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Greedy reconstruction algorithm for the identification of spin distribution
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We propose a greedy reconstruction algorithm to find the probability distribution of a parameter characterizing
an inhomogeneous spin ensemble in nuclear magnetic resonance. The identification is based on the application of
a number of constant control processes during a given time for which the final ensemble magnetization vector is
measured. From these experimental data, we show that the identifiability of a piecewise constant approximation
of the probability distribution is related to the invertibility of a matrix, which depends on the different control
protocols applied to the system. The algorithm aims to design specific controls which ensure that this matrix is as
far as possible from a singular matrix. Numerical simulations reveal the efficiency of this algorithm in different
examples. A systematic comparison with respect to random constant pulses is done.
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I. INTRODUCTION

The identification of parameters that characterize the dy-
namics of a quantum system is a fundamental prerequisite
for controlling its evolution [1–8] and is of practical interest
for realizing specific tasks in quantum technologies [9]. This
aspect is crucial in open-loop configurations for which the
control protocols are designed without any experimental feed-
back from the system during the control process [1,2,5,10,11].
In the context of quantum systems, the problem of identifying
unknown parameters (or functions) has been explored in a
large number of studies and for a variety of applications rang-
ing from molecular physics [12–14] and magnetic resonance
[15–18] to quantum information science [19–29] and open
quantum systems [30–33]. Some mathematical results have
also been established in this direction [34–42]. On the basis
of different measurement processes and specific control proto-
cols, the goal of these works is generally to estimate the value
of one or several parameters of the system Hamiltonian. When
controlling an ensemble of identical quantum systems, such
a parameter may vary in a given range due to experimental
limitations or uncertainties. A key example comes from the
spatial inhomogeneities of the external control [2,43–47]. In
this case, all the systems are not subjected to exactly the same
control. This aspect has to be taken into account in the mod-
eling of the dynamics and in the computation of the control
procedure. Robust control protocols against such inaccuracies
have been developed recently to solve this experimental issue
[2,45,48–55]. However, the variation range of the unknown
parameter is not the only crucial quantity; the probability
distribution of this parameter (i.e., the number of systems for
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each value of the parameter) may also play a major role. It
is generally assumed that this probability distribution is flat
or has a simple Gaussian or Lorentzian form. In these cases,
the probability distribution can be quite easily characterized.
However, the problem of identifying probability distributions
becomes much more difficult if these have complex structures,
with, e.g., several peaks, or if no information is known about
them. It is therefore essential to be able to identify with a great
precision these unknown probability distributions.

This paper aims at taking a step toward the answer to this
open question by developing a numerical algorithm, called
a greedy reconstruction algorithm (GRA). By definition, an
algorithm is said to be greedy if it takes the best choice
available at each iterative step. Greedy algorithms generally
find a suboptimal solution, but in a computational time which
may be very small compared to that of a global optimization
procedure. Such algorithms have recently been applied to the
identification of quantum systems [56,57] and we propose to
adapt them to the reconstruction of the probability distribu-
tion. For the sake of clarity, we focus in this study on a specific
example, although our algorithm applies to a large variety
of systems. We consider the case of a spin ensemble in nu-
clear magnetic resonance (NMR) [44,58–61] subjected to an
inhomogeneous radio-frequency magnetic field whose range
of variation is known, but not its probability distribution.
The probability distribution is approximated by a piecewise
constant function taking at most K values. The algorithm then
designs a series of K controls for the GRA (or less for the
optimized version) which are, in the second step, applied to
the spin ensemble. The K measured ensemble magnetization
vectors at the final time are then used to identify the proba-
bility distribution. More precisely, the identification process
is related to the invertibility of a matrix, which depends on
the different controls. The aim of the algorithm is therefore
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to design specific control protocols which ensure that this
matrix is as far as possible from being singular. The preci-
sion of the identification process can be understood from the
eigenvalues and eigenvectors of the matrix. In the examples
analyzed in this study, constant controls will be sufficient to
find the probability distribution with a very good accuracy, but
time-dependent controls could also be used. We show that the
optimization procedure of the algorithm has a unique solution
and a good convexity structure leading to fast convergence.
We point out that the controls depend only on the model
system and not on the spin distribution or on the available
data. The numerical efficiency of the algorithms is shown in
different illustrative examples, namely, a double-peak distri-
bution and a step one. A systematic comparison with random
constant pulses is also done.

The paper is organized as follows. Section II describes
the model system. Section III is dedicated to the theoretical
framework, while the algorithm is presented in Sec. IV. The
efficiency of the GRA is numerically demonstrated in Sec. V
in two standard examples, a double-peak and a step proba-
bility distribution. The conclusion and prospective views are
given in Sec. VI. A mathematical description of the method
and the development of an optimized greedy algorithm are
reported in Appendixes A and B, respectively. Additional
numerical results are presented in the Supplemental Material
[62].

II. THE MODEL SYSTEM

To illustrate our study, we consider a basic control problem
in NMR, i.e., a spin ensemble subjected to an inhomogeneous
radio-frequency magnetic field [43–46,61]. In a given rotating
frame, we assume that all the spins have the same resonance
offset ω. Each isochromat is characterized by a Bloch vector,
M(α) = [Mx, My, Mz]

ᵀ, whose dynamics are governed by the
equations of motion

Ṁx = −ωMy + (1 + α)ωyMz,

Ṁy = ωMx − (1 + α)ωxMz,

Ṁz = (1 + α)ωxMy − (1 + α)ωyMx,

where the coordinates of the Bloch vector satisfy M2
x + M2

y +
M2

z = M2
0 , with M0 the equilibrium magnetization. ωx and ωy

are time-dependent controls that correspond to the compo-
nents of the magnetic field along the x and the y directions.
In this study, we assume that these controls are constant in
time. We show in Sec. V that this hypothesis is sufficient for
the different examples to identify the probability distributions.
The parameter α is used to model the control field inhomo-
geneities, which are of the order of a few percent in standard

experiments [60]. The controls
ωx

2π
and

ωy

2π
are expressed in

Hz. We consider a typical field amplitude ω0 that can be fixed,
for instance, at ω0 = 2π × 100 Hz. We introduce normalized
coordinates as follows:

ux = 2π
ωx

ω0
; uy = 2π

ωy

ω0
; t ′ = ω0

2π
t ;

� = 2π
ω

ω0
; X = M

M0
.

We omit the prime in the time below to simplify the notation.
We deduce that the differential system can be expressed in
normalized units as

ẋ = −�y + (1 + α)uyz,

ẏ = �x − (1 + α)uxz,

ż = (1 + α)uxy − (1 + α)uyx, (1)

with x2 + y2 + z2 = 1. The initial state of the dynamics for
each spin is the thermal equilibrium point, i.e., the north pole
of the Bloch sphere, X0 = (0, 0, 1)ᵀ. We neglect the relax-
ation effect and we consider a control time of the order of
100 ms. This corresponds to a normalized time t f of the order
of 10. In the numerical simulations, we add the constraints
|ux| � um and |uy| � um, where um is the maximum amplitude
of each component. In NMR, only the first two coordinates
of the magnetization vector can be directly measured. We
do not have access to the z component due to the strong
magnetic field applied along this direction. We denote by
Y(t ) = (x(t ), y(t ))ᵀ the projection of the Bloch vector onto
the first two coordinates. We point out that this aspect is not a
limiting point for the application of the identification process.

III. IDENTIFICATION OF THE SPIN DISTRIBUTION

We consider an ensemble of N spins whose dynamics are
governed by Eq. (1). We assume that the control amplitudes
(ux, uy) belong to the admissible set U = {(ux, uy) ∈ R2 |
|ux| � um, |uy| � um}. The objective of the control procedure
is to identify the probability distribution of the parameter α.
To simplify the recognition process, we assume that the en-
semble of spins can be decomposed into a set of K subgroups
with the same value of the parameter α�, 1 � � � K . How-
ever, the discrete probability distribution P� for α, namely, the
probability of each possible outcome α� or, in other words,
the number of elements N� in each subgroup, is unknown. By

definition, we have P�(�) = N�

N
and

K∑
�=1

P�(�) = 1.

The projected solution onto the first two coordinates of
Eq. (1) at time t f is denoted Yu,α (t f ), where the dependence
on u and α has been explicitly mentioned. The corresponding
experimental realization of this controlled dynamic leads to
Yexp

u (t f ) = (xexp
u (t f ), yexp

u (t f ))ᵀ, where Yexp
u (t f ) can be viewed

as the average at time t f of the experimental measures of all
the spins in the set subjected to the control u. The coordinates
xexp

u and yexp
u are those of this measured magnetization vector.

The relation between the theoretical description of the
dynamical system and the experimental outcome can be ex-
pressed as

Yexp
u (t f ) =

K∑
�=1

P�(�)Yu,α�
(t f ), (2)

in which the two sides of the equation crucially depend on
the control u. A specific control protocol is not sufficient
to identify the probability distribution P�, which generally
requires the implementation of K control processes with K
different controls denoted uk , k = 1, . . . , K . Note that in the
optimized version of the GRA presented in Appendix B, the
number of controls can be different from K .
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On the basis of the experimental outputs, a straightforward
way to determine P� is to solve the minimization problem

min
P∈P

K∑
k=1

∥∥∥∥∥Yexp
uk

(t f ) −
K∑

�=1

P(�)Yuk ,α�
(t f )

∥∥∥∥∥
2

, (3)

where P is the set of all the possible probability distribu-

tions P that satisfy P(�) � 0 for 1 � � � K and
K∑

�=1

P(�) = 1.

Mathematically, we point out that P is a convex and closed
set. ‖ · ‖ denotes the standard Euclidean vector norm. Note
that Eq. (3) can be rewritten as

min
P∈P

K∑
k=1

∥∥∥∥∥
K∑

�=1

(P�(�) − P(�))Yuk ,α�
(t f )

∥∥∥∥∥
2

. (4)

At this point, it is clear that a key ingredient of the accu-
racy of the identification process relies on the choice of the
controls uk .

To clarify this problem, we introduce a set {ϕ j}K
j=1 of

linearly independent functions ϕ j : {1, . . . , K} → R such that
P ⊂ span({ϕ j}K

j=1), where span denotes the vector space gen-
erated by the functions. Expressing P� and P as, respectively,

P�(�) =
K∑

j=1

β�, jϕ j (�) and P(�) =
K∑

j=1

β jϕ j (�), the minimiza-

tion problem, (4), becomes

min
β∈R̂K

K∑
k=1

∥∥∥∥∥
K∑

�, j=1

(β�, j − β j )ϕ j (�)Yuk ,α�
(t f )

∥∥∥∥∥
2

, (5)

where the vector β = (β j )
K
j=1 is taken in R̂K , a subset of RK ,

so that P =
∑

j

β jϕ j is a probability distribution. Note that

other basis functions can be used, such as, e.g., a basis of
polynomial functions, which may be more suited to specific
problems. Equation (5) can be rewritten in a compact form as

min
β∈R̂K

〈β� − β|W |β� − β〉, (6)

where W is a symmetric and positive semidefinite K × K
matrix whose elements are defined as

W�, j =
∑

k

〈γ�(uk )|γ j (uk )〉 (7)

with

γ j (uk ) =
∑

�

ϕ j (�)Yuk ,α�
(t f ).

Since the set of vectors β is a convex subset of RK , we
deduce that the problem is uniquely solvable if the matrix
W is positive definite, i.e., if W has a nonzero determinant.
In the case where W has a nontrivial kernel, infinitely many
solutions may exist which lead to incorrect probability dis-
tributions different from the experimental one P�. We stress
that the nontriviality of the kernel depends completely on the
choice of the controls uk .

We show in this study that the GRA allows us to design a
set of controls uk so that the matrix W is positive definite with

a trivial kernel. Note that larger times and/or larger bounds
for the control pulses generally ensure a better conditioning of
matrix W and, hence, a better identifiability of the distribution.

The algorithm is composed of two steps, namely, an off-
line and an online phase. In the first phase (off-line), the
GRA computes the controls uk . In this phase, only the the-
oretical model is needed, without any experimental input. The
derived controls are used in the second phase (online), in
which the different magnetization vectors are measured and
the minimization problem, (3), is solved. We thus stress that
the experimental data are used only in the online phase of the
algorithm. Note that the controls are the same for any prob-
ability distribution to identify and depend only on the model
system under study. Finally, we point out that, while in the first
algorithm we consider that all control pulses have the same
duration t f , in the second version, described in Sec. IV B,
the duration of each pulse is considered as a variable to be
optimized together with its amplitude. The generality of the
GRA allows one to tackle this situation in a straightforward
manner.

IV. THE GREEDY RECONSTRUCTION ALGORITHM

We present in this section the GRA in its classical form;
an optimized extension called the optimized GRA (OGRA) is
described in Appendix B. For pedagogical purposes, we have
limited the mathematical derivation of the algorithm to its
strict minimum. The interested reader can find mathematical
details about the algorithms in [56] and [57] for the standard
and optimized GRA, respectively.

A. Optimizing the control amplitudes for a fixed control time

The GRA computes the controls uk by solving a sequence
of fitting-step and discriminatory-step problems, in which the
goal of the first step is to identify a nontrivial kernel of a
submatrix of W , while the second phase designs a new control
which is aimed at correcting this discrepancy and eliminating
the identified nontrivial kernel. The explicit formulation of the
algorithm is given in terms of the function h(k), defined by

h(k)(β, u) =
K∑

�=1

k∑
j=1

β jϕ j (�)Yu,α�
(t f ) (8)

for any β in Rk . The GRA is described below. Some math-
ematical statements of the different steps of the algorithm
are described in Appendix A. Its numerical implementation
is presented and discussed in Sec. V.

Greedy reconstruction algorithm

Given a set of K linearly independent functions
(ϕ1, . . . , ϕK ).

Solve the initialization problem

max
u∈U

‖h(1)(1, u)‖2, (9)

which gives the control u1, and set k = 1.
While k � K − 1
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(1) Fitting step: Find (βk
j ) j=1,...,k that solves the problem

min
β∈Rk

k∑
m=1

‖h(K )(ek+1, um) − h(k)(β, um)‖2, (10)

where ek+1 is the (k + 1)th canonical vector in RK .
(2) Discriminatory step: Find uk+1 that solves the problem

max
u∈U

‖h(K )(ek+1, u) − h(k)(βk, u)‖2. (11)

(3) Update k + 1 → k.
End while
The basic principles of the GRA can be detailed by its first

two iterations for K = 2. Using

h(1)(1, u) =
K∑

�=1

ϕ1(�)Yu,α�
(t f ),

the initialization problem can be expressed as

max
u∈U

‖W11(u)‖2.

We deduce that the goal of this step is to maximize the mod-
ulus of this W -matrix element, so as to be as far as possible
from a 0 of W . We then consider the first step of the algorithm
with k = 1. For clarity we omit below the dependence of W
on u. By definition, we have

W11 =
∥∥∥∥∥

K∑
�=1

ϕ1(�)Yu,α�
(t f )

∥∥∥∥∥
2

,

W22 =
∥∥∥∥∥

K∑
�=1

ϕ2(�)Yu,α�
(t f )

∥∥∥∥∥
2

,

W12 = W21 =
K∑

�,�′=1

ϕ1(�)ϕ2(�′)〈Yu,α�
(t f )|Yu,α�′ (t f )〉,

and we deduce that the quantity to minimize in the fitting step
can be written as

‖h(2)(e2, u1) − h(1)(β, u1)‖2 = W11β
2 − 2W12β + W22,

where β is here a real number. The minimum is reached for
β1 = W −1

11 W12, where W is computed for the control u1. This
value can be associated with a vector (β1,−1)ᵀ of the kernel
of the following 2 × 2 submatrix of W:(

W11 W12

W12 W22

)
. (12)

The fitting step of the GRA can thus be interpreted as a
systematic way to find a basis of the kernel of larger and larger
submatrices of W . Setting β to β1, the discriminatory step
consists in adding a new control u2 to correct this singular-
ity, i.e., in selecting this control such that the corresponding
quantity is as far as possible from a 0. Mathematically, it can
be shown that this procedure always has a solution and that
the new matrix W (2) has a nontrivial 2 × 2 submatrix, (12)
(see Appendix A for details).
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FIG. 1. Plot of the true distribution (red crosses, which essen-
tially coincide with the back circles) and approximated solutions
with minimum error as a function of α, computed by the different
optimization algorithms for the identification problem using control
sets with a fixed control time. In particular, controls generated by
the OGRA (green lines), GRA (filled black circles), and RCC (blue
squares) are plotted. Dimensionless units are used.

B. Optimizing the amplitude controls and time horizon

Thus far, we have considered a fixed control time t f . How-
ever, it is also possible to consider controls with different
control times, up to a fixed boundary tmax

f > 0. In this case,
we also maximize with respect to time, meaning that the
initialization and discriminatory step problems at iteration k
would change to

max
u∈U ,

t f ∈[0,tmax
f ]

‖h(1)(1, u; t f )‖2 (13)

and

max
u∈U ,

t f ∈[0,tmax
f ]

‖h(K )(ek+1, u; t f ) − h(k)(βk, u; t f )‖2, (14)

respectively. In Eqs. (13) and (14), the function h(k) is still
defined as in (8), only with the control time as an additional
variable. Similarly, one can adapt the corresponding problems
in the OGRA, the optimized version described in Appendix B.
We denote the resulting two algorithms GRAt and OGRAt.

V. NUMERICAL RESULTS

A. The case of a double-peak distribution

As the first illustrative example, we investigate here the
identification of a symmetric double-peak probability distri-
bution, displayed in Fig. 1. Similar results have been achieved
for other smooth distributions with one or several peaks. Nu-
merical details are described in the Supplemental Material
[62].

In the numerical simulations, we consider a control time
t f = tmax

f = 16. The amplitude um is equal to 10. The normal-
ized offset resonance is set for all spins to π

10 , i.e., to 30 Hz. We
also assume that α ∈ [−0.2, 0.2] and K = 30. The K discrete
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TABLE I. Minimum relative norm error for different control sets.

Control set

GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0045 0.0098 0.0005 0.0009 0.4685 0.0841

values α� of α are regularly spaced in the interval of variation
of α, i.e., α� = −0.2 + 0.4 �−1

K−1 . Since the control protocols
are constant in time, Eq. (1) is solved numerically by directly
evaluating the exponential matrix corresponding to the exact
solution. All optimization problems are solved by a BFGS
descent-direction method. We also mention that the exact
number of uncoupled spins in the ensemble is not relevant
for all the computations, since we are only interested in their
probability distribution. However, we use a total number of
105 spins in the numerical simulations.

For the GRA and GRAt, we consider a random and or-
thonormal basis, {ϕk}30

k=1. Note that any basis of this space
can be used in the respective algorithms. For the OGRA and
OGRAt, we extend the basis from the GRA by 30 randomly
chosen probability distributions {ϕk}60

k=31. The tolerance used
in the OGRA and OGRAt (see Appendix B) is set to be
tol = 10−14. The controls generated by the algorithms and
corresponding to the numerical results discussed below are
described in the Supplemental Material [62]. To test whether
it is even necessary to run the algorithm or whether the same
results could be achieved with other control protocols, we also
consider two sets of 30 random and constant controls. In the
first and second cases, we use completely random constant
values in the set U , with a control time t f or with different and
random control times in the interval [0, t f ], respectively. We
denote the two sets of controls RCC and RCCt.

The robustness of the different control functions is evalu-
ated by considering a 30-dimensional hypercube centered in
the global minimum P� of our identification problem, with a
radius of 100‖P�‖, and we repeat the minimization process for
100 initialization vectors randomly chosen in this hypercube.
We then compute the minimum norm difference ‖P�−Pf ‖

‖P�‖ over

-0.2 -0.1 0 0.1 0.2
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FIG. 2. Same as Fig. 1, but for variable control times.
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FIG. 3. Same as Fig. 1, but for a step distribution.

all optimization runs, where Pf denotes the solution given by
the optimization algorithm. We obtain the results reported in
Table I.

As can be seen in Table I, the errors of the OGRA and
OGRAt are 10 times smaller than those of the GRA and
GRAt, which themselves are 10 and 100 times smaller, respec-
tively, than the errors of both sets of random controls. Similar
results have been achieved for other smooth distributions,
which show the efficiency of the two proposed algorithms.
Figures 1 and 2 display the true distribution and the minimal
solution for all control sets for fixed and variable control
times, respectively.

We observe that the solutions computed with controls gen-
erated by any algorithm match the true distribution. On the
other hand, the RCC completely fails, showing a third peak in
the middle, while the RCCt can identify at least the two peaks
of the distribution.

B. The case of a step distribution

As the second illustrative example, we consider a noncon-
tinuous step distribution, displayed in Fig. 3, in which only
spins with a positive parameter α can be observed in the
sample. We repeat the numerical simulations in Sec. V A and
we obtain the results reported in Table II.

As can be seen in Table II, the difference in the magnitude
of errors is similar to that for the double-peak distribution.
These results are displayed in Figs. 3 and 4.

We observe that the OGRA and OGRAt are still able to
identify the true distribution, while the GRA and GRAt al-
ready show small discrepancies. The RCC completely fails
again, but also the RCCt shows major visible differences in
the upper part of the step distribution. Arguments based on

TABLE II. Minimum relative norm error for different control sets.

Control set

GRA GRAt OGRA OGRAt RCC RCCt

Min. error 0.0295 0.0181 0.0018 0.0021 0.4204 0.1943
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FIG. 4. Same as Fig. 3, but for variable control times.

the properties of matrix W are given in Sec. V C to explain
these numerical observations.

C. Eigenvalues and eigenvectors of W

We explain qualitatively in this section the numerical re-
sults observed in Secs. V A and V B through the properties
of matrix W , i.e., its eigenvalues and eigenvectors. We present
the spectra of matrix W for different control sets in Figs. 5 and
6. A very large difference is observed in the eigenvalues as-
sociated with the optimized controls versus the random ones.
Note that this observation is the same if the control time is also
optimized. This difference is quantitatively measured by the
condition number of W , i.e., the ratio between the largest and
the smallest eigenvalues, which is listed in Table III. As could
be expected, these results show that, using random controls,
matrix W can be close to being singular. In the example in
Fig. 6, while most of the eigenvalues are larger than 1, four
of them are smaller than 10−10. Hence, matrix W has a very
bad condition number. We stress the very good result achieved

FIG. 5. Spectrum of matrix W defined in (7) for controls gener-
ated by the OGRA (dash-dotted green lines), GRA (black circles),
and RCC (blue squares). Dimensionless units are used.

FIG. 6. Same as Fig. 5, but for variable control times.

by the OGRA, for which all the eigenvalues have almost the
same value. This analysis may also explain the difference
between a smooth and a noncontinuous probability distribu-
tion. As a matter of fact, numerical results reveal that random
controls have more difficulty identifying a nonsmooth prob-
ability distribution as illustrated in Sec. V B. This aspect can
be understood from the behavior of the eigenvectors. Indeed,
we observe numerically that the modes with a large number
of oscillations correspond to the smallest eigenvalues. Such
modes have to be used to reconstruct probability distributions
with rapid and abrupt variations. For random controls, these
eigenvectors lead to large errors and to incorrect probability
distributions.

VI. CONCLUSIONS

We have introduced in this work a greedy reconstruction
algorithm with an application to spin dynamics. The algo-
rithm provides a systematic way to identify the probability
distribution of a parameter of a Hamiltonian system varying
in a given range. The efficiency of the identification process
has been illustrated in the case of a spin ensemble subjected
to an inhomogeneous radio-frequency magnetic field. After
the description of some mathematical properties of the algo-
rithm, numerical simulations have revealed the efficiency of
the GRA and its quite large basin of convergence. We have
shown that the GRA is able to identify nontrivial probability
distributions with several peaks or with a step variation. An
optimized version of this algorithm can be derived to fur-
ther improve the identification process. We have limited the
study to constant controls, but similar results can be achieved
with time-dependent pulses. A quantitative comparison with
random constant controls has highlighted the nontrivial recog-
nition process realized by the algorithms. The numerical
observations can also be partly explained by the computation
of the eigenvalues and eigenvectors of matrix W .

This analysis paves the way for further investigations in
magnetic resonance. An interesting direction is the study of
the sensitivity of the algorithm to experimental imperfections
or to the presence of noise. It could also be used to iden-
tify the probability distribution of other parameters, such as
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TABLE III. Condition number of matrix W for different control sets.

Control set

GRA GRAt OGRA OGRAt RCC RCCt

Cond(W ) 4.9 × 103 6.9 × 107 19.55 16.6178 4.3 × 109 1.42 × 1017

the resonance offset. These greedy algorithms could also be
transferred to other domains such as quantum optics and
atomic and molecular physics. Finally, we hope that our
method will be used in relevant experimental applications in
magnetic resonance in the near-future. Inhomogeneous con-
tributions may be due, e.g., to specific shapes of the coil
used to generate the radio-frequency magnetic field, which
leads to spatial variations of the field and thus to a nontrivial
probability distribution of the system parameters [63–65].
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APPENDIX A: MATHEMATICAL DESCRIPTION
OF THE GRA

We give some mathematical details of the GRA in this Ap-
pendix. Straightforward computations show that the different
steps of the GRA can be expressed in matrix form as follows:

1. The initialization problem, (9), is equivalent to

max
u∈U

[W (u)]1,1.

2. The fitting-step problem, (10), is equivalent to

min
β∈Rk

〈β|W k
[1:k,1:k]|β〉 − 2〈W k

[1:k,k+1]|β〉,

where W k =
k∑

m=1

W (um). W k
[1:k,1:k] and W k

[1:k,k+1] denote, re-

spectively, the k × k upper-left block of W k and a column
vector containing the first k components of the (k + 1)th col-
umn of W k .

3. The discriminatory-step problem, (11), is equivalent to

max
u∈U

〈v|[W (u)][1:k+1,1:k+1]|v〉,

where v = (βᵀ
k ,−1)ᵀ.

The different iterations of the GRA can then be described
as follows. At iteration k, we assume that the submatrix
W k

[1:k,1:k] is positive definite, but W k
[1:k+1,1:k+1] can have a

nontrivial kernel. The idea is first to identify the kernel of
W k

[1:k+1,1:k+1] by solving (10) and then to compute a new
control uk+1 such that the new updated matrix W k+1 = W k +
W (uk+1) has a positive definite upper-left block, W k+1

[1:k+1,1:k+1].
The convergence of the algorithm follows from this iterative
process.

The following two technical lemmas describe the optimiza-
tions used in the two steps of the algorithm. In particular,
Lemma A shows that the fitting step identifies the kernel of
the matrix W k

[1:k+1,1:k+1].
Lemma 1. Assume that W k

[1:k,1:k] is positive definite and
W k

[1:k+1,1:k+1] has a nontrivial kernel. Then the vector v =
(βᵀ

k ,−1)ᵀ, where βk is the solution to (10), is in the kernel
of W k

[1:k+1,1:k+1].
The second lemma is the basis of the discriminatory-step

algorithm and shows that this step corrects the rank deficiency
of W k

[1:k+1,1:k+1].
Lemma 2. Let W k

[1:k,1:k] be a positive definite matrix and βk

a solution of the fitting-step problem, (10). Any solution uk+1

of (11) satisfies

〈v|W[1:k+1,1:k+1]|v〉 > 0

for k = 0, 1, . . . , K − 1, where v = (βᵀ
k ,−1)ᵀ.

The mathematical proofs of these results and a detailed
numerical analysis of the GRA are beyond the scope of this
work and will be presented elsewhere.

APPENDIX B: THE OPTIMIZED GREEDY ALGORITHM

We discuss in this Appendix the optimized version of the
GRA. It can be shown numerically that the behavior and the
efficiency of the GRA are strongly affected by the choice of
the elements ϕk and their ordering. The GRA is essentially a
sweep over the set (ϕk )K

k=1. However, an incorrect choice of
the elements ϕk and their ordering can lead to the stagnation
of the algorithm and to the computation of many useless
control functions. Note that the stagnation of the algorithm
can be measured in terms of rank corrections, i.e., whether for
consecutive iterations the rank of W does not increase. These
reasons are at the origin of an optimized algorithm [57]. The
OGRA takes as input a set �, possibly larger than (ϕk )K

k=1
with linearly dependent elements, and returns as output not
only a set of K̃ control functions, but also a set of linearly
independent functions (̂ϕk )K̂

k=1. The integers K̃ and K̂ are not
necessarily equal and may be smaller than K (in contrast to
the GRA). The extension of the OGR method in [57] to the
distribution reconstruction problem is detailed below, where
we use the map hS , defined as

hS (β, u) =
K∑

�=1

card[S]∑
j=1

β jϕ j (�)Y(u, α�),

where S = (ϕ1, . . . , ϕk ). Note that for the fitting-step prob-
lem, we do not have any constraint for the choice of
coefficients β. This is due to the fact that, within the algo-
rithm, we are not trying to reconstruct a distribution but to
make the respective submatrix positive definite.
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Optimized greedy reconstruction algorithm

Given a set of K+ � K linearly independent functions
(ϕ1, . . . , ϕK+ ) and a tolerance tol > 0.

Solve the initialization problem

max
n∈{1,...,K+}

max
u∈U

∥∥h(1)
ϕn

(1, u)
∥∥2

, (B1)

which gives the control u1 and the control �1. Set k = 1 and
S = {ϕ�1}, K̃ = K+, and update � = � \ {ϕ�1}. The algorithm
is stopped if ‖h(1)

S (1, u)‖2 < tol.
While k � K − 1 do
(1) Remove elements from � that are linearly dependent

on the ones in S . Shift the indices of the remaining elements
in �. Update card[�] → K̃ .

(2) For � = 1, . . . , ˜K do

Fitting step: Find (β�
j ) j=1,...,k that solve the problem

min
β∈Rk

k∑
m=1

‖hϕ�
(1, um) − hS (β, um)‖2, (B2)

end for
(3) Discriminatory step: Find uk+1 and �k+1 that solve the

problem

max
�∈{1,...,K+}

max
u∈U

‖hϕ�
(1, u) − hS (β�, u)‖2. (B3)

If ‖hϕ�
(1, uk+1) − hS (β�k+1 , uk+1)‖2 < tol, then stop and re-

turn S and the computed (u)k
m=1.

(4) Orthogonalize the function ϕ�k+1 with respect to S and
update S ∪ {ϕ�k+1} → S , � \ {ϕ�k+1} → �, and k + 1 → k.

End while
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