version of the algorithm that updates the control by means
of a generalized minimum residual (GMRES) routine [50,51].
In this case, we observe that this approach actually enables
one to obtain convergence; the algorithm does not converge
for N = 1 and N = 2, but converges for larger values of N .
The values of the figure of merit are plotted in Fig. 6. Since
the algorithm does not converge for N = 1, t(ε,1) and Eff� are
not defined. In this case, we consider the quantity Nt(ε,N ) to
measure the efficiency of the process. The results are presented
in Table III.

TABLE III. Equivalent sequential time of the ISM in the case of
a Newton solver for the control of molecular orientation.

N Nt(ε,N )

1
2
4 1264.763737
8 759.976361
16 589.424517
32 516.603943
64 774.557304
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C. Optimal control of Bose-Einstein condensates

The last example investigated in this work deals with
the optimal control of Bose-Einstein condensates [52]. This
subject has been extensively studied in the past few years [53–
59]. Following Ref. [53], we consider the control of a
condensate in magnetic microtraps whose dynamics is ruled
by the Gross-Pitaevskii equation,

∂

∂t
|ψ(x,t)〉 = [H0 + V (x,λ(t))]|ψ(x,t)〉, (11)

where |ψ(x,t)〉 is the state of the system, H0 = − 1
2

∂2

∂x2 +
κ〈ψ(x,t)|ψ(x,t)〉, λ is the radio-frequency control field, and κ

is a positive coupling constant. The potential V is defined by

V (x,λ) =
⎧⎨
⎩

1
2

(|x| − λd
2

)2
for |x| > λd

4

1
2

(
(λd)2

8 − x2
)

otherwise,

with d > 0. Unitless parameters are used here. We refer the
reader to Ref. [53] for details on the model system. The figure
of merit associated with this control problem is

J [λ] = Re[〈ψ(T )|ψf 〉]. (12)

The final and initial states of the control problem are, respec-
tively, the ground states of the Hamiltonians H0 + V (x,0) and
H0 + V (x,1). The parameter α is set to 0.

Due to the nonlinearity of the model system, the preceding
approach has to be adapted. In this way, we no longer consider
the sequence of states |ϕu

n〉 [see Eq. (4)], but we split up these
intermediate states into two sets. The sequence of initial states
is taken on the trajectory |ψ(t)〉, i.e., defined by |ψ(tn)〉, n =
0, . . . ,N , while the sequence of target states is taken on the
adjoint trajectory |χ (t)〉, i.e., defined by |χ (tn)〉, n = 0, . . . ,N .
The maximization problem in step (2c) of Algorithm 1 is
therefore replaced by the maximization of the subfunctional,

Jn[un,|ψu〉] = Re[〈ψn(tn+1)|χ (tn+1)〉], (13)

with 0 � n � N − 1. In this problem, the state |ψn〉 is defined
on [tn,tn+1] by Eq. (5), but starting from |ψn(t = tn)〉 =
|ψ(tn)〉. The rest of the procedure remains unchanged.

This modification does not dramatically affect the com-
putational time since these trajectories are not computed
sequentially, but in parallel. We then use the propagator
assembling technique presented in Sec. IV to compute the
sequences of initial and final states. The numerical values of
the parameters are set to T = 8, κ = 1, and d = 10. The space
domain we consider is [−10,10]. For the space discretization,
we consider a uniform grid composed of 50 points. The time
discretization is achieved with a time grid of 29 points, and
we use Strang’s splitting (8) to compute the trajectories. The
optimization solver in step (2c) consists of one iteration of
the constant step gradient descent method [see Eq. (9)], with
ρ = 10−1. The results are presented in Fig. 7.

We observe that the full efficiency is not only reached, but
even overtaken, as confirmed in Table IV. This observation
is certainly a consequence of the nonlinear setting and can
be interpreted as follows. As can be seen in Sec. IV A, linear
dynamics enables one to obtain full efficiency. Applying the
parallelization method on such a problem with a control time T

and with two subintervals (and two processors) requires a time
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FIG. 7. Evolution of the normalized figure of merit at each
iteration and for various values of N with respect to computational
time (expressed in seconds) for the control of a Bose-Einstein
condensate.

for solving the problem of the order of T/2. As a consequence,
the complexity of the optimization problem appears to be a
linear function of T . This dependence is more complicated in
the nonlinear case. The numerical results show, in our example,
that the complexity behaves as a sublinear function of T . In
this way, the subcontrol problems are simpler not only because
of the size reduction induced by the time decomposition, but
also because of the dynamics itself. This point will be explored
in a forthcoming work.

V. CONCLUSION AND PERSPECTIVES

In this work, we have investigated the numerical efficiency
of a time-parallelized optimal control algorithm on standard
quantum control problems, extending from the manipulation of
spin systems and molecular orientation to the control of Bose-
Einstein condensates. We have shown that the full efficiency
can be reached in the case of a linear dynamics optimized by
means of gradient methods. On the contrary, full efficiency is
not achieved when using monotonic algorithms and Newton
solvers. In the case of a Newton method, the parallelization
setting reduces the length of time intervals where the solver
is used, and makes the subproblems easier to solve. Such a
property is also observed in the case of nonlinear dynamics,
as shown with the example of Bose-Einstein condensates.
The results of this work can be viewed as an important step
forward for the implementation of parallelization methods in

TABLE IV. Efficiency of the ISM for various values of N in the
case of the control of a Bose-Einstein condensate.

N Eff�(ε,N )

1 100%
2 90%
4 99.7%
8 126.3%
16 141.8%
32 116.65%
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quantum optimal control algorithms. Their use will become a
prerequisite in the near future to simulate quantum systems of
increasing complexity.
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Schulte-Herbrüggen et al., Eur. Phys. J. D 69, 79 (2015).

[5] C. Altafini and F. Ticozzi, IEEE Trans. Automat. Control 57,
1898 (2012).

[6] D. Dong and I. A. Petersen, IET Control Theory A 4, 2651
(2010).

[7] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S.
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